1
|
Dal Lin C, Tona F, Osto E. The crosstalk between the cardiovascular and the immune system. VASCULAR BIOLOGY 2019; 1:H83-H88. [PMID: 32923958 PMCID: PMC7439936 DOI: 10.1530/vb-19-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
The heart and the immune system are highly integrated systems cross-talking through cytokines, hormones and neurotransmitters. Their balance can be altered by numerous physical or psychological stressors leading to the onset of inflammation, endothelial dysfunction and tissue damage. Here, we review the main players and mechanisms involved in the field. A new research paradigm, which considers also novel contributors, like endothelial cells, is needed to better understand the pathophysiology of immune-mediated cardiovascular disorders and beyond.
Collapse
Affiliation(s)
- Carlo Dal Lin
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University-Hospital, Padua, Italy
| | - Francesco Tona
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University-Hospital, Padua, Italy
| | - Elena Osto
- University and University Hospital Zurich, Institute of Clinical Chemistry, Zurich, Switzerland.,University Hospital Zurich, Heart Center, Zurich, Switzerland.,Swiss Federal Institute of Technology (ETH), Laboratory of Translational Nutrition Biology, Zurich, Switzerland
| |
Collapse
|
2
|
Abstract
Identification of differentially expressed genes has been a high priority task of downstream analyses to further advances in biomedical research. Investigators have been faced with an array of issues in dealing with more complicated experiments and metadata, including batch effects, normalization, temporal dynamics (temporally differential expression), and isoform diversity (isoform-level quantification and differential splicing events). To date, there are currently no standard approaches to precisely and efficiently analyze these moderate or large-scale experimental designs, especially with combined metadata. In this report, we propose comprehensive analytical pipelines to precisely characterize temporal dynamics in differential expression of genes and other genomic features, i.e., the variability of transcripts, isoforms and exons, by controlling batch effects and other nuisance factors that could have significant confounding effects on the main effects of interest in comparative models and may result in misleading interpretations.
Collapse
|
3
|
Kozlova DI, Kochkina EG, Dubrovskaya NM, Zhuravin IA, Nalivaeva NN. Effect of Prenatal Hypoxia on Cholinesterase Activity in Blood Serum of Rats. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Cui JD, Xu ML, Liu EYL, Dong TTX, Lin HQ, Tsim KWK, Bi CWC. Expression of globular form acetylcholinesterase is not altered in P2Y1R knock-out mouse brain. Chem Biol Interact 2016; 259:291-294. [PMID: 27378627 DOI: 10.1016/j.cbi.2016.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/18/2016] [Accepted: 06/29/2016] [Indexed: 01/08/2023]
Abstract
Adenosine 5'-triphosphate (ATP), a neurotransmitter and a neuromodulator, has been shown to be co-stored and co-released with acetylcholine (ACh) at the pre-synaptic vesicles in vertebrate neuromuscular junction (nmj). Several lines of studies demonstrated that binding of ATP to its corresponding P2Y1 receptors (P2Y1R) in muscle and neuron regulated the post-synaptic gene expressions. Indeed, the expression of acetylcholinesterase (AChE) in muscle was markedly decreased in P2Y1R-/- (P2Y1R knock-out) mice. In order to search for possible role of P2Y1R in cholinergic function of the brain, the expression of globular form AChE was determined in the brain of P2Y1R-/- mice. In contrast to that in muscle, the amounts of AChE activity, AChE catalytic subunit, structure subunit PRiMA and the amount of ACh, in the brain were not, significantly, altered, suggesting the role of P2Y1R in neuron could have different function as that in muscle. However, the expressions of a series of neuronal development markers, i.e. neurofilaments, were reduced in P2Y1R-/- mouse brain, indicating P2Y1R may be involved in neuronal development process.
Collapse
Affiliation(s)
- Jane D Cui
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Miranda L Xu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Etta Y L Liu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T X Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - H Q Lin
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Karl W K Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cathy W C Bi
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
5
|
Valbonesi P, Franzellitti S, Bersani F, Contin A, Fabbri E. Activity and expression of acetylcholinesterase in PC12 cells exposed to intermittent 1.8 GHz 217-GSM mobile phone signal. Int J Radiat Biol 2015; 92:1-10. [PMID: 26630175 DOI: 10.3109/09553002.2016.1114188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Due to its role in learning, memory and in many neurodegenerative diseases, acetylcholinesterase (AChE) represents an interesting endpoint to assess possible targets of exposure to radiofrequency electromagnetic fields (RF-EMF) generated by mobile phones. We investigated possible alterations of enzymatic activity, gene and protein expression of AChE in neuronal-like cells exposed to a 1.8 GHz Global System for Mobile Communication (GSM) modulated signal (217-GSM). MATERIALS AND METHODS Rat PC12 cells were exposed for 24 h to 1.8 GHz 217-GSM signal. Specific adsorption rate (SAR) was 2 W/kg. AChE enzyme activity was assessed spectrophotometrically by Ellman's method, mRNA expression level was evaluated by real time polymerase chain reaction, and protein expression was assessed by Western blotting. RESULTS AChE enzymatic activity increased of 1.4-fold in PC12 cells exposed to 217-GSM signal for 24 h, whilst AChE transcriptional or translational pathways were not affected. CONCLUSION Our results provide the first evidence of effects on AChE activity after in vitro exposure of mammalian cells to the RF-EMF generated by GSM mobile phones, at the SAR value 2 W/kg. The obtained evidence promotes further investigations on AChE as a possible target of RF-EMF and confirm the ability of 1.8 GHz 217-GSM signal to induce biological effects in different mammalian cells.
