1
|
Jevtovic-Todorovic V, Todorovic SM. The Role of Neuroactive Steroids in Analgesia and Anesthesia: An Interesting Comeback? Biomolecules 2023; 13:1654. [PMID: 38002336 PMCID: PMC10669813 DOI: 10.3390/biom13111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Published evidence over the past few decades suggests that general anesthetics could be neurotoxins especially when administered at the extremes of age. The reported pathology is not only at the morphological level when examined in very young and aged brains, given that, importantly, newly developing evidence suggests a variety of behavioral impairments. Since anesthesia is unavoidable in certain clinical settings, we should consider the development of new anesthetics. A promising and safe solution could be a new family of anesthetics referred to as neuroactive steroids. In this review, we summarize the currently available evidence regarding their anesthetic and analgesic properties.
Collapse
Affiliation(s)
- Vesna Jevtovic-Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | | |
Collapse
|
2
|
Thalamic T-Type Calcium Channels as Targets for Hypnotics and General Anesthetics. Int J Mol Sci 2022; 23:ijms23042349. [PMID: 35216466 PMCID: PMC8876360 DOI: 10.3390/ijms23042349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
General anesthetics mainly act by modulating synaptic inhibition on the one hand (the potentiation of GABA transmission) or synaptic excitation on the other (the inhibition of NMDA receptors), but they can also have effects on numerous other proteins, receptors, and channels. The effects of general anesthetics on ion channels have been the subject of research since the publication of reports of direct actions of these drugs on ion channel proteins. In particular, there is considerable interest in T-type voltage-gated calcium channels that are abundantly expressed in the thalamus, where they control patterns of cellular excitability and thalamocortical oscillations during awake and sleep states. Here, we summarized and discussed our recent studies focused on the CaV3.1 isoform of T-channels in the nonspecific thalamus (intralaminar and midline nuclei), which acts as a key hub through which natural sleep and general anesthesia are initiated. We used mouse genetics and in vivo and ex vivo electrophysiology to study the role of thalamic T-channels in hypnosis induced by a standard general anesthetic, isoflurane, as well as novel neuroactive steroids. From the results of this study, we conclude that CaV3.1 channels contribute to thalamocortical oscillations during anesthetic-induced hypnosis, particularly the slow-frequency range of δ oscillations (0.5–4 Hz), by generating “window current” that contributes to the resting membrane potential. We posit that the role of the thalamic CaV3.1 isoform of T-channels in the effects of various classes of general anesthetics warrants consideration.
Collapse
|
3
|
Maksimovic S, Useinovic N, Quillinan N, Covey DF, Todorovic SM, Jevtovic-Todorovic V. General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23031889. [PMID: 35163810 PMCID: PMC8836828 DOI: 10.3390/ijms23031889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past three decades, we have been grappling with rapidly accumulating evidence that general anesthetics (GAs) may not be as innocuous for the young brain as we previously believed. The growing realization comes from hundreds of animal studies in numerous species, from nematodes to higher mammals. These studies argue that early exposure to commonly used GAs causes widespread apoptotic neurodegeneration in brain regions critical to cognition and socio-emotional development, kills a substantial number of neurons in the young brain, and, importantly, results in lasting disturbances in neuronal synaptic communication within the remaining neuronal networks. Notably, these outcomes are often associated with long-term impairments in multiple cognitive-affective domains. Not only do preclinical studies clearly demonstrate GA-induced neurotoxicity when the exposures occur in early life, but there is a growing body of clinical literature reporting similar cognitive-affective abnormalities in young children who require GAs. The need to consider alternative GAs led us to focus on synthetic neuroactive steroid analogues that have emerged as effective hypnotics, and analgesics that are apparently devoid of neurotoxic effects and long-term cognitive impairments. This would suggest that certain steroid analogues with different cellular targets and mechanisms of action may be safe alternatives to currently used GAs. Herein we summarize our current knowledge of neuroactive steroids as promising novel GAs.
