1
|
Si Y, Li H, Gong X, Bao B. Isolation of prolactin gene and its differential expression during metamorphosis involving eye migration of Japanese flounder Paralichthys olivaceus. Gene 2021; 780:145522. [PMID: 33631243 DOI: 10.1016/j.gene.2021.145522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/13/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Eye migration during flatfish metamorphosis is driven by asymmetrical cell proliferation. To figure out Prolactin (PRL) function in this process, the full-length cDNA of prl was cloned from Japanese flounder (Paralichthys olivaceus) in our study. The deduced PRL protein shares highly conserved sequence with other teleosts, but has several amino acids loss compared with higher vertebrates, including amphibians, reptiles, avian and mammals. Spatio-temporal expression of prl gene displayed its extensive expression in the early development stages, while the limited expression of prl was observed in the pituitary, brain, and intestine of adult fish. In situ hybridization showed the asymmetrical distribution patterns of prl gene around the eyes during metamorphosis, which was coincident with the cell proliferation signals. Colchicine inhibited cell proliferation and reduced the prl gene expression, which indicates that PRL was involved in cell proliferation in the suborbital area of the migrating eye. The treatment of methimazole and 9-cis-retinoic acid respectively led to a reduction in the number of proliferating cells and the downregulation of prl expression, suggesting PRL was regulated by thyroid hormone signaling pathway and retinoic acid related signaling pathways. The results gave us a basic understanding of PRL function during flatfish metamorphosis.
Collapse
Affiliation(s)
- Yufeng Si
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoling Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Villalba M, Gómez G, Torres L, Maldonado N, Espiñeira C, Payne G, Vargas-Chacoff L, Figueroa J, Yáñez A, Olavarría VH. Prolactin peptide (pPRL) induces anti-prolactin antibodies, ROS and cortisol but suppresses specific immune responses in rainbow trout. Mol Immunol 2020; 127:87-94. [PMID: 32947170 DOI: 10.1016/j.molimm.2020.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/25/2023]
Abstract
Prolactin has several immune functions in fish however, the effects on innate and specific components of rainbow trout immunity are currently unknown. Therefore in this study, prolactin peptide (pPRL) injection in rainbow trout generated anti-PRL antibodies that were confirmed through Western blot assays of fish brain tissue extract. At the same time, this group of fish was immunized with a viral antigen (VP2) and the specific antibody titer generated by the rainbow trout was subsequently determined, as well as the sero-neutralizing capacity of the antibodies. Interestingly, this group of fish (pPRL-VP2) generated approximately 150% less antibodies compared with fish immunized only with the viral antigen (VP2), and pPRL-VP2 fish increased their cortisol level by 4 times compared to the control. Additionally, through qPCR assay, we determined that the pPRL-VP2 fish group decreased pro-inflammatory transcript expression, and the serum of these (pPRL-VP2) fish stimulated ROS production in untreated fish leukocytes, a phenomenon that was blocked by the pharmacological cortisol receptor inhibitor (RU486). Collectively, this is the first report that indicates that pPRL could modulate both components of immunity in rainbow trout.
Collapse
Affiliation(s)
- Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Gabriel Gómez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Lidia Torres
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Nicolas Maldonado
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Constanza Espiñeira
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Gardenia Payne
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Jaime Figueroa
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Alejandro Yáñez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| |
Collapse
|
3
|
Ceylan S, Kaptaner B. Apoptosis and cell proliferation in the epithelia of the esophagus and intestine of Alburnus tarichiGüldenstädt, 1814 (Cyprinidae) during migration from highly alkaline and brackish water to fresh water. THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1604833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- S. Ceylan
- Faculty of Science, Department of Biology, University of Van Yuzuncu Yil, Tuşba, Van, Turkey
| | - B. Kaptaner
- Faculty of Science, Department of Biology, University of Van Yuzuncu Yil, Tuşba, Van, Turkey
| |
Collapse
|
4
|
Qian S, Yang Y, Li N, Cheng T, Wang X, Liu J, Li X, Desiderio DM, Zhan X. Prolactin Variants in Human Pituitaries and Pituitary Adenomas Identified With Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Front Endocrinol (Lausanne) 2018; 9:468. [PMID: 30210449 PMCID: PMC6121189 DOI: 10.3389/fendo.2018.00468] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Human prolactin (hPRL) plays multiple roles in growth, metabolism, development, reproduction, and immunoregulation, which is an important protein synthesized in a pituitary. Two-dimensional gel electrophoresis (2DE) is an effective method in identity of protein variants for in-depth insight into functions of that protein. 2DE, 2DE-based PRL-immunoblot, mass spectrometry, and bioinformatics were used to analyze hPRL variants in human normal (control; n = 8) pituitaries and in five subtypes of pituitary adenomas [NF- (n = 3)-, FSH+ (n = 3)-, LH+ (n = 3)-, FSH+/LH+ (n = 3)-, and PRL+ (n = 3)-adenomas]. Six hPRL variants were identified with different isoelectric point (pI)-relative molecular mass (Mr ) distribution on a 2DE pattern, including variants V1 (pI 6.1; 26.0 kDa), V2 (pI 6.3; 26.4 kDa), V3 (pI 6.3; 27.9 kDa), V4 (pI 6.5; 26.1 kDa), V5 (pI 6.8; 25.9 kDa), and V6 (pI 6.7; 25.9 kDa). Compared to controls, except for variants V2-V6 in PRL-adenomas, V2 in FSH+-adenomas, and V3 in NF--adenomas, the other PRL variants were significantly downregulated in each subtype of pituitary adenomas. Moreover, the pattern of those six PRL variants was significantly different among five subtypes of pituitary adenomas relative to control pituitaries. Different hPRL variants might be involved in different types of PRL receptor-signaling pathways in a given condition. Those findings clearly revealed the existence of six hPRL variants in human pituitaries, and the pattern changes of six hPRL variants among different subtypes of pituitary adenomas, which provide novel clues to further study the functions, and mechanisms of action, of hPRL in human pituitary and in PRL-related diseases, and the potential clinical value in pituitary adenomas.