Collapse
Affiliation(s)
- Paola Valbonesi
- a Interdepartmental Centre for Environmental Science Research, University of Bologna , Campus of Ravenna , Italy ;,b Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Silvia Franzellitti
- a Interdepartmental Centre for Environmental Science Research, University of Bologna , Campus of Ravenna , Italy ;,b Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | | | - Andrea Contin
- a Interdepartmental Centre for Environmental Science Research, University of Bologna , Campus of Ravenna , Italy ;,c Department of Physics , University of Bologna , Bologna , Italy
| | - Elena Fabbri
- a Interdepartmental Centre for Environmental Science Research, University of Bologna , Campus of Ravenna , Italy ;,b Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
6
|
Behavioral effects of nicotinic antagonist mecamylamine in a rat model of depression: prefrontal cortex level of BDNF protein and monoaminergic neurotransmitters. Psychopharmacology (Berl) 2015; 232:1095-105. [PMID: 25315361 DOI: 10.1007/s00213-014-3745-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Several studies have pointed to the nicotinic acetylcholine receptor (nAChR) antagonists, such as mecamylamine (MEC), as a potential therapeutic target for the treatment of depression. The present study evaluated the behavioral and neurochemical effects of chronic administration of MEC (1, 2, and 4 mg/kg/day, intraperitoneally (i.p.)) in Wistar rats exposed to chronic restraint stress (CRS, 4 h × 6 W). MEC prevented CRS-induced depressive-like behavior via increasing sucrose preference, body weight, and forced swim test (FST) struggling and swimming while reducing immobility in FST and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity (adrenal gland weight and serum corticosterone). At the same time, MEC amended CRS-induced anxiety as indicated by decreasing central zone duration in open field test and increasing active interaction duration. Additionally, MEC modulated the prefrontal cortex (PFC) level of brain-derived neurotrophic factor (BDNF), 5-hydroxy tryptamine (5-HT), and norepinephrine (NE). In conclusion, the present data suggest that MEC possesses antidepressant and anxiolytic-like activities in rats exposed to CRS. These behavioral effects may be in part mediated by reducing HPA axis hyperactivity and increasing PFC level of BDNF and monoamines. Accordingly, these findings further support the hypothesis that nAChRs blockade might afford a novel promising strategy for pharmacotherapy of depression.
Collapse
|
7
|
Abstract
Imbalanced cell death is a common phenomenon in many human diseases, including cancer. DAPK's essential function is in promoting apoptosis. DAPK interacts with stress-induced receptors through its death domain to initiate an apoptosis cascade. In addition, DAPK phosphorylates multiple cytosolic substrates and can mediate transfer of signaling pathways to the effector caspases. A series of studies demonstrated that, depending on stimuli, DAPK expression is regulated on both the transcriptional and posttranscriptional levels. Silencing of DAPK due to hypermethylation of its promoter was reported in many types of cancer. STAT3 and p52-NFkB transcription factors have been shown to down-regulate DAPK expression. In contrast, p53, C/EBP-β and Smad transcription factors bind to their specific response elements within the DAPK promoter and induce its transcription. Post-transcriptionally, DAPK undergoes alternative splicing, which results in the production of two functionally different isoforms. Moreover, miRNA 103 and miRNA 107 recently were shown to inhibit DAPK in colorectal cancer. Here we summarize our recent knowledge about transcriptional regulation of DAPK expression.
Collapse
Affiliation(s)
- Natalya Benderska
- Experimental Tumorpathology, Institute of Pathology, Friedrich-Alexander- University of Erlangen-Nuremberg, Universitätstrasse 22, 91054, Erlangen, Germany
| | | |
Collapse
|
8
|
Ferlemi AV, Avgoustatos D, Kokkosis AG, Protonotarios V, Constantinou C, Margarity M. Lead-induced effects on learning/memory and fear/anxiety are correlated with disturbances in specific cholinesterase isoform activity and redox imbalance in adult brain. Physiol Behav 2014; 131:115-22. [DOI: 10.1016/j.physbeh.2014.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/09/2014] [Accepted: 04/15/2014] [Indexed: 01/07/2023]
|
9
|
Bi CWC, Luk WKW, Campanari ML, Liu YH, Xu L, Lau KM, Xu ML, Choi RCY, Sáez-Valero J, Tsim KWK. Quantification of the transcripts encoding different forms of AChE in various cell types: real-time PCR coupled with standards in revealing the copy number. J Mol Neurosci 2014; 53:461-8. [PMID: 24385197 DOI: 10.1007/s12031-013-0210-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/10/2013] [Indexed: 01/05/2023]
Abstract
Acetylcholinesterase (AChE) is encoded by a single gene, and the alternative splicing at the 3' end produces different isoforms, including tailed (AChET), read-through (AChER), and hydrophobic (AChEH). Different forms of this enzyme exist in different cell types. Each AChE form has been proposed to have unique function, and all of them could be found in same cell type. Thus, the splicing process of different AChE forms remains unclear. Here, we aimed to establish a quantification method in measuring the absolute amount of each AChE splicing variants within a cell type. By using real-time PCR coupled with standard curves of defined copy of AChE variants, the copies of AChET transcript per 100 ng of total RNA were 5.7 × 10(4) in PC12 (rat neuronal cell), 1.3 × 10(4) in Caco-2 (human intestinal cell), 0.67 × 10(4) in TF-1 (human erythropoietic precursor), 133.3 in SH-SY5Y (human neuronal cell), and 56.7 in human umbilical vein endothelial cells (human endothelial cells). The copies of AChEH in these cell types were 0.3 × 10(4), 3.3 × 10(4), 2.7 × 10(4), 133.3, and 46.7, respectively, and AChER were 0.07 × 10(4), 0.13 × 10(4), 890, 3.3, and 2.7, respectively. Furthermore, PC12 and TF-1 cells were chosen for the analysis of AChE splicing pattern during differentiation. The results demonstrated a selective increase in AChET mRNA but not AChER or AChEH mRNAs in PC12 upon nerve growth factor-induced neuronal differentiation. PC12 cells could therefore act as a good cell model for the study on alternative splicing mechanism and regulation of AChET.