Collapse
Affiliation(s)
- Stefan Maksimovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Correspondence:
| | - Nemanja Useinovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Nidia Quillinan
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Neuronal Injury and Plasticity Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Slobodan M. Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Timic Stamenic T, Manzella FM, Maksimovic S, Krishnan K, Covey DF, Jevtovic-Todorovic V, Todorovic SM. Further Evidence that Inhibition of Neuronal Voltage-Gated Calcium Channels Contributes to the Hypnotic Effect of Neurosteroid Analogue, 3β-OH. Front Pharmacol 2022; 13:850658. [PMID: 35677453 PMCID: PMC9169093 DOI: 10.3389/fphar.2022.850658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
We recently reported that a neurosteroid analogue with T-channel-blocking properties (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH), induced hypnosis in rat pups without triggering neuronal apoptosis. Furthermore, we found that the inhibition of the CaV3.1 isoform of T-channels contributes to the hypnotic properties of 3β-OH in adult mice. However, the specific mechanisms underlying the role of other subtypes of voltage-gated calcium channels in thalamocortical excitability and oscillations in vivo during 3β-OH-induced hypnosis are largely unknown. Here, we used patch-clamp recordings from acute brain slices, in vivo electroencephalogram (EEG) recordings, and mouse genetics with wild-type (WT) and CaV2.3 knock-out (KO) mice to further investigate the molecular mechanisms of neurosteroid-induced hypnosis. Our voltage-clamp recordings showed that 3β-OH inhibited recombinant CaV2.3 currents. In subsequent current-clamp recordings in thalamic slices ex vivo, we found that selective CaV2.3 channel blocker (SNX-482) inhibited stimulated tonic firing and increased the threshold for rebound burst firing in WT animals. Additionally, in thalamic slices we found that 3β-OH inhibited spike-firing more profoundly in WT than in mutant mice. Furthermore, 3β-OH reduced bursting frequencies in WT but not mutant animals. In ensuing in vivo experiments, we found that intra-peritoneal injections of 3β-OH were less effective in inducing LORR in the mutant mice than in the WT mice, with expected sex differences. Furthermore, the reduction in total α, β, and low γ EEG power was more profound in WT than in CaV2.3 KO females over time, while at 60 min after injections of 3β-OH, the increase in relative β power was higher in mutant females. In addition, 3β-OH depressed EEG power more strongly in the male WT than in the mutant mice and significantly increased the relative δ power oscillations in WT male mice in comparison to the mutant male animals. Our results demonstrate for the first time the importance of the CaV2.3 subtype of voltage-gated calcium channels in thalamocortical excitability and the oscillations that underlie neurosteroid-induced hypnosis.
Collapse
Affiliation(s)
- Tamara Timic Stamenic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Francesca M Manzella
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
- Neuroscience Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Stefan Maksimovic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, United States
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, MO, United States
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
- Neuroscience Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
5
|
Coulter I, Timic Stamenic T, Eggan P, Fine BR, Corrigan T, Covey DF, Yang L, Pan JQ, Todorovic SM. Different roles of T-type calcium channel isoforms in hypnosis induced by an endogenous neurosteroid epipregnanolone. Neuropharmacology 2021; 197:108739. [PMID: 34339750 PMCID: PMC8478885 DOI: 10.1016/j.neuropharm.2021.108739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Many neuroactive steroids induce sedation/hypnosis by potentiating γ-aminobutyric acid (GABAA) currents. However, we previously demonstrated that an endogenous neuroactive steroid epipregnanolone [(3β,5β)-3-hydroxypregnan-20-one] (EpiP) exerts potent peripheral analgesia and blocks T-type calcium currents while sparing GABAA currents in rat sensory neurons. This study seeks to investigate the behavioral effects elicited by systemic administration of EpiP and to characterize its use as an adjuvant agent to commonly used general anesthetics (GAs). METHODS Here, we utilized electroencephalographic (EEG) recordings to characterize thalamocortical oscillations, as well as behavioral assessment and mouse genetics with wild-type (WT) and different knockout (KO) models of T-channel isoforms to investigate potential sedative/hypnotic and immobilizing properties of EpiP. RESULTS Consistent with increased oscillations in slower EEG frequencies, EpiP induced an hypnotic state in WT mice when injected alone intra-peritoneally (i.p.) and effectively facilitated anesthetic effects of isoflurane (ISO) and sevoflurane (SEVO). The CaV3.1 (Cacna1g) KO mice demonstrated decreased sensitivity to EpiP-induced hypnosis when compared to WT mice, whereas no significant difference was noted between CaV3.2 (Cacna1h), CaV3.3 (Cacna1i) and WT mice. Finally, when compared to WT mice, onset of EpiP-induced hypnosis was delayed in CaV3.2 KO mice but not in CaV3.1 and CaV3.3 KO mice. CONCLUSION We posit that EpiP may have an important role as novel hypnotic and/or adjuvant to volatile anesthetic agents. We speculate that distinct hypnotic effects of EpiP across all three T-channel isoforms is due to their differential expression in thalamocortical circuitry.