Collapse
Affiliation(s)
- Shehua Qian
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Yongmei Yang
- Geriatric Department of Cadre's Ward, Baoji Traditional Chinese Medicine Hospital, Baoji, China
| | - Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Jianping Liu
- Bio-Analytical Chemistry Research Laboratory, Modern Analytical Testing Center, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dominic M. Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- The Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
5
|
Katayama Y, Sakamoto T, Takanami K, Takei Y. The Amphibious Mudskipper: A Unique Model Bridging the Gap of Central Actions of Osmoregulatory Hormones Between Terrestrial and Aquatic Vertebrates. Front Physiol 2018; 9:1112. [PMID: 30154735 PMCID: PMC6102947 DOI: 10.3389/fphys.2018.01112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Body fluid regulation, or osmoregulation, continues to be a major topic in comparative physiology, and teleost fishes have been the subject of intensive research. Great progress has been made in understanding the osmoregulatory mechanisms including drinking behavior in teleosts and mammals. Mudskipper gobies can bridge the gap from aquatic to terrestrial habitats by their amphibious behavior, but the studies are yet emerging. In this review, we introduce this unique teleost as a model to study osmoregulatory behaviors, particularly amphibious behaviors regulated by the central action of hormones. Regarding drinking behavior of mammals, a thirst sensation is aroused by angiotensin II (Ang II) through direct actions on the forebrain circumventricular structures, which predominantly motivates them to search for water and take it into the mouth for drinking. By contrast, aquatic teleosts can drink water that is constantly present in their mouth only by reflex swallowing, and Ang II induces swallowing by acting on the hindbrain circumventricular organ without inducing thirst. In mudskippers, however, through the loss of buccal water by swallowing, which appears to induce buccal drying on land, Ang II motivates these fishes to move to water for drinking. Thus, mudskippers revealed a unique thirst regulation by sensory detection in the buccal cavity. In addition, the neurohypophysial hormones, isotocin (IT) and vasotocin (VT), promote migration to water via IT receptors in mudskippers. VT is also dipsogenic and the neurons in the forebrain may mediate their thirst. VT regulates social behaviors as well as osmoregulation. The VT-induced migration appears to be a submissive response of subordinate mudskippers to escape from competitive and dehydrating land. Together with implications of VT in aggression, mudskippers may bridge the multiple functions of neurohypophysial hormones. Interestingly, cortisol, an important hormone for seawater adaptation and stress response in teleosts, also stimulates the migration toward water, mediated possibly via the mineralocorticoid receptor. The corticosteroid system that is responsive to external stressors can accelerate emergence of migration to alternative habitats. In this review, we suggest this unique teleost as an important model to deepen insights into the behavioral roles of these hormones in relation to osmoregulation.
Collapse
Affiliation(s)
- Yukitoshi Katayama
- Physiology Section, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
| | - Keiko Takanami
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yoshio Takei
- Physiology Section, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
6
|
Chen XL, Lui EY, Ip YK, Lam SH. RNA sequencing, de novo assembly and differential analysis of the gill transcriptome of freshwater climbing perch Anabas testudineus after 6 days of seawater exposure. JOURNAL OF FISH BIOLOGY 2018; 93:215-228. [PMID: 29931780 DOI: 10.1111/jfb.13653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
To obtain transcriptomic insights into branchial responses to salinity challenge in Anabas testudineus, this study employed RNA sequencing (RNA-Seq) to analyse the gill transcriptome of A. testudineus exposed to seawater (SW) for 6 days compared with the freshwater (FW) control group. A combined FW and SW gill transcriptome was de novo assembled from 169.9 million 101 bp paired-end reads. In silico validation employing 17 A. testudineus Sanger full-length coding sequences showed that 15/17 of them had greater than 80% of their sequences aligned to the de novo assembled contigs where 5/17 had their full-length (100%) aligned and 9/17 had greater than 90% of their sequences aligned. The combined FW and SW gill transcriptome was mapped to 13,780 unique human identifiers at E-value ≤1.0E-20 while 952 and 886 identifiers were determined as up and down-regulated by 1.5 fold, respectively, in the gills of A. testudineus in SW when compared with FW. These genes were found to be associated with at least 23 biological processes. A larger proportion of genes encoding enzymes and transporters associated with molecular transport, energy production, metabolisms were up-regulated, while a larger proportion of genes encoding transmembrane receptors, G-protein coupled receptors, kinases and transcription regulators associated with cell cycle, growth, development, signalling, morphology and gene expression were relatively lower in the gills of A. testudineus in SW when compared with FW. High correlation (R = 0.99) was observed between RNA-Seq data and real-time quantitative PCR validation for 13 selected genes. The transcriptomic sequence information will facilitate development of molecular resources and tools while the findings will provide insights for future studies into branchial iono-osmoregulation and related cellular processes in A. testudineus.