Collapse
Affiliation(s)
- Cathy W C Bi
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Neospora caninum: Activity of cholinesterases during the acute and chronic phases of an experimental infection in gerbils. Exp Parasitol 2013; 135:669-74. [DOI: 10.1016/j.exppara.2013.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 11/21/2022]
|
11
|
Khan DH, Jahan S, Davie JR. Pre-mRNA splicing: role of epigenetics and implications in disease. Adv Biol Regul 2012; 52:377-388. [PMID: 22884031 DOI: 10.1016/j.jbior.2012.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
Epigenetics refer to a variety of processes that have long-term effects on gene expression programs without changes in DNA sequence. Key players in epigenetic control are histone modifications and DNA methylation which, in concert with chromatin remodeling complexes, nuclear architecture and microRNAs, define the chromatin structure of a gene and its transcriptional activity. There is a growing awareness that histone modifications and chromatin organization influence pre-mRNA splicing. Further there is emerging evidence that pre-mRNA splicing itself influences chromatin organization. In the mammalian genome around 95% of multi-exon genes generate alternatively spliced transcripts, the products of which create proteins with different functions. It is now established that several human diseases are a direct consequence of aberrant splicing events. In this review we present the interplay between epigenetic mechanisms and splicing regulation, as well as discuss recent studies on the role of histone deacetylases in splicing activities.
Collapse
Affiliation(s)
- Dilshad H Khan
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, R3E 3P4 Canada
| | | | | |
Collapse
|
12
|
Rhein C, Tripal P, Seebahn A, Konrad A, Kramer M, Nagel C, Kemper J, Bode J, Mühle C, Gulbins E, Reichel M, Becker CM, Kornhuber J. Functional implications of novel human acid sphingomyelinase splice variants. PLoS One 2012; 7:e35467. [PMID: 22558155 PMCID: PMC3338701 DOI: 10.1371/journal.pone.0035467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/16/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acid sphingomyelinase (ASM) hydrolyses sphingomyelin and generates the lipid messenger ceramide, which mediates a variety of stress-related cellular processes. The pathological effects of dysregulated ASM activity are evident in several human diseases and indicate an important functional role for ASM regulation. We investigated alternative splicing as a possible mechanism for regulating cellular ASM activity. METHODOLOGY/PRINCIPAL FINDINGS We identified three novel ASM splice variants in human cells, termed ASM-5, -6 and -7, which lack portions of the catalytic- and/or carboxy-terminal domains in comparison to full-length ASM-1. Differential expression patterns in primary blood cells indicated that ASM splicing might be subject to regulatory processes. The newly identified ASM splice variants were catalytically inactive in biochemical in vitro assays, but they decreased the relative cellular ceramide content in overexpression studies and exerted a dominant-negative effect on ASM activity in physiological cell models. CONCLUSIONS/SIGNIFICANCE These findings indicate that alternative splicing of ASM is of functional significance for the cellular stress response, possibly representing a mechanism for maintaining constant levels of cellular ASM enzyme activity.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Philipp Tripal
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Angela Seebahn
- Institute of Biochemistry, Emil-Fischer-Centre, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alice Konrad
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Marcel Kramer
- Leibniz Institute for Age Research – Fritz Lipmann Institute and Center for Sepsis Control and Care at Jena University Hospital, Jena, Germany
| | - Christine Nagel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jonas Kemper
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jens Bode
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Cord-Michael Becker
- Institute of Biochemistry, Emil-Fischer-Centre, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
13
|
Xie HQ, Liang D, Leung KW, Chen VP, Zhu KY, Chan WKB, Choi RCY, Massoulié J, Tsim KWK. Targeting acetylcholinesterase to membrane rafts: a function mediated by the proline-rich membrane anchor (PRiMA) in neurons. J Biol Chem 2010; 285:11537-46. [PMID: 20147288 DOI: 10.1074/jbc.m109.038711] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the mammalian brain, acetylcholinesterase (AChE) is anchored in cell membranes by a transmembrane protein PRiMA (proline-rich membrane anchor). We present evidence that at least part of the PRiMA-linked AChE is integrated in membrane microdomains called rafts. A significant proportion of PRiMA-linked AChE tetramers from rat brain was recovered in raft fractions; this proportion was markedly higher at low rather than at high concentrations of cold Triton X-100. The detergent-resistant fraction increased during brain development. In NG108-15 neuroblastoma cells transfected with cDNAs encoding AChE(T) and PRiMA, PRiMA-linked G(4) AChE was found in membrane rafts and showed the same sensitivity to cold Triton X-100 extraction as in the brain. The association of PRiMA-linked AChE with rafts was weaker than that of glycosylphosphatidylinositol-anchored G(2) AChE or G(4) Q(N)-H(C)-linked AChE. It was found to depend on the presence of a cholesterol-binding motif, called CRAC (cholesterol recognition/interaction amino acid consensus), located at the junction of transmembrane and cytoplasmic domains of both PRiMA I and II isoforms. The cytoplasmic domain of PRiMA, which differs between PRiMA I and PRiMA II, appeared to play some role in stabilizing the raft localization of G(4) AChE, because the Triton X-100-resistant fraction was smaller with the shorter PRiMA II isoform than that with the longer PRiMA I isoform.
