1
|
Gillespie JJ, Salje J. Orientia and Rickettsia: different flowers from the same garden. Curr Opin Microbiol 2023; 74:102318. [PMID: 37080115 DOI: 10.1016/j.mib.2023.102318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Recent discoveries of basal extracellular Rickettsiales have illuminated divergent evolutionary paths to host dependency in later-evolving lineages. Family Rickettsiaceae, primarily comprised of numerous protist- and invertebrate-associated species, also includes human pathogens from two genera, Orientia and Rickettsia. Once considered sister taxa, these bacteria form distinct lineages with newly appreciated lifestyles and morphological traits. Contrasting other rickettsial human pathogens in Family Anaplasmataceae, Orientia and Rickettsia species do not reside in host-derived vacuoles and lack glycolytic potential. With only a few described mechanisms, strategies for commandeering host glycolysis to support cytosolic growth remain to be discovered. While regulatory systems for this unique mode of intracellular parasitism are unclear, conjugative transposons unique to Orientia and Rickettsia species provide insights that are critical for determining how these obligate intracellular pathogens overtake eukaryotic cytosol.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, USA.
| | - Jeanne Salje
- Department of Biochemistry, Department of Pathology, and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Lemenze A, Mittal N, Perryman AL, Daher SS, Ekins S, Occi J, Ahn YM, Wang X, Russo R, Patel JS, Daugherty RM, Wood DO, Connell N, Freundlich JS. Rickettsia Aglow: A Fluorescence Assay and Machine Learning Model to Identify Inhibitors of Intracellular Infection. ACS Infect Dis 2022; 8:1280-1290. [PMID: 35748568 PMCID: PMC9912140 DOI: 10.1021/acsinfecdis.2c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Rickettsia is a genus of Gram-negative bacteria that has for centuries caused large-scale morbidity and mortality. In recent years, the resurgence of rickettsial diseases as a major cause of pyrexias of unknown origin, bioterrorism concerns, vector movement, and concerns over drug resistance is driving a need to identify novel treatments for these obligate intracellular bacteria. Utilizing an uvGFP plasmid reporter, we developed a screen for identifying anti-rickettsial small molecule inhibitors using Rickettsia canadensis as a model organism. The screening data were utilized to train a Bayesian model to predict growth inhibition in this assay. This two-pronged methodology identified anti-rickettsial compounds, including duartin and JSF-3204 as highly specific, efficacious, and noncytotoxic compounds. Both molecules exhibited in vitro growth inhibition of R. prowazekii, the causative agent of epidemic typhus. These small molecules and the workflow, featuring a high-throughput phenotypic screen for growth inhibitors of intracellular Rickettsia spp. and machine learning models for the prediction of growth inhibition of an obligate intracellular Gram-negative bacterium, should prove useful in the search for new therapeutic strategies to treat infections from Rickettsia spp. and other obligate intracellular bacteria.
Collapse
Affiliation(s)
- Alexander Lemenze
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Department of Pathology, Immunology, and Laboratory Medicine, Rutgers University - New Jersey Medical School, Cancer Center Building, 205 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Nisha Mittal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Bristol Myers Squibb, 1 Squibb Drive, Building 85 Room A-WS216D, New Brunswick, New Jersey 08901, United States
| | - Alexander L. Perryman
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Repare Therapeutics, 7171 Rue Frederick-Banting, Montreal, Quebec H4S 1Z9, Canada
| | - Samer S. Daher
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Ambrx, 10975 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, North Carolina 27526, United States; Present Address: Collaborations Pharmaceuticals, Inc., Main Campus Drive, Lab 3510 Raleigh, North Carolina 27606, United States
| | - James Occi
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue, New Brunswick, New Jersey 08901, United States
| | - Yong-Mo Ahn
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Riccardo Russo
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Jimmy S. Patel
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: Department of Radiation Oncology, Winship Cancer Institute of Emory University, 1365-A Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Robin M. Daugherty
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, United States
| | - David O. Wood
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, United States
| | - Nancy Connell
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States; Present Address: U.S. National Academies of Science, Engineering and Medicine, 500 5th Street NW, Washington, District of Columbia 20002, United States
| | - Joel S. Freundlich
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens and Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States
| |
Collapse
|
3
|
Quiroz-Castañeda RE, Cobaxin-Cárdenas M, Cuervo-Soto LI. Exploring the diversity, infectivity and metabolomic landscape of Rickettsial infections for developing novel therapeutic intervention strategies. Cytokine 2018; 112:63-74. [PMID: 30072088 DOI: 10.1016/j.cyto.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Rickettsioses are zoonotic infections caused by obligate intracellular bacteria of the genera Rickettsia that affect human health; sometimes humans being considered as accidental hosts. At a molecular level, the rickettsiae infection triggers molecular signaling leading to the secretion of proinflammatory cytokines. These cytokines direct the immune response to the host cell damage and pathogen removal. In this review, we present metabolic aspects of the host cell in the presence of rickettsiae and how this presence triggers an inflammatory response to cope with the pathogen. We also reviewed the secretion of cytokines that modulates host cell response at immune and metabolic levels.