Collapse
Affiliation(s)
- Xiu L Chen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Eei Y Lui
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Siew H Lam
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore
| |
Collapse
|
7
|
AnvariFar H, Amirkolaie AK, Miandare HK, Ouraji H, Jalali MA, Üçüncü Sİ. Apoptosis in fish: environmental factors and programmed cell death. Cell Tissue Res 2016; 368:425-439. [PMID: 28035476 DOI: 10.1007/s00441-016-2548-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
Apoptosis, a form of programmed cell death, is a critical component in maintaining homeostasis and growth in all tissues and plays a significant role in immunity and cytotoxicity. In contrast to necrosis or traumatic cell death, apoptosis is a well-controlled and vital process characterized mainly by cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane blebbing and apoptotic bodies. Our understanding of apoptosis is partly based on observations in invertebrates but mainly in mammals. Despite the great advantages of fish models in studying vertebrate development and diseases and the tremendous interest observed in recent years, reports on apoptosis in fish are still limited. Although apoptotic machinery is well conserved between aquatic and terrestrial organisms throughout the history of evolution, some differences exist in key components of apoptotic pathways. Core parts of apoptotic machinery in fish are virtually expressed as equivalent to the mammalian models. Some differences are, however, evident, such as the extrinsic and intrinsic pathways of apoptosis including lack of a C-terminal region in the Fas-associated protein with a death domain in fish. Aquatic species inhabit a complex and highly fluctuating environment, making these species good examples to reveal features of apoptosis that may not be easily investigated in mammals. Therefore, in order to gain a wider view on programmed cell death in fish, interactions between the main environmental factors, chemicals and apoptosis are discussed in this review. It is indicated that apoptosis can be induced in fish by exposure to environmental stressors during different stages of the fish life cycle.
Collapse
Affiliation(s)
- Hossein AnvariFar
- Faculty of Animal Science and Fisheries, Department of Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran. .,University of Applied Science and Technology, Provincial Unit, P.O. Box: 4916694338, Golestan, Iran.
| | - Abdolsamad Keramat Amirkolaie
- Faculty of Animal Science and Fisheries, Department of Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Hamed Kolangi Miandare
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran
| | - Hossein Ouraji
- Faculty of Animal Science and Fisheries, Department of Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - M Ali Jalali
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran.,Sturgeon Affairs Management, Gorgan, Golestan, Iran.,Center for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Victoria, 3280, Australia
| | - Sema İşisağ Üçüncü
- Faculty of Science, Department of Biology, Ege University, Bornova, 35100, İzmir, Turkey
| |
Collapse
|
8
|
Hu CK, Southey BR, Romanova EV, Maruska KP, Sweedler JV, Fernald RD. Identification of prohormones and pituitary neuropeptides in the African cichlid, Astatotilapia burtoni. BMC Genomics 2016; 17:660. [PMID: 27543050 PMCID: PMC4992253 DOI: 10.1186/s12864-016-2914-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022] Open
Abstract
Background Cichlid fishes have evolved remarkably diverse reproductive, social, and feeding behaviors. Cell-to-cell signaling molecules, notably neuropeptides and peptide hormones, are known to regulate these behaviors across vertebrates. This class of signaling molecules derives from prohormone genes that have undergone multiple duplications and losses in fishes. Whether and how subfunctionalization, neofunctionalization, or losses of neuropeptides and peptide hormones have contributed to fish behavioral diversity is largely unknown. Information on fish prohormones has been limited and is complicated by the whole genome duplication of the teleost ancestor. We combined bioinformatics, mass spectrometry-enabled peptidomics, and molecular techniques to identify the suite of neuropeptide prohormones and pituitary peptide products in Astatotilapia burtoni, a well-studied member of the diverse African cichlid clade. Results Utilizing the A. burtoni genome, we identified 148 prohormone genes, with 21 identified as a single copy and 39 with at least 2 duplicated copies. Retention of prohormone duplicates was therefore 41 %, which is markedly above previous reports for the genome-wide average in teleosts. Beyond the expected whole genome duplication, differences between cichlids and mammals can be attributed to gene loss in tetrapods and additional duplication after divergence. Mass spectrometric analysis of the pituitary identified 620 unique peptide sequences that were matched to 120 unique proteins. Finally, we used in situ hybridization to localize the expression of galanin, a prohormone with exceptional sequence divergence in cichlids, as well as the expression of a proopiomelanocortin, prohormone that has undergone an additional duplication in some bony fish lineages. Conclusion We characterized the A. burtoni prohormone complement. Two thirds of prohormone families contain duplications either from the teleost whole genome duplication or a more recent duplication. Our bioinformatic and mass spectrometric findings provide information on a major vertebrate clade that will further our understanding of the functional ramifications of these prohormone losses, duplications, and sequence changes across vertebrate evolution. In the context of the cichlid radiation, these findings will also facilitate the exploration of neuropeptide and peptide hormone function in behavioral diversity both within A. burtoni and across cichlid and other fish species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2914-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline K Hu