Collapse
Affiliation(s)
- Heidi Q Xie
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mok MKW, Leung KW, Xie HQ, Guo AJY, Chen VP, Zhu JTT, Choi RCY, Tsim KWK. A new variant of proline-rich membrane anchor (PRiMA) of acetylcholinesterase in chicken: expression in different muscle fiber types. Neurosci Lett 2009; 461:202-6. [PMID: 19539694 DOI: 10.1016/j.neulet.2009.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/08/2009] [Accepted: 06/06/2009] [Indexed: 11/27/2022]
Abstract
Proline-rich membrane anchor (PRiMA) is a molecule to organize acetylcholinesterase (AChE) into tetrameric globular form (G(4)) that anchors onto the plasma membrane in brain and muscle. In mammal, PRiMA is encoded by a single gene with two splicing variants, PRiMA I and PRiMA II: PRiMA II is different to PRiMA I by its absence of a C-terminal cytoplasmic domain. The existence of these isoforms has not been revealed in avian specie. By using RT-PCR and bioinformatic analyses, two splicing variants of PRiMA were identified in chicken cerebrum. One variant contains very similar domains as compared to mammalian PRiMA I. The other variant, named as PRiMA II, has a very distinct cytoplasmic C-terminus of having 26 amino acids. Both forms of chicken PRiMA were able to organize the formation of G(4) AChE when that was over expressed together with AChE(T) subunit in cultured cells. The level of PRiMA mRNA, mainly PRiMA I, was higher in slow-twitch muscle than that of in fast-twitch muscle of chicken. This finding suggests that the muscle fiber type-specific expression of G(4) AChE in chicken could be a result of the different expression pattern of PRiMA in fast- and slow-twitch muscles.
Collapse
Affiliation(s)
- Mokka K W Mok
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Leung KW, Xie HQ, Chen VP, Mok MKW, Chu GKY, Choi RCY, Tsim KWK. Restricted localization of proline-rich membrane anchor (PRiMA) of globular form acetylcholinesterase at the neuromuscular junctions--contribution and expression from motor neurons. FEBS J 2009; 276:3031-42. [PMID: 19490106 DOI: 10.1111/j.1742-4658.2009.07022.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The expression and localization of the proline-rich membrane anchor (PRiMA), an anchoring protein of tetrameric globular form acetylcholinesterase (G(4) AChE), were studied at vertebrate neuromuscular junctions. Both muscle and motor neuron contributed to this synaptic expression pattern. During the development of rat muscles, the expression of PRiMA and AChE(T) and the enzymatic activity increased dramatically; however, the proportion of G(4) AChE decreased. G(4) AChE in muscle was recognized specifically by a PRiMA antibody, indicating the association of this enzyme with PRiMA. Using western blot and ELISA, both PRiMA protein and PRiMA-linked G(4) AChE were found to be present in large amounts in fast-twitch muscle (e.g. tibialis), but in relatively low abundance in slow-twitch muscle (e.g. soleus). These results indicate that the expression level of PRiMA-linked G(4) AChE depends on muscle fiber type. In parallel, the expression of PRiMA, AChE(T) and G(4) AChE also increased in the spinal cord during development. Such expression in motor neurons contributed to the synaptic localization of G(4) AChE. After denervation, the expression of PRiMA, AChE(T) and G(4) AChE decreased markedly in the spinal cord, and in fast- and slow-twitch muscles.
Collapse
Affiliation(s)
- K Wing Leung
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Shaked I, Zimmerman G, Soreq H. Stress-induced Alternative Splicing Modulations in Brain and Periphery. Ann N Y Acad Sci 2008; 1148:269-81. [DOI: 10.1196/annals.1410.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Salas R, Main A, Gangitano DA, Zimmerman G, Ben-Ari S, Soreq H, De Biasi M. Nicotine Relieves Anxiogenic-Like Behavior in Mice that Overexpress the Read-Through Variant of Acetylcholinesterase but Not in Wild-Type Mice. Mol Pharmacol 2008; 74:1641-8. [DOI: 10.1124/mol.108.048454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Transcriptional control of different subunits of AChE in muscles: Signals triggered by the motor nerve-derived factors. Chem Biol Interact 2008; 175:58-63. [DOI: 10.1016/j.cbi.2008.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/11/2008] [Accepted: 04/11/2008] [Indexed: 11/19/2022]
|
19
|
Feldmann RE, Maurer MH, Hunzinger C, Lewicka S, Buergers HF, Kalenka A, Hinkelbein J, Broemme JO, Seidler GH, Martin E, Plaschke K. Reduction in rat phosphatidylethanolamine binding protein-1 (PEBP1) after chronic corticosterone treatment may be paralleled by cognitive impairment: a first study. Stress 2008; 11:134-47. [PMID: 18311602 DOI: 10.1080/10253890701649904] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic stress is associated with hippocampal atrophy and cognitive dysfunction. This study investigates how long-lasting administration of corticosterone as a mimic of experimentally induced stress affects psychometric performance and the expression of the phosphatidylethanolamine binding protein (PEBP1) in the adult hippocampus of one-year-old male rats. Psychometric investigations were conducted in rats before and after corticosterone treatment using a holeboard test system. Rats were randomly attributed to 2 groups (n = 7) for daily subcutaneous injection of either 26.8 mg/kg body weight corticosterone or sesame oil (vehicle control). Treatment was continued for 60 days, followed by cognitive retesting in the holeboard system. For protein analysis, the hippocampal proteome was separated by 2D electrophoresis (2DE) followed by image processing, statistical analysis, protein identification via peptide mass fingerprinting and gel matching and subsequent functional network mapping and molecular pathway analysis. Differential expression of PEBP1 was additionally quantified by Western blot analysis. Results show that chronic corticosterone significantly decreased rat hippocampal PEBP1 expression and induced a working and reference memory dysfunction. From this, we derive the preliminary hypothesis that PEBP1 may be a novel molecular mediator influencing cognitive integrity during chronic corticosterone exposure in rat hippocampus.