Collapse
Affiliation(s)
- Rosa Estela Quiroz-Castañeda
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Mayra Cobaxin-Cárdenas
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Laura Inés Cuervo-Soto
- Facultad de Ciencias, Departamento de Biología, Universidad Antonio Nariño, Sede Circunvalar Carrera 3 Este, No. 47 A15, Bogotá, Colombia
| |
Collapse
|
4
|
Igolkina Y, Rar V, Vysochina N, Ivanov L, Tikunov A, Pukhovskaya N, Epikhina T, Golovljova I, Tikunova N. Genetic variability of Rickettsia spp. in Dermacentor and Haemaphysalis ticks from the Russian Far East. Ticks Tick Borne Dis 2018; 9:1594-1603. [PMID: 30121164 DOI: 10.1016/j.ttbdis.2018.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/11/2018] [Accepted: 07/31/2018] [Indexed: 11/18/2022]
Abstract
The Russian Far East is an endemic region for tick-borne rickettsioses. However, the prevalence and genetic variability of Rickettsia species in this region have not been extensively investigated. In this study, 188 Dermacentor silvarum, 439 Haemaphysalis concinna, and 374 Haemaphysalis japonica adult ticks were collected from four locations in Khabarovsk Province and three locations in Amur Province in the Russian Far East. These ticks were examined for the presence of Rickettsia spp. by amplifying a fragment of the gltA gene. Identified rickettsiae were genotyped by sequencing of the gltA, 16S rRNA, ompA, ompB, and sca4 genes. In the examined ticks, Rickettsia heilongjiangensis, the causative agent of Far-Eastern tick-borne rickettsiosis, was found in 10.5% of H. concinna and in 1.9% of H. japonica ticks, while Rickettsia sibirica, the agent of Siberian tick typhus, was detected in only one H. concinna tick. In addition, Rickettsia raoultii was found predominantly in D. silvarum (>70%) and significantly less frequently in Haemaphysalis ticks (<3%). "Candidatus Rickettsia tarasevichiae" was found in all examined tick species (1.6-5.3% in different species). Notably, this study is the first observation of "Candidatus R. tarasevichiae" in D. silvarum ticks. Moreover, DNA of Rickettsia canadensis was found for the first time in a H. japonica tick; DNA of Rickettsia aeschlimannii was revealed for the first time in H. concinna and H. japonica ticks. "Candidatus Rickettsia principis" and "Candidatus Rickettsia rara" were found in Haemaphysalis spp. ticks. "Candidatus R. principis" was associated with H. japonica and identified in 5.6% of the examined ticks, while "Candidatus R. rara" was found more frequently in H. concinna (3.0%) compared to H. japonica ticks (1.1%). In this study, "Candidatus R. principis" and "Candidatus R. rara" were characterized for the first time by the 16S rRNA, ompA, ompB, and sca4 genes.
Collapse
Affiliation(s)
- Yana Igolkina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation.
| | - Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Nelya Vysochina
- Khabarovsk Antiplague Station, Khabarovsk, Russian Federation
| | - Leonid Ivanov
- Khabarovsk Antiplague Station, Khabarovsk, Russian Federation
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | | | - Tamara Epikhina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Irina Golovljova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation; Department of Virology, National Institute for Health Development, Estonia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
5
|
Otten C, Brilli M, Vollmer W, Viollier PH, Salje J. Peptidoglycan in obligate intracellular bacteria. Mol Microbiol 2018; 107:142-163. [PMID: 29178391 PMCID: PMC5814848 DOI: 10.1111/mmi.13880] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 01/08/2023]
Abstract
Peptidoglycan is the predominant stress-bearing structure in the cell envelope of most bacteria, and also a potent stimulator of the eukaryotic immune system. Obligate intracellular bacteria replicate exclusively within the interior of living cells, an osmotically protected niche. Under these conditions peptidoglycan is not necessarily needed to maintain the integrity of the bacterial cell. Moreover, the presence of peptidoglycan puts bacteria at risk of detection and destruction by host peptidoglycan recognition factors and downstream effectors. This has resulted in a selective pressure and opportunity to reduce the levels of peptidoglycan. In this review we have analysed the occurrence of genes involved in peptidoglycan metabolism across the major obligate intracellular bacterial species. From this comparative analysis, we have identified a group of predicted 'peptidoglycan-intermediate' organisms that includes the Chlamydiae, Orientia tsutsugamushi, Wolbachia and Anaplasma marginale. This grouping is likely to reflect biological differences in their infection cycle compared with peptidoglycan-negative obligate intracellular bacteria such as Ehrlichia and Anaplasma phagocytophilum, as well as obligate intracellular bacteria with classical peptidoglycan such as Coxiella, Buchnera and members of the Rickettsia genus. The signature gene set of the peptidoglycan-intermediate group reveals insights into minimal enzymatic requirements for building a peptidoglycan-like sacculus and/or division septum.