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.,Present address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Russell D Fernald
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Bu G, Liang X, Li J, Wang Y. Extra-pituitary prolactin (PRL) and prolactin-like protein (PRL-L) in chickens and zebrafish. Gen Comp Endocrinol 2015; 220:143-53. [PMID: 25683198 DOI: 10.1016/j.ygcen.2015.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 01/25/2023]
Abstract
It is generally believed that in vertebrates, prolactin (PRL) is predominantly synthesized and released by pituitary lactotrophs and plays important roles in many physiological processes via activation of PRL receptor (PRLR), including water and electrolyte balance, reproduction, growth and development, metabolism, immuno-modulation, and behavior. However, there is increasing evidence showing that PRL and the newly identified 'prolactin-like protein (PRL-L)', a novel ligand of PRL receptor, are also expressed in a variety of extra-pituitary tissues, such as the brain, skin, ovary, and testes in non-mammalian vertebrates. In this brief review, we summarize the recent research progress on the structure, biological activities, and extra-pituitary expression of PRL and PRL-L in chickens (Gallus gallus) and zebrafish (Danio rerio) from our and other laboratories and briefly discuss their potential paracrine/autocrine roles in non-mammalian vertebrates, which may promote us to rethink the broad spectrum of PRL actions previously attributed to pituitary PRL only.
Collapse
Affiliation(s)
- Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Xiaomeng Liang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
10
|
Takei Y, Hiroi J, Takahashi H, Sakamoto T. Diverse mechanisms for body fluid regulation in teleost fishes. Am J Physiol Regul Integr Comp Physiol 2014; 307:R778-92. [PMID: 24965789 DOI: 10.1152/ajpregu.00104.2014] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Teleost fishes are the major group of ray-finned fishes and represent more than one-half of the total number of vertebrate species. They have experienced in their evolution an additional third-round whole genome duplication just after the divergence of their lineage, which endowed them with an extra adaptability to invade various aquatic habitats. Thus their physiology is also extremely diverse compared with other vertebrate groups as exemplified by the many patterns of body fluid regulation or osmoregulation. The key osmoregulatory organ for teleosts, whose body fluid composition is similar to mammals, is the gill, where ions are absorbed from or excreted into surrounding waters of various salinities against concentration gradients. It has been shown that the underlying molecular physiology of gill ionocytes responsible for ion regulation is highly variable among species. This variability is also seen in the endocrine control of osmoregulation where some hormones have distinct effects on body fluid regulation in different teleost species. A typical example is atrial natriuretic peptide (ANP); ANP is secreted in response to increased blood volume and acts on various osmoregulatory organs to restore volume in rainbow trout as it does in mammals, but it is secreted in response to increased plasma osmolality, and specifically decreases NaCl, and not water, in the body of eels. The distinct actions of other osmoregulatory hormones such as growth hormone, prolactin, angiotensin II, and vasotocin among teleost species are also evident. We hypothesized that such diversity of ionocytes and hormone actions among species stems from their intrinsic differences in body fluid regulation that originated from their native habitats, either fresh water or seawater. In this review, we summarized remarkable differences in body fluid regulation and its endocrine control among teleost species, although the number of species is still limited to substantiate the hypothesis.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan;
| | - Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; and
| | - Hideya Takahashi
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| |
Collapse
|
11
|
Wahab F, Salahuddin H, Anees M, Leprince J, Vaudry H, Tena-Sempere M, Shahab M. Study of the effect of 26RF- and 43RF-amides on testosterone and prolactin secretion in the adult male rhesus monkey (Macaca mulatta). Peptides 2012; 36:23-8. [PMID: 22531487 DOI: 10.1016/j.peptides.2012.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
RF-amides (RFa), a superfamily of evolutionary-conserved neuropeptides, are expressed in both invertebrates and vertebrates. While some endocrine functions have been attributed to these peptides in lower vertebrates and few mammalian models, not much is known about their actions in primates. Therefore, the present study was designed to examine the effects of peripheral administration of two recently cloned human RFa peptides, 26RFa and 43RFa, on testosterone and prolactin secretion in the adult male adult male rhesus monkey (Macaca mulatta). For control purposes, a scrambled sequence of 26RFa (Sc-26RFa) and normal saline (1ml) were injected. Three different doses of 26RFa and 43RFa (19-nmol, 38-nmol and 76-nmol) and a single dose (38-nmol) of Sc-26RFa were tested. A set of four chair-restraint habituated monkeys was used. Comparison of post-treatment T levels with respective pre levels showed that none of the doses of both 26RFa and 43RFa changed T release. Similarly, Sc-26RFa and saline administration also did not affect T levels. In contrast, all doses of 26RFa and 43RFa significantly (P<0.05) stimulated prolactin secretion. 43RFa dose dependently increased prolactin secretion while dose dependency was not observed for 26RFa. Saline and Sc-26RFa injection had no effect on prolactin concentrations. Thus, present study demonstrated that peripheral administration of 26RFa and 43RFa, in the doses tested, have no effect on T secretion, suggesting possible selective lack of their neuroendocrine role in controlling hypothalamic-pituitary-gonadal axis in the adult male primates. The prominent stimulation of prolactin suggests a neuroendocrine role of RFa peptides in regulation of prolactin release in primates.