Collapse
Affiliation(s)
- Robert E Feldmann
- Division of Systems Physiology, Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Barberan-Soler S, Zahler AM. Alternative splicing regulation during C. elegans development: splicing factors as regulated targets. PLoS Genet 2008; 4:e1000001. [PMID: 18454200 PMCID: PMC2265522 DOI: 10.1371/journal.pgen.1000001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 01/15/2008] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (∼18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 – now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation. Alternative splicing is a mechanism for generating more than one messenger RNA from a given gene. The alternative transcripts can encode different proteins that share some regions in common but have modified functions, thus increasing the number of proteins encoded by the genome. Alternative splicing can also lead to the production of mRNA isoforms that are then subject to degradation by the nonsense-mediated decay pathway, thus providing a mechanism to down-regulate gene expression without decreasing transcription. Examples of cell type-specific, hormone-responsive, and developmentally-regulated alternative splicing have been described. We decided to measure the extent of developmentally regulated alternative splicing in the nematode model organism Caenorhabditis elegans. We developed a DNA microarray that can measure the alternative splicing of 352 cassette exons simultaneously and used it to probe alternative splicing in RNA extracted from embryos, the four larval stages, and adults. We show that 18% of the alternatively spliced genes tested show >4-fold changes in alternative splicing during development. In addition, we show that one of the most regulated genes is itself a splicing factor, providing support for a model in which a cascade of alternative splicing regulation occurs during development.
Collapse
Affiliation(s)
- Sergio Barberan-Soler
- Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Alan M. Zahler
- Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Lippiello PM, Beaver JS, Gatto GJ, James JW, Jordan KG, Traina VM, Xie J, Bencherif M. TC-5214 (S-(+)-mecamylamine): a neuronal nicotinic receptor modulator with antidepressant activity. CNS Neurosci Ther 2008; 14:266-77. [PMID: 19040552 PMCID: PMC6494058 DOI: 10.1111/j.1755-5949.2008.00054.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Both clinical and preclinical data support a potential therapeutic benefit of modulating the activity of CNS neuronal nicotinic receptors (NNRs) to treat depression and anxiety disorders. Based on the notion that the depressive states involve hypercholinergic tone, we have examined the potential palliative role of NNR antagonism in these disorders, using TC-5214 (S-(+) enantiomer of mecamylamine), a noncompetitive NNR antagonist. TC-5214 demonstrated positive effects in a number of animal models of depression and anxiety. TC-5214 was active in the forced swim test in rats (minimum effective dose (MED)=3 mg/kg i.p.), a classical depression model. It was also active in the behavioral despair test in mice (0.1-3.0 mg/kg i.p.), another model of depression. In the social interaction paradigm in rats, a model of generalized anxiety disorder (GAD), TC-5214 was active at a dose of 0.05 mg/kg s.c. In the light/dark chamber paradigm in rats, a model of GAD and phobia, TC-5214 was also active at a dose of 0.05 mg/kg s.c. Although TC-5214 shows modest selectivity among NNR subtypes, the antidepressant and anxiolytic effects seen in these studies are likely attributable to antagonist effects at the alpha4beta2 NNRs. This is supported by the observation of similar effects with alpha4beta2-selective partial agonists such as cytisine and with alpha4beta2-selective antagonists such as TC-2216. TC-5214 was well tolerated in acute and chronic toxicity studies in mice, rats, and dogs, showed no mutagenicity and displayed safety pharmacology, pharmacokinetic and metabolic profiles appropriate for therapeutic development. Overall, the results support a novel nicotinic cholinergic antagonist mechanism for antidepressant and anxiolytic effects and highlight the potential of NNR antagonists such as TC-5214 as therapeutics for the treatment of anxiety and depression.