Collapse
Affiliation(s)
- Christian Otten
- The Centre for Bacterial Cell BiologyInstitute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Matteo Brilli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE)University of Padova. Agripolis ‐ V.le dell'Università, 16 | 35020 Legnaro PadovaItaly
- Present address:
Department of BiosciencesUniversity of Milan, via Celoria 26(MI)Italy
| | - Waldemar Vollmer
- The Centre for Bacterial Cell BiologyInstitute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Patrick H. Viollier
- Department of Microbiology and Molecular MedicineInstitute of Genetics & Genomics in Geneva (iGE3), University of GenevaGenevaSwitzerland
| | - Jeanne Salje
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
- Mahidol‐Oxford Tropical Medicine Research UnitMahidol UniversityBangkokThailand
| |
Collapse
|
6
|
Affiliation(s)
- Jeanne Salje
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
7
|
Bhate R, Pansare N, Chaudhari SP, Barbuddhe SB, Choudhary VK, Kurkure NV, Kolte SW. Prevalence and Phylogenetic Analysis of Orientia tsutsugamushi in Rodents and Mites from Central India. Vector Borne Zoonotic Dis 2017; 17:749-754. [PMID: 28934071 DOI: 10.1089/vbz.2017.2159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Orientia tsutsugamushi, the causative agent of scrub typhus in humans, is an obligate intracytosolic bacterium transmitted among animals and to humans by some species of larval trombiculid mites (chiggers) and is hosted mainly by rodents. In this study, we attempted detection of O. tsutsugamushi from blood and tissue samples of rodents trapped from different locations in Central India using PCR targeting the 56 kDa outer membrane protein gene and the 47 kDa high temperature transmembrane protein gene. A total of 59 rodent samples comprising 38 of blood collected from domestic and public surroundings and 21 of tissue from agricultural farm were included in this study. The 56 kDa outer membrane protein gene was detected from 10 of 59 samples by PCR, and the 47 kDa protein gene was detected from 4 of 59 samples by nested-PCR. Mites collected from the rodents were identified as Ornithonyssus bacoti, and one of five pooled samples was found to be positive for O. tsutsugamushi using PCR targeting 56 kDa outer membrane protein gene. Thus, perpetuation of O. tsutsugamushi among rodents and mites was detected constituting a potential public health concern.
Collapse
Affiliation(s)
- Ruchi Bhate
- 1 Centre for Zoonoses, Department of Veterinary Public Health, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University , Nagpur, India
| | - Nilesh Pansare
- 1 Centre for Zoonoses, Department of Veterinary Public Health, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University , Nagpur, India
| | - Sandeep P Chaudhari
- 1 Centre for Zoonoses, Department of Veterinary Public Health, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University , Nagpur, India
| | | | - Vijay K Choudhary
- 2 ICAR-National Institute of Biotic Stress Management , Raipur, India
| | - Nitin V Kurkure
- 1 Centre for Zoonoses, Department of Veterinary Public Health, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University , Nagpur, India
| | - Sunil W Kolte
- 1 Centre for Zoonoses, Department of Veterinary Public Health, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University , Nagpur, India
| |
Collapse
|
8
|
Merhej V, Angelakis E, Socolovschi C, Raoult D. Genotyping, evolution and epidemiological findings of Rickettsia species. INFECTION GENETICS AND EVOLUTION 2014; 25:122-37. [DOI: 10.1016/j.meegid.2014.03.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/12/2023]
|
9
|
Duan C, Xiong X, Qi Y, Gong W, Jiao J, Wen B. Genomic and comparative genomic analyses of Rickettsia heilongjiangensis provide insight into its evolution and pathogenesis. INFECTION GENETICS AND EVOLUTION 2014; 26:274-82. [PMID: 24924907 DOI: 10.1016/j.meegid.2014.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/28/2022]
Abstract
Rickettsia heilongjiangensis, the causative agent of far eastern spotted fever, is an obligate intracellular gram-negative bacterium that belongs to the spotted fever group rickettsiae. To understand the evolution and pathogenesis of R. heilongjiangensis, we analyzed its genome and compared it with other rickettsial genomes available in GenBank. The R. heilongjiangensis chromosome contains 1333 genes, including 1297 protein coding genes and 36 RNA coding genes. The genome also contains 121 pseudogenes, 54 insertion sequences, and 39 tandem repeats. Sixteen genes encoding the major components of the type IV secretion systems were identified in the R. heilongjiangensis genome. In total, 37 β-barrel outer membrane proteins were predicted in the genome, eight of which have been previously confirmed to be outer membrane