Collapse
Affiliation(s)
- Fazal Wahab
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang Y, Wang CY, Wu Y, Huang G, Li J, Leung FC. Identification of the receptors for prolactin-releasing peptide (PrRP) and Carassius RFamide peptide (C-RFa) in chickens. Endocrinology 2012; 153:1861-74. [PMID: 22355069 DOI: 10.1210/en.2011-1719] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prolactin-releasing peptide (PrRP) and its structurally related peptide, Carassius Arg-Phe-amide peptide (C-RFa), have been reported to play similar roles in regulating food intake and pituitary functions in vertebrates. However, the identity, functionality, and expression of the receptor(s) for PrRP and C-RFa remain largely unknown in nonmammalian vertebrates, including birds. In this study, three receptors homologous to mammalian PrRP receptor (PrRPR), named cPrRPR1, cPrRPR2, and cC-RFaR, respectively, were cloned from chicken brain by RT-PCR. Using a pGL3-NFAT-RE-luciferase reporter system, we demonstrated that cPrRPR1 and cPrRPR2 expressed in Chinese hamster ovarian cells could be activated by cPrRP₂₀ and cC-RFa₂₀ potently, whereas cC-RFaR could only be activated effectively by cC-RFa₂₀ (EC₅₀, 0.11 nM), indicating that cPrRPR1 and cPrRPR2 can function as common receptors for PrRP and C-RFa, whereas cC-RFaR is a receptor specific to C-RFa. Using a pGL3-CRE-luciferase reporter system, cPrRPR1, cPrRPR2, and cC-RFaR expressed in Chinese hamster ovarian cells were also shown to activate intracellular protein kinase A signaling pathway upon cC-RFa₂₀ treatment (100 nM). Moreover, RT-PCR assay revealed that cPrRPR1, cPrRPR2, and cC-RFaR were widely expressed in most adult chicken tissues examined, including various regions of brain. These findings, together with evidence of PrRP and C-RFa encoded by separate genes in chicken, Xenopus, and zebrafish, and the differential expression of PrRP and C-RFa genes in chicken tissues, strongly suggest that PrRP and C-RFa may play similar yet distinctive roles in nonmammalian vertebrates, including chicken, and their actions are mediated by common receptor(s) or a specific C-RFa receptor.
Collapse
Affiliation(s)
- Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, School of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
13
|
Khong HK, Kuah MK, Jaya-Ram A, Shu-Chien AC. Prolactin receptor mRNA is upregulated in discus fish (Symphysodon aequifasciata) skin during parental phase. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:18-28. [PMID: 19272315 DOI: 10.1016/j.cbpb.2009.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 01/05/2009] [Accepted: 01/05/2009] [Indexed: 11/25/2022]
Abstract
Prolactin (PRL) has been shown to directly influence parental-care associated behavior in many vertebrate species. The discus fish (Symphysodon aequifasciata) displays extensive parental care behavior through utilization of epidermal mucosal secretion to raise free-swimming fry. Here, we cloned the full-length cDNA sequence of the S. aequifasciata prolactin receptor (dfPRLR) and investigated the mRNA expression pattern in several adult tissues. Bioinformatic analysis showed the dfPRLR shared rather high identity (79 and 67%) with the Nile tilapia PRLR 1 and black seabream PRLR 1, respectively. The presence of dfPRLR in several osmoregulatory tissues including kidney, gill and intestine is consistent with the known role of PRL in mediating hydromineral balance in teleosts. In addition, upregulated expression of PRLR mRNA was observed in skin of parental fish compared to non-parental fish, indicating possibility of a role of the PRL hormonal signaling in regulation of mucus production in relation to parental care behaviour.
Collapse
Affiliation(s)
- Hou-Keat Khong
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | | | | | | |
Collapse
|
14
|
Takei Y, Balment RJ. Chapter 8 The Neuroendocrine Regulation of Fluid Intake and Fluid Balance. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28008-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
15
|
Kwong AKY, Woo NYS. Prolactin-releasing peptide, a possible modulator of prolactin in the euryhaline silver sea bream (Sparus sarba): A molecular study. Gen Comp Endocrinol 2008; 158:154-60. [PMID: 18640118 DOI: 10.1016/j.ygcen.2008.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 11/20/2022]
Abstract
PRL and PrRP cDNAs have been isolated from euryhaline silver sea bream (Sparus sarba). The PRL cDNA consists of 1360bp encoding 212 amino acids whereas the PrRP cDNA contains 631bp encoding preproPrRP with 122 amino acids. The mature PrRP sequence within the preprohormone is identical to the PrRPs isolated from other fish species. PRL mRNA was uniquely expressed in sea bream pituitary but PrRP mRNA was expressed in a variety of organs and tissues including the intestines, olfactory rosette and various brain regions such as hypothalamus and pituitary. Expression levels of PRL and PrRP mRNA have been examined in sea bream adapted to different salinities (0, 6, 12, 33 and 50ppt). In the pituitary, both PRL and PrRP mRNA were significantly higher in fish adapted to low salinities (0 and 6ppt) and the expression profiles of both hormones closely paralleled each other. However, expression of hypothalamic PrRP was significantly higher in fish adapted to iso-osmotic salinity (12ppt) when pituitary PRL expression was low. The present study demonstrates, for the first time, a synchronized mRNA expression pattern between PRL and PrRP in fish pituitary but a disparity of mRNA expression levels between hypothalamic PrRP and pituitary PRL during salinity adaptation. These data suggest that PrRP may possibly act as a local modulator in pituitary rather than a hypothalamic factor for regulation of pituitary PRL expression in silver sea bream.