Collapse
|
22
|
Jing P, Jin Q, Wu J, Zhang XJ. GSK3beta mediates the induced expression of synaptic acetylcholinesterase during apoptosis. J Neurochem 2007; 104:409-19. [PMID: 17949411 DOI: 10.1111/j.1471-4159.2007.04975.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Besides its role in terminating acetylcholine-mediated neurotransmission, acetylcholinesterase (AChE) is found to be expressed and participate in the process of apoptosis in various cell types. However, the mechanisms underlying AChE up-regulation in neuronal cells remain elusive. Herein we demonstrated that glycogen synthase kinase-3beta (GSK3beta) mediates induced AChE-S expression during apoptosis. In this study, A23187 and thapsigargin (TG) were employed to induce apoptosis in neuroendocrine PC12 cells. The results showed that exposure of PC12 cells to A23187 and TG up-regulated AChE activity significantly. The same treatment also led to activation of GSK3beta. Two different inhibitors of GSK3beta (lithium and GSK3beta-specific inhibitor VIII) could block A23187- or TG-induced up-regulation of AChE activity, AChE-S mRNA level and protein expression. However, lithium could not inhibit the induction of AChE-R mRNA and protein under similar conditions. Taken together, our results show that GSK3beta is specifically involved in the induction of AChE-S expression in PC12 cells during apoptosis.
Collapse
Affiliation(s)
- Peng Jing
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
23
|
Abstract
Many neurodegenerative diseases share common underlying features, most prominent of which are dysregulation of calcium homeostasis and reactive astrogliosis, ultimately triggered by oxidative stress. Interestingly, an additional feature of the early response to stress conditions is the upregulation and release of acetylcholinesterase (AChE). This study therefore investigates the link between oxidative stress, calcium influx, gene expression, protein synthesis, and AChE release. We report that, in astroglia and in an immortalized cell line, GH4-halpha7, acute oxidative stress causes influx of extracellular calcium through L-type voltage-gated calcium channels (L-VGCC), followed by increased release of AChE into the extracellular medium. Moreover, rapid and sustained changes in mRNA expression of AChE, L-VGCC, and melastatin-like transient receptor potential 2 (TRPM2) accompany profound suppression of global protein synthesis. Application of L-VGCC blockers selectively reduces stress-induced calcium influx and AChE release, mitigates changes in gene expression, and facilitates recovery from protein synthesis suppression. Although glia exhibit greater sensitivity in their responses, the results are comparable in astroglia and GH4-halpha7 cells, and suggest a generalized and integrated cellular response to stress conditions that characterizes changes observed in neurodegeneration.
Collapse
Affiliation(s)
- Cherie E Bond
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom.
| | | |
Collapse
|
24
|
Evron T, Greenberg D, Mor TS, Soreq H. Adaptive changes in acetylcholinesterase gene expression as mediators of recovery from chemical and biological insults. Toxicology 2007; 233:97-107. [PMID: 17005312 DOI: 10.1016/j.tox.2006.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 08/10/2006] [Accepted: 08/11/2006] [Indexed: 01/25/2023]
Abstract
Both organophosphate (OP) exposure and bacterial infection notably induce short- and long-term cholinergic responses. These span the central and peripheral nervous system, neuromuscular pathway and hematopoietic cells and involve over-expression of the "readthrough" variant of acetylcholinesterase, AChE-R, and its naturally cleavable C-terminal peptide ARP. However, the causal involvement of these changes with post-exposure recovery as opposed to apoptotic events remained to be demonstrated. Here, we report the establishment of stably transfected cell lines expressing catalytically active human "synaptic" AChE-S or AChE-R which are fully viable and non-apoptotic. In addition, intraperitoneally injected synthetic mouse ARP (mARP) elevated serum AChE levels post-paraoxon exposure. Moreover, mARP treatment ameliorated post-exposure increases in corticosterone and decreases in AChE gene expression and facilitated earlier retrieval of motor activity following both paraoxon and lipopolysaccharide (LPS) exposures. Our findings suggest a potential physiological role for overproduction of AChE-R and the ARP peptide following exposure to both chemical warfare agents and bacterial LPS.
Collapse
Affiliation(s)
- Tama Evron
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
25
|
Xie HQ, Choi RCY, Leung KW, Siow NL, Kong LW, Lau FTC, Peng HB, Tsim KWK. Regulation of a transcript encoding the proline-rich membrane anchor of globular muscle acetylcholinesterase. The suppressive roles of myogenesis and innervating nerves. J Biol Chem 2007; 282:11765-75. [PMID: 17324938 DOI: 10.1074/jbc.m608265200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional regulation of proline-rich membrane anchor (PRiMA), an anchoring protein of tetrameric globular form acetylcholinesterase (G(4) AChE), was revealed in muscle during myogenic differentiation under the influence of innervation. During myotube formation of C2C12 cells, the expression of AChE(T) protein and the enzymatic activity were dramatically increased, but the level of G(4) AChE was relatively decreased. This G(4) AChE in C2C12 cells was specifically recognized by anti-PRiMA antibody, suggesting the association of this enzyme with PRiMA. Reverse transcription-PCR analysis revealed that the level of PRiMA mRNA was reduced during the myogenic differentiation of C2C12 cells. Overexpression of PRiMA in C2C12 myotubes significantly increased the production of G(4) AChE. The oligomerization of G(4) AChE, however, did not require the intracellular cytoplasmic tail of PRiMA. After overexpressing the muscle regulatory factors, myogenin and MyoD, the expressions of PRiMA and G(4) AChE in cultured myotubes were markedly reduced. In addition, calcitonin gene-related peptide, a known motor neuron-derived factor, and muscular activity were able to suppress PRiMA expression in muscle; the suppression was mediated by the phosphorylation of a cAMP-responsive element-binding protein. In accordance with the in vitro results, sciatic nerve denervation transiently increased the expression of PRiMA mRNA and decreased the phosphorylation of cAMP-responsive element-binding protein as well as its activator calcium/calmodulin-dependent protein kinase II in muscles. Our results suggest that the expression of PRiMA, as well as PRiMA-associated G(4) AChE, in muscle is suppressed by muscle regulatory factors, muscular activity, and nerve-derived trophic factor(s).