proteins. In addition, 266 potential virulence factor genes, seven partially deleted antibiotic resistance genes, and a genomic island were identified in the genome. The codon usage in the genome is compatible with its low GC content, and the amino acid usage shows apparent bias. A comparative genomic analysis showed that R. heilongjiangensis and R. japonica share one unique fragment that may be a target sequence for a diagnostic assay. The orthologs of 37 genes of R. heilongjiangensis were found in pathogenic R. rickettsii str. Sheila Smith but not in non-pathogenic R. rickettsii str. Iowa, which may explain why R. heilongjiangensis is pathogenic. Pan-genome analysis showed that R. heilongjiangensis and 42 other rickettsiae strains share 693 core genes with a pan-genome size of 4837 genes. The pan-genome-based phylogeny showed that R. heilongjiangensis was closely related to R. japonica.
Collapse
Affiliation(s)
- Changsong Duan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Yong Qi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
10
|
Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, Abdad MY, Stenos J, Bitam I, Fournier PE, Raoult D. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 2013; 26:657-702. [PMID: 24092850 PMCID: PMC3811236 DOI: 10.1128/cmr.00032-13] [Citation(s) in RCA: 929] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These zoonoses are among the oldest known vector-borne diseases. However, in the past 25 years, the scope and importance of the recognized tick-associated rickettsial pathogens have increased dramatically, making this complex of diseases an ideal paradigm for the understanding of emerging and reemerging infections. Several species of tick-borne rickettsiae that were considered nonpathogenic for decades are now associated with human infections, and novel Rickettsia species of undetermined pathogenicity continue to be detected in or isolated from ticks around the world. This remarkable expansion of information has been driven largely by the use of molecular techniques that have facilitated the identification of novel and previously recognized rickettsiae in ticks. New approaches, such as swabbing of eschars to obtain material to be tested by PCR, have emerged in recent years and have played a role in describing emerging tick-borne rickettsioses. Here, we present the current knowledge on tick-borne rickettsiae and rickettsioses using a geographic approach toward the epidemiology of these diseases.
Collapse
Affiliation(s)
- Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | | | - Cristina Socolovschi
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Marcelo B. Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia Universidade de São Paulo, Cidade Universitária, São Paulo, SP, Brazil
| | - Oleg Mediannikov
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Tahar Kernif
- Service d'Ecologie des Systèmes Vectoriels, Institut Pasteur d'Algérie, Algiers, Algeria
| | - Mohammad Yazid Abdad
- Division of Veterinary and Biomedical Science, Murdoch University, Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, Victoria, Australia
| | - John Stenos
- Division of Veterinary and Biomedical Science, Murdoch University, Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, Victoria, Australia
| | - Idir Bitam
- University of Boumerdes, Boumerdes, Algeria
| | - Pierre-Edouard Fournier
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| |
Collapse
|
11
|
Xu L, Kuo J, Liu JK, Wong TY. Bacterial phylogenetic tree construction based on genomic translation stop signals. MICROBIAL INFORMATICS AND EXPERIMENTATION 2012; 2:6. [PMID: 22651236 PMCID: PMC3466146 DOI: 10.1186/2042-5783-2-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/15/2012] [Indexed: 11/10/2022]
Abstract
Background The efficiencies of the stop codons TAA, TAG, and TGA in protein synthesis termination are not the same. These variations could allow many genes to be regulated. There are many similar nucleotide trimers found on the second and third reading-frames of a gene. They are called premature stop codons (PSC). Like stop codons, the PSC in bacterial genomes are also highly bias in terms of their quantities and qualities on the genes. Phylogenetically related species often share a similar PSC profile. We want to know whether the selective forces that influence the stop codons and the PSC usage biases in a genome are related. We also wish to know how strong these trimers in a genome are related to the natural history of the bacterium. Knowing these relations may provide better knowledge in the phylogeny of bacteria Results A 16SrRNA-alignment tree of 19 well-studied α-, β- and γ-Proteobacteria Type species is used as standard reference for bacterial phylogeny. The genomes of sixty-one bacteria, belonging to the α-, β- and