Collapse
Affiliation(s)
- Anna K Y Kwong
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, Hong Kong, China
| | | |
Collapse
|
16
|
Tse MCL, Wong GKP, Xiao P, Cheng CHK, Chan KM. Down-regulation of goldfish (Carassius auratus) prolactin gene expression by dopamine and thyrotropin releasing hormone. Gen Comp Endocrinol 2008; 155:729-41. [PMID: 17904137 DOI: 10.1016/j.ygcen.2007.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
Prolactin (PRL) is the most versatile hormone identified with multiple functions from osmoregulation in euryhaline fish to lactation in mammals. However, little is known about the basic physiological control of PRL in stenohaline freshwater fish. In this study, goldfish is used as a model for the study of PRL gene expression in stenohaline fish. We report herein the identification of the goldfish PRL (gfPRL) genomic sequence which possesses five exons with its 5'-flanking gene promoter region characterized in vitro using GH3 and GH4 cell-lines. Dopamine and thyrotropin releasing hormone were found to down-regulate the transcription of this gfPRL gene promoter in vitro. This was further confirmed by the decrease of PRL mRNA levels in vitro (in goldfish pituitary primary cells) and in vivo (intra-peritoneal injection) following the administrations of dopamine and thyrotropin releasing hormone. The Pit-1 binding sites of gfPRL are highly conserved with a consensus DNA sequence of 5'TATNCAT-3', as confirmed with the electrophoretic mobility shift assay using nuclear extract from the GH3 cell-line, may be responsible for the control of gfPRL gene promoter.
Collapse
Affiliation(s)
- Margaret C L Tse
- Department of Biochemistry, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
17
|
Cho HJ, Acharjee S, Moon MJ, Oh DY, Vaudry H, Kwon HB, Seong JY. Molecular evolution of neuropeptide receptors with regard to maintaining high affinity to their authentic ligands. Gen Comp Endocrinol 2007; 153:98-107. [PMID: 17286976 DOI: 10.1016/j.ygcen.2006.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/22/2006] [Accepted: 12/25/2006] [Indexed: 01/04/2023]
Abstract
Recently, we cloned many of the bullfrog neuropeptide G protein-coupled receptors (GPCRs), including receptors for vasotocin (VT), mesotocin, gonadotropin-releasing hormone (GnRH), neurotensin, apelin, and metastin. Bullfrog GPCRs usually have high affinity for bullfrog ligands but relatively low affinity for mammalian ligands. Reciprocally, synthetic agonists and antagonists developed based upon mammalian ligands display lower affinity at bullfrog receptors. Studies using chimeric or domain-swapped receptors indicate that the motifs responsible for differential ligand selectivity usually reside within transmembrane domain 6 (TMD6)-extracellular loop 3 (ECL3)-transmembrane domain 7 (TMD7). Triple mutation of mammalian V1aR (Phe(6.51) to Tyr, Ile(6.53) to Thr, and Pro(7.33) to Thr) increases VT affinity but greatly reduces arginine vasopressin affinity. This binding profile is similar to that of bullfrog VT1R. Changing just three amino acids in the bullfrog GnRH receptor-1 (i.e. Ser-Gln-Ser in the ECL3) to those found in the type-I mammalian GnRH receptor (i.e. Ser-Glu-Pro) reverses GnRH selectivity. In conclusion, specific receptor motifs that govern ligand selectivity can be determined by comparative molecular analyses of GPCRs and their ligands. Such analysis provides clues for understanding how GPCRs maintain high affinity to their authentic ligands.