Collapse
Affiliation(s)
- Heidi Q Xie
- Department of Biology and the Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The importance of alternative splicing in the regulation of diverse biological processes is reflected in the growing list of human diseases associated with known or suspected splicing defects. It is becoming evident that alternative splicing plays a particularly important role in neurologic disease, which is perhaps not surprising given the important role splicing plays in generating complexity and function in the brain. This review considers the evidence that defects in regulation of splicing may underlie many types of human neurologic diseases.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Howard Hughes Medical Institute, Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
27
|
Bond CE, Patel P, Crouch L, Tetlow N, Day T, Abu-Hayyeh S, Williamson C, Greenfield SA. Astroglia up-regulate transcription and secretion of 'readthrough' acetylcholinesterase following oxidative stress. Eur J Neurosci 2006; 24:381-6. [PMID: 16903848 DOI: 10.1111/j.1460-9568.2006.04898.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Novel and diverse functions of glial cells are currently the focus of much attention [A. Volterra and J. Meldolesi (2005) Nature Rev. 6, 626-640]. Here we present evidence that rat astroglia release acetylcholinesterase (AChE) as part of their response to hypoxic damage. Exposure of astroglia to tert-butyl hydroperoxide, and hence oxidative stress, subsequently leads to a switching in mRNA from the classical membrane-bound T-AChE to a preferential increase in the splice variant for a soluble form, R-AChE, This change in expression is reflected in increased perinuclear and reduced cytoplasmic AChE staining of the insulted glial cells, with a concomitant and marked increase in extracellular secretion that peaks at 1 h post-treatment. An analogous increase in R-AChE, over a similar time scale, occurs in response to psychological stress [D. Kaufer et al. (1998) Nature 93, 373-377], as well as to head injury and stroke [E. Shohami et al. (1999) J. Neurotrauma 6, 365-76]. The data presented here suggest that glial cells may be key chemical intermediaries in such situations and, perhaps more generally in pathological conditions involving oxidative stress, such as neurodegeneration.
Collapse
Affiliation(s)
- C E Bond
- University Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pick M, Perry C, Lapidot T, Guimaraes-Sternberg C, Naparstek E, Deutsch V, Soreq H. Stress-induced cholinergic signaling promotes inflammation-associated thrombopoiesis. Blood 2006; 107:3397-406. [PMID: 16380450 DOI: 10.1182/blood-2005-08-3240] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractTo study the role of the stress-induced “readthrough” acetylcholinesterase splice variant, AChE-R, in thrombopoiesis, we used transgenic mice overexpressing human AChE-R (TgR). Increased AChE hydrolytic activity in the peripheral blood of TgR mice was associated with increased thrombopoietin levels and platelet counts. Bone marrow (BM) progenitor cells from TgR mice presented an elevated capacity to produce mixed (GEMM) and megakaryocyte (Mk) colonies, which showed intensified labeling of AChE-R and its interacting proteins RACK1 and PKC. When injected with bacterial lipopolysaccharide (LPS), parent strain FVB/N mice, but not TgR mice, showed reduced platelet counts. Therefore, we primed human CD34+ cells with the synthetic ARP26 peptide, derived from the cleavable C-terminus of AChE-R prior to transplantation, into sublethally irradiated NOD/SCID mice. Engraftment of human cells (both CD45+ and CD41+ Mk) was significantly increased in mice that received ARP26-primed CD34+ human cells versus mice that received fresh nonprimed CD34+ human cells. Moreover, ARP26 induced polyploidization and proplatelet shedding in human MEG-01 promegakaryotic cells, and human platelet engraftment increased following ex vivo expansion of ARP26-treated CD34+ cells as compared to cells expanded with thrombopoietin and stem cell factor. Our findings implicate AChE-R in thrombopoietic recovery, suggesting new therapeutic modalities for supporting platelet production.
Collapse
Affiliation(s)
- Marjorie Pick
- Department of Hematology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
29
|
Salmon A, Erb C, Meshorer E, Ginzberg D, Adani Y, Rabinovitz I, Amitai G, Soreq H. Muscarinic modulations of neuronal anticholinesterase responses. Chem Biol Interact 2005; 157-158:105-13. [PMID: 16289123 DOI: 10.1016/j.cbi.2005.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Anticholinesterases (antiChEs) are increasingly used for treating patients with neurodegenerative diseases, but the dependence of their effects on the integrity of cholinergic functions has not yet been analyzed at the molecular level. Here, we report that manipulation of muscarinic neurotransmission confers drastic changes on antiChE responses in the rat brain. In the brains of naïve, un-stressed rats, the irreversible organophosphate antiChE, diisopropylfluorophosphonate (DFP) induced post-treatment accumulation of catalytically active G1 monomers of acetylcholinesterase (AChE). Pre-treatment with the selective M1 muscarinic antagonist, pirenzepine, but not the general muscarinic antagonist, scopolamine, attenuated this G1 increase. DFP-enhanced AChE gene expression was accompanied by diverted splicing from the primary AChE-S mRNA variant, encoding G4 synaptic membrane AChE-S tetramers, to "readthrough" AChE-R mRNA, which encodes soluble G1 monomers. Both the mRNA increase and the shifted splicing were long lasting (>24 h) and common to the parietal cortex and hippocampal CA1 and CA3 neurons. Importantly, the splicing shift was maximal under DFP alone, as compared with sham-injected rats, and virtually preventable by pre-treatment with pirenzepine. In contrast, induction of AChE transcription was less dependent on muscarinic function, resulting in AChE-S but not AChE-R increases. Our findings demonstrate distinct regulation of the enhanced transcription and the alternative splicing reactions to antiChE treatment and shed new light on the differential responses to antiChEs of demented patients with increasingly impaired cholinergic neurotransmission.