γ-Proteobacteria subphyla, are used for this study. The stop codons and PSC are collectively termed “Translation Stop Signals” (TSS). A gene is represented by nine scalars corresponding to the numbers of counts of TAA, TAG, and TGA on each of the three reading-frames of that gene. “Translation Stop Signals Ratio” (TSSR) is the ratio between the TSS counts. Four types of TSSR are investigated. The TSSR-1, TSSR-2 and TSSR-3 are each a 3-scalar series corresponding respectively to the average ratio of TAA: TAG: TGA on the first, second, and third reading-frames of all genes in a genome. The Genomic-TSSR is a 9-scalar series representing the ratio of distribution of all TSS on the three reading-frames of all genes in a genome. Results show that bacteria grouped by their similarities based on TSSR-1, TSSR-2, or TSSR-3 values could only partially resolve the phylogeny of the species. However, grouping bacteria based on thier Genomic-TSSR values resulted in clusters of bacteria identical to those bacterial clusters of the reference tree. Unlike the 16SrRNA method, the Genomic-TSSR tree is also able to separate closely related species/strains at high resolution. Species and strains separated by the Genomic-TSSR grouping method are often in good agreement with those classified by other taxonomic methods. Correspondence analysis of individual genes shows that most genes in a bacterial genome share a similar TSSR value. However, within a chromosome, the Genic-TSSR values of genes near the replication origin region (Ori) are more similar to each other than those genes near the terminus region (Ter). Conclusion The translation stop signals on the three reading-frames of the genes on a bacterial genome are interrelated, possibly due to frequent off-frame recombination facilitated by translational-associated recombination (TSR). However, TSR may not occur randomly in a bacterial chromosome. Genes near the Ori region are often highly expressed and a bacterium always maintains multiple copies of Ori. Frequent collisions between DNA- polymerase and RNA-polymerase would create many DNA strand-breaks on the genes; whereas DNA strand-break induced homologues-recombination is more likely to take place between genes with similar sequence. Thus, localized recombination could explain why the TSSR of genes near the Ori region are more similar to each other. The quantity and quality of these TSS in a genome strongly reflect the natural history of a bacterium. We propose that the Genomic- TSSR can be used as a subjective biomarker to represent the phyletic status of a bacterium.
Collapse
Affiliation(s)
- Lijing Xu
- Department of Biological Sciences, Bioinformatics Program, The University of Memphis, Memphis, TN, USA
| | - Jimmy Kuo
- Department of Planning and Research, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Jong-Kang Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tit-Yee Wong
- Department of Biological Sciences, Bioinformatics Program, The University of Memphis, Memphis, TN, USA
| |
Collapse
|
12
|
Audoly G, Vincentelli R, Edouard S, Georgiades K, Mediannikov O, Gimenez G, Socolovschi C, Mège JL, Cambillau C, Raoult D. Effect of rickettsial toxin VapC on its eukaryotic host. PLoS One 2011; 6:e26528. [PMID: 22046301 PMCID: PMC3203148 DOI: 10.1371/journal.pone.0026528] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
Rickettsia are intracellular bacteria typically associated with arthropods that can be transmitted to humans by infected vectors. Rickettsia spp. can cause mild to severe human disease with a possible protection effect of corticosteroids when antibiotic treatments are initiated. We identified laterally transferred toxin-antitoxin (TA) genetic elements, including vapB/C, in several Rickettsia genomes and showed that they are functional in bacteria and eukaryotic cells. We also generated a plaque assay to monitor the formation of lytic plaques over time and demonstrated that chloramphenicol accelerates host cell lysis of vapB/C-containing Rickettsia. Whole-genome expression, TUNEL and FISH assays on the infected cells following exposure to the antibiotic revealed early apoptosis of host cells, which was linked to over-transcription of bacterial vapB/C operons and subsequent cytoplasmic VapC toxin release. VapC that is expressed in Escherichia coli and Saccharomyces cerevisiae or microinjected into mammalian cells is toxic through RNase activity and is prevented by dexamethasone. This study provides the first biological evidence that toxin-antitoxin elements act as pathogenic factors in bacterial host cells, confirming comparative genomic evidence of their role in bacterial pathogenicity. Our results suggest that early mortality following antibiotic treatment of some bacterial infections can be prevented by administration of dexamethasone.