Collapse
Affiliation(s)
- Hyun Ju Cho
- Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Takahashi H, Prunet P, Kitahashi T, Kajimura S, Hirano T, Grau EG, Sakamoto T. Prolactin receptor and proliferating/apoptotic cells in esophagus of the Mozambique tilapia (Oreochromis mossambicus) in fresh water and in seawater. Gen Comp Endocrinol 2007; 152:326-31. [PMID: 17418192 DOI: 10.1016/j.ygcen.2007.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/15/2007] [Accepted: 02/19/2007] [Indexed: 11/30/2022]
Abstract
We have previously shown that esophageal epithelium of a euryhaline goby displays elevated cell proliferation in freshwater (FW) fish, but undergo apoptosis during seawater (SW) acclimation. Prolactin (PRL) injection into the goby induced the cell proliferation, whereas cortisol treatment stimulated the cell proliferation and apoptosis [Takahashi, H., Sakamoto, T., Narita, K., 2006a. Cell proliferation and apoptosis in the anterior intestine of an amphibious, euryhaline mudskipper (Periophthalmus modestus). J. Comp. Physiol. B 176, 463-468, 2006). In the euryhaline tilapia (Oreochromis mossambicus), the dynamics of changes in cortisol-glucocorticoid receptors (GR) during acclimation to different salinities also suggests a role for glucocorticoid signaling in the esophageal cell turnover, but the mode of PRL action remains largely unclear. In the present study, we report on effects in the tilapia esophagus that result from changes in environmental salinity. Specifically, we assessed: (1) mRNA expression of PRL receptor (PRLR) using quantitative real-time RT-PCR; (2) esophageal cell proliferation and apoptosis, using immunohistochemistry of proliferating cells nuclear antigen (PCNA) and in situ nick end-labeling of genomic DNA (TUNEL); (3) the possible localization of immunoreactive PRLR on proliferating/apoptotic cells. Plasma PRL increased after FW acclimation; PRLR mRNA levels in the esophagus of FW fish were significantly higher than those in SW-acclimated fish. Cell proliferation was induced randomly throughout the esophageal epithelium after FW acclimation, while cell division and increased apoptosis were concentrated at the tips of esophageal epithelial folds in SW-acclimated fish. Immunoreactive PRLR appeared to be localized at proliferating cells and at certain apoptotic cells, whereas immunoreactive GR was observed over the whole epithelium including the apoptotic/proliferating cells. Thus, PRL appears to affect cell turnover directly in the esophageal epithelium of the euryhaline tilapia.
Collapse
Affiliation(s)
- Hideya Takahashi
- Ushimado Marine Laboratory, Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi 701-4303, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Sakamoto T, Oda A, Yamamoto K, Kaneko M, Kikuyama S, Nishikawa A, Takahashi A, Kawauchi H, Tsutsui K, Fujimoto M. Molecular cloning and functional characterization of a prolactin-releasing peptide homolog from Xenopus laevis. Peptides 2006; 27:3347-51. [PMID: 16979799 DOI: 10.1016/j.peptides.2006.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/02/2006] [Accepted: 08/03/2006] [Indexed: 11/28/2022]
Abstract
Amino acid sequences for identified prolactin (PRL)-releasing peptides (PrRPs) were conserved in mammals (>90%) or teleost fishes (100%), but there were considerable differences between these classes in the sequence (<65%) as well as in the role of PrRP. In species other than fishes and mammals, we have identified frog PrRP. The cDNA encoding Xenopus laevis prepro-PrRP, which can generate putative PrRPs, was cloned and sequenced. Sequences for the coding region showed higher identity with teleost PrRPs than mammalian homologues, but suggested the occurrence of putative PrRPs of 20 and 31 residues as in mammals. The amino acid sequence of PrRP20 was only one residue different from teleost PrRP20, but shared 70% identity with mammalian PrRP20s. In primary cultures of bullfrog (Rana catesbeiana) pituitary cells, Xenopus PrRPs increased prolactin concentrations in culture medium to 130-160% of the control, but PrRPs was much less potent than thyrotropin-releasing hormone (TRH) causing a three- to four-fold increase in prolactin concentrations. PrRP mRNA levels in the developing Xenopus brain peak in early prometamorphosis, different from prolactin levels. PrRP may not be a major prolactin-releasing factor (PRF), at least in adult frogs, as in mammals.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Faculty of Science, Okayama University, 130-17 Kashino, Ushimado, Setouchi 701-4303, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Takahashi H, Takahashi A, Sakamoto T. In vivo effects of thyroid hormone, corticosteroids and prolactin on cell proliferation and apoptosis in the anterior intestine of the euryhaline mudskipper (Periophthalmus modestus). Life Sci 2006; 79:1873-80. [PMID: 16857212 DOI: 10.1016/j.lfs.2006.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/26/2006] [Accepted: 06/13/2006] [Indexed: 11/30/2022]
Abstract
We have previously shown that anterior intestinal epithelium of the euryhaline mudskipper (Periophthalmus modestus) undergoes apoptosis during seawater (SW) acclimation, whereas elevated cell proliferation was observed in freshwater (FW)-acclimated fish. To understand the possible endocrine regulation of the gastrointestinal cell turnover during salinity acclimation, we examined the ratios of apoptotic and proliferating cells in the anterior intestine of one-third SW-acclimated mudskipper treated with triiodothyronine (T3), cortisol, 11-deoxycorticosterone (DOC, the putative teleostean mineralocorticoid), or prolactin (PRL). In situ nick end labeling of genomic DNA (TUNEL) and immunohistochemistry of proliferating cells nuclear antigen (PCNA) were used as indicators of apoptosis and cell proliferations, respectively. Cortisol significantly elevated apoptosis (P<0.05) in the epithelia and connective tissues and also stimulated the epithelial cell proliferation (P<0.05). PRL induced epithelial cell proliferation (P<0.05), but did not affect apoptotic status of the intestinal epithelium. Neither T3 nor DOC had any impact on cell proliferation or apoptosis. Together, our results suggest a role for cortisol and PRL in the regulation of anterior intestinal epithelial turnover during salinity acclimation in this species.
