1
|
Suh JH, Kanathezhath B, Shenvi S, Guo H, Zhou A, Tiwana A, Kuypers F, Ames BN, Walters MC. Thiol/redox metabolomic profiling implicates GSH dysregulation in early experimental graft versus host disease (GVHD). PLoS One 2014; 9:e88868. [PMID: 24558439 PMCID: PMC3928313 DOI: 10.1371/journal.pone.0088868] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a common complication of allogeneic bone marrow transplantation (BMT). Upregulation of inflammatory cytokines precedes the clinical presentation of GVHD and predicts its severity. In this report, thiol/redox metabolomics was used to identify metabolic perturbations associated with early preclinical (Day+4) and clinical (Day+10) stages of GVHD by comparing effects in Syngeneic (Syn; major histocompatibility complex- identical) and allogeneic transplant recipients (Allo BMT) in experimental models. While most metabolic changes were similar in both groups, plasma glutathione (GSH) was significantly decreased, and GSH disulfide (GSSG) was increased after allogeneic compared to syngeneic recipient and non-transplant controls. The early oxidation of the plasma GSH/GSSG redox couple was also observed irrespective of radiation conditioning treatment and was accompanied by significant rise in hepatic protein oxidative damage and ROS generation. Despite a significant rise in oxidative stress, compensatory increase in hepatic GSH synthesis was absent following Allo BMT. Early shifts in hepatic oxidative stress and plasma GSH loss preceded a statistically significant rise in TNF-α. To identify metabolomic biomarkers of hepatic GVHD injury, plasma metabolite concentrations analyzed at Day+10 were correlated with hepatic organ injury. GSSG (oxidized GSH) and β-alanine, were positively correlated, and plasma GSH cysteinylglycine, and branched chain amino acids were inversely correlated with hepatic injury. Although changes in plasma concentrations of cysteine, cystathionine (GSH precursors) and cysteinylglycine (a GSH catabolite) were not significant by univariate analysis, principal component analysis (PCA) indicated that accumulation of these metabolites after Allo BMT contributed significantly to early GVHD in contrast to Syn BMT. In conclusion, thiol/redox metabolomic profiling implicates that early dysregulation of host hepatic GSH metabolism and oxidative stress in sub-clinical GVHD before elevated TNF-α levels is associated with GVHD pathogenesis. Future studies will probe the mechanisms for these changes and examine the potential of antioxidant intervention strategies to modulate GVHD.
Collapse
Affiliation(s)
- Jung H. Suh
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail: (JHS); (MCW)
| | - Bindu Kanathezhath
- Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- Division of Blood and Marrow Transplantation, Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
| | - Swapna Shenvi
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Hua Guo
- Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- Department of Pathology, Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
| | - Alicia Zhou
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Anureet Tiwana
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Frans Kuypers
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Bruce N. Ames
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Mark C. Walters
- Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- Division of Blood and Marrow Transplantation, Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- * E-mail: (JHS); (MCW)
| |
Collapse
|
2
|
Kanathezhath B, Walters MC. Umbilical cord blood transplantation for thalassemia major. Hematol Oncol Clin North Am 2011; 24:1165-77. [PMID: 21075286 DOI: 10.1016/j.hoc.2010.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hematopoietic cell transplantation is curative therapy for thalassemia major. Although the clinical application of hematopoietic cell transplantation has relied on marrow collected from related and unrelated donors as the primary source of donor hematopoietic cells, umbilical cord blood (UCB) is an alternative source of hematopoietic cells and represents a suitable allogeneic donor pool in the event that a marrow donor is not available. Progress in developing UCB transplantation for thalassemia is reviewed and the most likely areas of future clinical investigation are discussed.
Collapse
Affiliation(s)
- Bindu Kanathezhath
- Hematology/Oncology, Children's Hospital & Research Center Oakland, 747 52nd Street, Oakland, CA 94609, USA
| | | |
Collapse
|
3
|
Kanathezhath B, Mizokami M, Stanislaus S, Hounshell C, Neumayr L, Guo H, Hearst JE, Walters MC, Kuypers FA. Improved engraftment with minimal graft-versus-host disease after major histocompatibility complex-mismatched cord blood transplantation with photochemically treated donor lymphocytes. Exp Biol Med (Maywood) 2011; 236:492-504. [PMID: 21454375 DOI: 10.1258/ebm.2011.010216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is a significant risk of severe graft-versus-host disease (GVHD) and graft failure after unrelated umbilical cord blood transplantation (CBT) if donor-recipient pairs are mismatched at major histocompatibility complex (MHC) loci. To mitigate these risks after MHC-mismatched CBT, we infused psoralen-treated, photochemically inactivated, mature donor T-lymphocytes with MHC (H2-haplotype) mismatched murine donor fetal near-term peripheral blood (FNPB) cells after sublethal irradiation. We analyzed the rates of donor engraftment, GVHD and long-term survival in H2 haplotype disparate (C57BL/6 [H-2(b)/Thy1.1] → AKR [H-2(k)/Thy1.2]) recipient mice. We observed inconsistent donor engraftment after transplantation with cord blood alone, but superior engraftment and long-term survival after FNPB transplantation supplemented with psoralen-treated donor T-lymphocytes. Additionally, there was fatal GVHD after FNPB co-infusion with untreated donor T-lymphocytes, but minimal GVHD after FNPB supplemented with psoralen-treated donor T-lymphocytes transplantation. Donor MHC(high)/c-Kit(+)/lineage(-)/CD34(-) stem cells were noted in the recipient bone marrow compartment following co-infusion of photochemically inactivated T-cells with FNPB. Despite the non-myeloablative preparation before FNPB infusion, complete hematological recovery was delayed until 50-60 d after transplantation. We observed that co-transplantation of psoralen-treated donor T-lymphocytes with FNPB facilitated durable engraftment of donor hematopoietic stem cells in the marrow and splenic compartments with complete but delayed recovery of all hematopoietic lineages. This CBT model establishes the possibility of ensuring donor engraftment across a MHC barrier without severe GVHD.
Collapse
Affiliation(s)
- Bindu Kanathezhath
- Department of Pediatric Hematology/Oncology, Children's Hospital & Research Center Oakland, CA 94609, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|