Collapse
Affiliation(s)
- Gilles Audoly
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| | | | - Sophie Edouard
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| | | | - Oleg Mediannikov
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| | - Grégory Gimenez
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| | | | - Jean-Louis Mège
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| | | | - Didier Raoult
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| |
Collapse
|
13
|
Genetic typing, based on the 56-kilodalton type-specific antigen gene, of Orientia tsutsugamushi strains isolated from chiggers collected from wild-caught rodents in Taiwan. Appl Environ Microbiol 2011; 77:3398-405. [PMID: 21441323 DOI: 10.1128/aem.02796-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orientia tsutsugamushi is the etiological agent of scrub typhus, a mite-borne, febrile illness that occurs in the Asia-Pacific region. We conducted strain characterization of O. tsutsugamushi isolates from chiggers obtained from rodents based the nucleotide sequence of the 56-kDa outer membrane protein gene. With the use of PCR, a total of 68 DNA sequences of 56-kDa antigen genes were amplified. Phylogenetic analysis revealed that there were at least six definable clusters among the 68 isolates: 37% Karp-related strains (25/68), 27% TA763 strains (18/68), 12% JG-related strains (8/68), 19% Kato-related strains (13/68), 4% divergent strains (3/68), and 1% representing a Gilliam prototype strain (1/68). Overall, the O. tsutsugamushi genotypes exhibited a high degree of diversity, similar to that seen in strains from the rest of the areas where scrub typhus is endemic. Moreover, the 56-kDa protein sequence similarity between O. tsutsugamushi isolates from mites and those from human patients (H. Y. Lu et al., Am. J. Trop. Med. Hyg. 83:658-663, 2010) were striking, thus highlighting potential risk factors for this emerging zoonotic disease.
Collapse
|
14
|
Genome-based construction of the metabolic pathways of Orientia tsutsugamushi and comparative analysis within the Rickettsiales order. Comp Funct Genomics 2010:623145. [PMID: 18528528 PMCID: PMC2408715 DOI: 10.1155/2008/623145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/29/2008] [Accepted: 03/04/2008] [Indexed: 11/18/2022] Open
Abstract
Orientia tsutsugamushi, the causative agent of
scrub typhus, is an obligate intracellular
bacterium that belongs to the order of
Rickettsiales. Recently, we have reported that
O. tsutsugamushi has a unique
genomic structure, consisting of highly
repetitive sequences, and suggested that it may
provide valuable insight into the evolution of
intracellular bacteria. Here, we have used
genomic information to construct the major
metabolic pathways of
O. tsutsugamushi and performed a
comparative analysis of the metabolic genes and
pathways of O. tsutsugamushi
with other members of the Rickettsiales order.
While O. tsutsugamushi has the
largest genome among the members of this order,
mainly due to the presence of repeated
sequences, its metabolic pathways have been
highly streamlined. Overall, the metabolic
pathways of O. tsutsugamushi
were similar to Rickettsia but
there were notable differences in several
pathways including carbohydrate metabolism, the
TCA cycle, and the synthesis of cell wall
components as well as in the transport systems.
Our results will provide a useful guide to the
postgenomic analysis of
O. tsutsugamushi and lead
to a better understanding of the virulence and
physiology of this intracellular pathogen.
Collapse
|
15
|
Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci U S A 2010; 107:12168-73. [PMID: 20566863 DOI: 10.1073/pnas.1003379107] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.
Collapse
|
16
|
Weinert LA, Welch JJ, Jiggins FM. Conjugation genes are common throughout the genus Rickettsia and are transmitted horizontally. Proc Biol Sci 2009; 276:3619-27. [PMID: 19608593 PMCID: PMC2817303 DOI: 10.1098/rspb.2009.0875] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Rickettsia are endosymbionts of arthropods, some of which are vectored to vertebrates where they cause disease. Recently, it has been found that some Rickettsia strains harbour conjugative plasmids and others encode some conjugative machinery within the bacterial genome. We investigated the distribution of these conjugation genes in a phylogenetically diverse collection of Rickettsia isolated from arthropods. We found that these genes are common throughout the genus and, in stark contrast to other genes in the genome, conjugation genes are frequently horizontally transmitted between strains. There is no evidence to suggest that these genes are preferentially transferred between phylogenetically related strains, which is surprising given that closely related strains infect similar host species. In addition to detecting patterns of horizontal transmission between diverse Rickettsia species, these findings have implications for the evolution of pathogenicity, the evolution of Rickettsia genomes and the genetic manipulation of intracellular bacteria.