Collapse
Affiliation(s)
- Hideya Takahashi
- Ushimado Marine Laboratory, Graduate School of Natural Science and Technology, Okayama University, Ushimado, 130-17, Kashino, Ushimado, Setouchi, Japan.
| | | | | |
Collapse
|
21
|
Sakamoto T, McCormick SD. Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocrinol 2006; 147:24-30. [PMID: 16406056 DOI: 10.1016/j.ygcen.2005.10.008] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/22/2005] [Indexed: 11/29/2022]
Abstract
Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone, a member of the same family of hormones as prolactin, promotes acclimation to seawater in several teleost fish, at least in part through the action of insulin-like growth factor I. In branchial epithelia, development and differentiation of the seawater-type chloride cell (and their underlying biochemistry) is regulated by GH, IGF-I, and cortisol, whereas the freshwater-type chloride cell is regulated by prolactin and cortisol. In the epithelia of gastrointestinal tract, prolactin induces cell proliferation during freshwater adaptation, whereas cortisol stimulates both cell proliferation and apoptosis. We propose that control of salinity acclimation in teleosts by prolactin and growth hormone primarily involves regulation of cell proliferation, apoptosis, and differentiation (the latter including upregulation of specific ion transporters), and that there is an important interaction of these hormones with corticosteroids.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Faculty of Science, Okayama University, Ushimado, Okayama, Japan.
| | | |
Collapse
|
22
|
Takahashi H, Sakamoto T, Narita K. Cell proliferation and apoptosis in the anterior intestine of an amphibious, euryhaline mudskipper (Periophthalmus modestus). J Comp Physiol B 2006; 176:463-8. [PMID: 16496157 DOI: 10.1007/s00360-006-0067-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 12/27/2005] [Accepted: 01/12/2006] [Indexed: 11/28/2022]
Abstract
In order to replace the diffusive loss of water to the surrounding environment, seawater (SW)-acclimated euryhaline fishes have gastrointestinal tracts with higher ion/water flux in concert with greater permeability, and contrast that to freshwater (FW)-acclimated fish. To understand the cellular basis for these differences, we examined cell proliferation and apoptosis in the anterior intestine of mudskipper transferred from one-third SW to FW or to SW for 1 and 7 days, and those kept out of water for 1 day. The intestinal apoptosis (indicated by DNA laddering) increased during seawater acclimation. TUNEL staining detected numerous apoptotic cells over the epithelium of SW-acclimated fish. Cell proliferation ([3H]thymidine incorporation) in the FW fish was greater than those in SW 7 days after transfer. Labeling with a Proliferating cell nuclear antigen (PCNA) antibody indicated that proliferating cells were greater in number and randomly distributed in the epithelium of FW fish, whereas in SW fish they were almost entirely in the troughs of the intestinal folds. There were no changes in cell turnover in fish kept out of water. During acclimation to different salinities, modification of the cell turnover and abundance may play an important role in regulating the permeability (and transport capacity) of the gastrointestinal tract of fish.
Collapse
Affiliation(s)
- H Takahashi
- Faculty of Science, Ushimado Marine Laboratory, Graduate School of Natural Science and Technology, Okayama University, 130-17, Kashino, Ushimado, 701-4303, Setouchi, Japan
| | | | | |
Collapse
|
23
|
Takei Y, Hyodo S, Katafuchi T, Minamino N. Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides 2004; 25:1643-56. [PMID: 15476931 DOI: 10.1016/j.peptides.2004.06.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
Adrenomedullin (AM) has been recognized as a member of the calcitonin (CT)/CT gene-related peptide (CGRP) family. However, an independent AM family consisting of five paralogous peptides exists in teleost fish. Among them, the peptide named AM1 is an ortholog of mammalian AM as determined by the linkage analysis of orthologous genes and the presence of proAM N-terminal 20 peptide (PAMP)-like sequence in the prosegment. Since the peptides named AM2 and 3 are distinct from other members with respect to the precursor sequence, tissue distribution of the transcripts, and exon-intron organization, we searched for their mammalian orthologs from genome databases, which resulted in an identification of AM2 in human, rat, and mouse. AM2 was expressed abundantly in the submaxillary gland, kidney, and some vascular and digestive tissues of mice. AM2 injected in vivo induced potent cardiovascular and renal effects in mice. In the heart and kidney of mice, AM2 was localized in endothelial cells of the coronary vessels and in glomeruli and vasa recta, respectively. AM2 increased cAMP accumulation in cells expressing human CT receptor-like receptor (CRLR) and one of receptor activity-modifying proteins (RAMPs), but it was no more potent than CGRP and AM. AM2 was also less potent than CT in cells expressing CT receptor and RAMP. There remains a possibility that a new AM2-specific receptor or an additional RAMP that enables CRLR to be an AM2-specific receptor, exists in mammals.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| | | | | | | |
Collapse
|