Collapse
Affiliation(s)
- A Salmon
- Department of Biological Chemistry and The Eric Roland Center for Neurodegenerative Diseases, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Guimaraes-Sternberg C, Meerson A, Shaked I, Soreq H. MicroRNA modulation of megakaryoblast fate involves cholinergic signaling. Leuk Res 2005; 30:583-95. [PMID: 16249029 DOI: 10.1016/j.leukres.2005.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/04/2005] [Accepted: 09/08/2005] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) are abundant small regulatory RNAs with multiple roles in cell fate determination. The processes regulating cellular miRNA levels are still unclear and experimental oligonucleotide tools to readily mimic their effects are not yet available. Here, we report that thapsigargin-induced intracellular Ca(++) release suppressed pre-miR-181a levels in human promegakaryotic Meg-01 cells, induced differentiation-associated nuclear endoreduplication and caspase-3 activation and replaced the acetylcholinesterase 3' splice variant AChE-S with AChE-R. AChE, PKC and PKA inhibitors all attenuated the pre-miR-181a decline and the induced differentiation. AChmiON, a synthetic 23-mer 2'-oxymethylated oligonucleotide mimicking the miR-181a sequence, blocked the calcium-induced differentiation while elevating cellular pre-miR-181a levels and inducing DNA fragmentation and cell death. Moreover, when added to RW 264.7 macrophages, AChmiON at 100 nM induced nitric oxide production with efficiency close to that of bacterial endotoxin, demonstrating physiologically relevant activities also in blood-born monocytes/macrophages. The stress-induced modulation of hematopoietic miR-181a levels through AChE, PKC and PKA cascade(s) suggests using miRNA mimics for diverting the fate of hematopoietic tumor cells towards differentiation and/or apoptosis.
Collapse
Affiliation(s)
- Cinthya Guimaraes-Sternberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Edmond Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
31
|
Liang Y, Li C, Guzman VM, Chang WW, Evinger AJ, Sao D, Woodward DF. Identification of a novel alternative splicing variant of RGS5 mRNA in human ocular tissues. FEBS J 2005; 272:791-9. [PMID: 15670159 DOI: 10.1111/j.1742-4658.2004.04516.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulator of G protein signaling (RGS) proteins act as GTPase-activating proteins (GAPs) for Galpha subunits and negatively regulate G protein-coupled receptor signaling. Using RGS5 gene-specific RT-PCR, we have identified a novel alternative splicing variant of RGS5 mRNA in human ocular tissues. The alternative splicing of RGS5 mRNA occurred at position +44 (GenBank NM_003617), spliced out 174 bp (+44 to +218 bp) of the coding region, and encoded an RGS5s protein with a 108 amino acid N-terminal deletion. This study is the first to document alternative splicing of an RGS5 gene. We therefore studied RGS5 and RGS5s mRNA distribution in human tissues. In the eye, RGS5s was found to be highly expressed in the ciliary body and trabecular meshwork. It was also expressed in the kidney, brain, spleen, skeletal muscle and small intestine, but was not detectable in the liver, lung, heart. RGS5s was not found in monkey and rat ocular tissues, indicating species specificity for the eye. Comparing the recombinant RGS5 and RGS5s expression in HEK293/EBNA cells, RGS5s was present almost exclusively in the cytosolic fraction, whereas RGS5 was present in both membrane and cytosolic fractions. The data suggest that the N-terminal of RGS5 may be important for protein translocation to the cell membrane. Both RGS5 and RGS5s antagonized the rapid phosphorylation of p44/42 MAP kinase induced by Galphai coupled cannibinoid receptor-1 activation. RGS5, but not RGS5s, inhibited the Ca2+ signaling initiated by activation of Galphaq coupled angiotensin II receptors (AT1) and prostaglandin FP receptors. Cotransfection of RGS5s with RGS5 resulted in the blockade of RGS5 actions with respect to inhibition of the signal transduction initiated by activation of both AT1 and FP receptor, suggesting that RGS5s may contain functional domains that compete with RGS5 in the regulation of the Galphaq coupled AT1 and FP receptors. The unique expression pattern, cellular localization and functions of RGS5s suggest that RGS5s may play a critical role in the regulation of intracellular signaling pathways.
Collapse
Affiliation(s)
- Yanbin Liang
- Department of Biological Science, Allergan, Inc., Irvine, CA 92612, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Alternative splicing creates transcriptome diversification, possibly leading to speciation. A large fraction of the protein-coding genes of multicellular organisms are alternatively spliced, although no regulated splicing has been detected in unicellular eukaryotes such as yeasts. A comparative analysis of unicellular and multicellular eukaryotic 5' splice sites has revealed important differences - the plasticity of the 5' splice sites of multicellular eukaryotes means that these sites can be used in both constitutive and alternative splicing, and for the regulation of the inclusion/skipping ratio in alternative splicing. So, alternative splicing might have originated as a result of relaxation of the 5' splice site recognition in organisms that originally could support only constitutive splicing.
Collapse
Affiliation(s)
- Gil Ast
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|