Collapse
Affiliation(s)
- Lucy A Weinert
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | |
Collapse
|
17
|
Eremeeva ME, Dasch GA. Closing the gaps between genotype and phenotype in Rickettsia rickettsii. Ann N Y Acad Sci 2009; 1166:12-26. [PMID: 19538260 DOI: 10.1111/j.1749-6632.2009.04526.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rocky Mountain spotted fever (RMSF) caused by Rickettsia rickettsii is a severe rickettsiosis that occurs in nearly every state of the continental USA. RMSF is endemic in Central and Southern America, with recent well-documented cases in Mexico, Costa Rica, Panama, Colombia, Brazil, and Argentina. RMSF is the most malignant among known rickettsioses causing severe multiorgan dysfunction and high case fatality rates, which can reach 73% in untreated cases. Variations in pathogenic biotypes of R. rickettsii isolates have been described, and potential correlations of these differences to various clinical manifestations of RMSF have been suggested. We have recently reported on a method of genetic comparison employing sequence differences in intergenic regions (IGR typing) in isolates of R. rickettsii of human, tick, and animal origin. The grouping obtained correlated well with 2 other genotyping systems we have developed, which target the presence and distribution of variable numbers of tandem repeats (TR) and insertion/deletion (INDEL) events. Twenty-five total genotypes of R. rickettsii in 4 primary groups could be distinguished: isolates from Montana, isolates associated with Rhipicephalus sanguineus ticks and human infections in Arizona, other isolates from the USA where Dermacentor variabilis is thought to be the primary vector, and the isolates primarily associated with Amblyomma ticks from Central and South America. In addition, isolate Hlp#2, which is often considered to be a nonpathogenic isolate of R. rickettsii and closely related serotype 364D, exhibited the most diversity from the other isolates compared, and they differ significantly from each other. Because complex interactions underlie the pathogenesis of R. rickettsii in vivo, it is difficult to define the causality of individual events that occur in infected vertebrate hosts and humans. Many microbial factors are likely to contribute to the varied ability of R. rickettsii to cause cellular injury; some of them may also contribute importantly to its virulence for vertebrate hosts and may be linked to the variable genetic markers we have identified. Since circulation of R. rickettsii in nature includes vertical transstadial and transovarial transmission within tick vectors and horizontal passages through vertebrate hosts, it is plausible that isolates of different virulence arose when they became isolated during adaptation to novel vertebrate and tick hosts. Characterization of the physiologically important changes in rickettsial gene expression that occur immediately after tick-to-human or tick-to-animal transitions may require development of new experimental systems.
Collapse
Affiliation(s)
- Marina E Eremeeva
- Rickettsial Zoonoses Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | |
Collapse
|
18
|
Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, Dharmanolla C, Rainey D, Soneja J, Shallom JM, Vishnubhat ND, Wattam R, Purkayastha A, Czar M, Crasta O, Setubal JC, Azad AF, Sobral BS. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 2008; 3:e2018. [PMID: 19194535 PMCID: PMC2635572 DOI: 10.1371/journal.pone.0002018] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/07/2008] [Indexed: 11/19/2022] Open
Abstract
Background Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular α-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). Methodology/Principal Findings We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (∼1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. Conclusion/Significance Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| |
Collapse
|
20
|
Mattila JT, Burkhardt NY, Hutcheson HJ, Munderloh UG, Kurtti TJ. Isolation of cell lines and a rickettsial endosymbiont from the soft tick Carios capensis (Acari: Argasidae: Ornithodorinae). JOURNAL OF MEDICAL ENTOMOLOGY 2007; 44:1091-1101. [PMID: 18047211 DOI: 10.1603/0022-2585(2007)44[1091:ioclaa]2.0.co;2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Soft ticks are medically important ectoparasites of birds and mammals that are found throughout the world. This report describes isolation and partial characterization of two embryonic cell lines, CCE2 and CCE3, from the seabird soft tick Carios capensis (Neumann). Sequencing of the mitochondrial 16S rRNA gene and karyology confirmed the lines were derived from C. capensis. CCE3 cells were diploid with a modal chromosome number of 20. The population doubling time for cell lines CCE2 and 3 in passage 40 was 6-9 d. A rickettsial endosymbiont, RCCE3, was co-isolated along with line CCE3. Nucleotide sequences of polymerase chain reaction (PCR) products generated using primers specific for rickettsial 17-kDa antigen, outer membrane protein (omp) A, ompB, and citrate synthase genes along with phylogenetic analyses demonstrated that RCCE3 is a previously uncultured endosymbiont. The rickettsia was identified as a symbiont of C. capensis, closely related to rickettsiae previously detected by PCR in C. capensis, Ornithodoros moubata (Murray) and Hemaphysalis sulcata Canestrini & Fanzago, a hard tick. RCCE3 caused a cytopathic effect in C. capensis host cells, and it was transferred to Ixodes scapularis Say cell line ISE6 for maintenance. The rickettsial endosymbiont was eliminated from CCE3 by treatment with oxytetracycline. Cell lines from C. capensis will be useful to researchers investigating interactions between soft ticks and microorganisms, soft tick physiology, and molecular biology. The rickettsia adds to the growing number of Rickettsia species that have been isolated in tick cell culture, and it is available for characterization.
Collapse
Affiliation(s)
- Joshua T Mattila
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
21
|
Blanc G, Ogata H, Robert C, Audic S, Claverie JM, Raoult D. Lateral gene transfer between obligate intracellular bacteria: evidence from the Rickettsia massiliae genome. Genome Res 2007; 17:1657-64. [PMID: 17916642 DOI: 10.1101/gr.6742107] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rickettsia massiliae is a tick-borne obligate intracellular alpha-proteobacteria causing spotted fever in humans. Here, we present the sequence of its genome, comprising a 1.3-Mb circular chromosome and a 15.3-kb plasmid. The chromosome exhibits long-range colinearity with the other Spotted Fever Group Rickettsia genomes, except for a large fragment specific to R. massiliae that contains 14 tra genes presumably involved in pilus formation and conjugal DNA transfer. We demonstrate that the tra region was acquired recently by lateral gene transfer (LGT) from a species related to Rickettsia bellii. Further analysis of the genomic sequences identifies additional candidates of LGT between Rickettsia. Our study indicates that recent LGT between obligate intracellular Rickettsia is more common than previously thought.
Collapse
Affiliation(s)
- Guillaume Blanc
- Structural and Genomic Information Laboratory, CNRS-UPR 2589, Institut de Biologie Structurale et Microbiologie, IFR 88, Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
22
|
Baldridge GD, Burkhardt NY, Felsheim RF, Kurtti TJ, Munderloh UG. Transposon insertion reveals pRM, a plasmid of Rickettsia monacensis. Appl Environ Microbiol 2007; 73:4984-95. [PMID: 17575002 PMCID: PMC1951034 DOI: 10.1128/aem.00988-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/06/2007] [Indexed: 11/20/2022] Open
Abstract
Until the recent discovery of pRF in Rickettsia felis, the obligate intracellular bacteria of the genus Rickettsia (Rickettsiales: Rickettsiaceae) were thought not to possess plasmids. We describe pRM, a plasmid from Rickettsia monacensis, which was detected by pulsed-field gel electrophoresis and Southern blot analyses of DNA from two independent R. monacensis populations transformed by transposon-mediated insertion of coupled green fluorescent protein and chloramphenicol acetyltransferase marker genes into pRM. Two-dimensional electrophoresis showed that pRM was present in rickettsial cells as circular and linear isomers. The 23,486-nucleotide (31.8% G/C) pRM plasmid was cloned from the transformant populations by chloramphenicol marker rescue of restriction enzyme-digested transformant DNA fragments and PCR using primers derived from sequences of overlapping restriction fragments. The plasmid was sequenced. Based on BLAST searches of the GenBank database, pRM contained 23 predicted genes or pseudogenes and was remarkably similar to the larger pRF plasmid. Two of the 23 genes were unique to pRM and pRF among sequenced rickettsial genomes, and 4 of the genes shared by pRM and pRF were otherwise found only on chromosomes of R. felis or the ancestral group rickettsiae R. bellii and R. canadensis. We obtained pulsed-field gel electrophoresis and Southern blot evidence for a plasmid in R. amblyommii isolate WB-8-2 that contained genes conserved between pRM and pRF. The pRM plasmid may provide a basis for the development of a rickettsial transformation vector.
Collapse
Affiliation(s)
- Gerald D Baldridge
- Department of Entomology, University of Minnesota, St Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
23
|
Gillespie JJ, Beier MS, Rahman MS, Ammerman NC, Shallom JM, Purkayastha A, Sobral BS, Azad AF. Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One 2007; 2:e266. [PMID: 17342200 PMCID: PMC1800911 DOI: 10.1371/journal.pone.0000266] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 02/08/2007] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG) or spotted fever group (SFG) rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF) that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria. METHODOLOGY/PRINCIPAL FINDINGS Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG) rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives) also occur in AG (but not SFG) rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFdelta, is an artifact of the original genome assembly. CONCLUSION/SIGNIFICANCE Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG) rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the likely origin of plasmids within the rickettsial tree.
Collapse
Affiliation(s)
- Joseph J. Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Magda S. Beier
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - M. Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nicole C. Ammerman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joshua M. Shallom
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anjan Purkayastha
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Bruno S. Sobral
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Abdu F. Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|