Collapse
Affiliation(s)
- Ian Coulter
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Tamara Timic Stamenic
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Pierce Eggan
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Brier R. Fine
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Timothy Corrigan
- Department of Pediatrics, Division of Neurology,
Translational Epilepsy Research Program, University of Colorado, Anschutz Medical
Campus, Aurora, CO 80045, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University
School of Medicine, St. Louis, MO 63110, USA;,Taylor Family Institute for Innovative Psychiatric
Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lingling Yang
- Stanley Center for Psychiatric Research, Broad Institute of
Harvard and MIT
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of
Harvard and MIT
| | - Slobodan M. Todorovic
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045;,Neuroscience, University of Colorado, Anschutz Medical
Campus, Aurora 80045;,Pharmacology Graduate Programs, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| |
Collapse
|
6
|
Timic Stamenic T, Feseha S, Manzella FM, Wallace D, Wilkey D, Corrigan T, Fiedler H, Doerr P, Krishnan K, Raol YH, Covey DF, Jevtovic-Todorovic V, Todorovic SM. The T-type calcium channel isoform Ca v3.1 is a target for the hypnotic effect of the anaesthetic neurosteroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile. Br J Anaesth 2021; 126:245-255. [PMID: 32859366 PMCID: PMC7844375 DOI: 10.1016/j.bja.2020.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The mechanisms underlying the role of T-type calcium channels (T-channels) in thalamocortical excitability and oscillations in vivo during neurosteroid-induced hypnosis are largely unknown. METHODS We used patch-clamp electrophysiological recordings from acute brain slices ex vivo, recordings of local field potentials (LFPs) from the central medial thalamic nucleus in vivo, and wild-type (WT) and Cav3.1 knock-out mice to investigate the molecular mechanisms of hypnosis induced by the neurosteroid analogue (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH). RESULTS Patch-clamp recordings showed that 3β-OH inhibited isolated T-currents but had no effect on phasic or tonic γ-aminobutyric acid A currents. Also in acute brain slices, 3β-OH inhibited the spike firing mode more profoundly in WT than in Cav3.1 knockout mice. Furthermore, 3β-OH significantly hyperpolarised neurones, reduced the amplitudes of low threshold spikes, and diminished rebound burst firing only in WT mice. We found that 80 mg kg-1 i.p. injections of 3β-OH induced hypnosis in >60% of WT mice but failed to induce hypnosis in the majority of mutant mice. A subhypnotic dose of 3β-OH (20 mg kg-1 i.p.) accelerated induction of hypnosis by isoflurane only in WT mice, but had similar effects on the maintenance of isoflurane-induced hypnosis in both WT and Cav3.1 knockout mice. In vivo recordings of LFPs showed that a hypnotic dose of 3β-OH increased δ, θ, α, and β oscillations in WT mice in comparison with Cav3.1 knock-out mice. CONCLUSIONS The Cav3.1 T-channel isoform is critical for diminished thalamocortical excitability and oscillations that underlie neurosteroid-induced hypnosis.
Collapse
Affiliation(s)
- Tamara Timic Stamenic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Simon Feseha
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca M Manzella
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Neuroscience and Pharmacology Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Damon Wallace
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Davis Wilkey
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy Corrigan
- Department of Pediatrics, Division of Neurology, Translational Epilepsy Research Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Hanna Fiedler
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Patricia Doerr
- Department of Anesthesiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yogendra H Raol
- Department of Pediatrics, Division of Neurology, Translational Epilepsy Research Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Neuroscience and Pharmacology Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Joksimovic SM, Izumi Y, Joksimovic SL, Tesic V, Krishnan K, Asnake B, Jevtovic-Todorovic V, Covey DF, Zorumski CF, Todorovic SM. Novel neurosteroid hypnotic blocks T-type calcium channel-dependent rebound burst firing and suppresses long-term potentiation in the rat subiculum. Br J Anaesth 2019; 122:643-651. [PMID: 30916017 DOI: 10.1016/j.bja.2019.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hypnotics and general anaesthetics impair memory by altering hippocampal synaptic plasticity. We recently reported on a neurosteroid analogue with potent hypnotic activity [(3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile; 3β-OH], which does not cause developmental neurotoxicity in rat pups. Here, we investigated the effects of 3β-OH on neuronal excitability in the subiculum, the major output structure of the hippocampal formation, and synaptic plasticity at two key hippocampal synapses in juvenile rats. METHODS Biophysical properties of isolated T-type calcium currents (T-currents) in the rat subiculum were investigated using acute slice preparations. Subicular T-type calcium channel (T-channel) subtype mRNA expression was compared using qRT-PCR. Using electrophysiological recordings, we examined the effects of 3β-OH and an endogenous neuroactive steroid, allopregnanolone (Allo), on T-currents and burst firing properties of subicular neurones, and on the long-term potentiation (LTP) in CA3-CA1 and CA1-subiculum pathways. RESULTS Biophysical and molecular studies confirmed that CaV3.1 channels represent the dominant T-channel isoform in the subiculum of juvenile rats. 3β-OH and Allo inhibited rebound burst firing by decreasing the amplitude of T-currents in a voltage-dependent manner with similar potency, with 30-80% inhibition. Both neurosteroids suppressed LTP at the CA1-subiculum, but not at the CA3-CA1 Schaffer collateral synapse. CONCLUSIONS Neurosteroid effects on T-channels modulate hippocampal output and provide possible molecular mechanisms for the amnestic action of the novel hypnotic 3β-OH. Effects on T-channels in the subiculum provide a novel target for amnestic effects of hypnotics.
Collapse
Affiliation(s)
- Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, USA.
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonja Lj Joksimovic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Vesna Tesic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Betelehem Asnake
- Department of Anesthesiology and Pain Medicine, University of California, Davis, CA, USA
| | | | - Douglas F Covey
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, USA
| |
Collapse
|
8
|
A neurosteroid analogue with T-type calcium channel blocking properties is an effective hypnotic, but is not harmful to neonatal rat brain. Br J Anaesth 2018; 120:768-778. [PMID: 29576117 DOI: 10.1016/j.bja.2017.12.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND More than 4 million children are exposed annually to sedatives and general anaesthetics (GAs) in the USA alone. Recent data suggest that common GAs can be detrimental to brain development causing neurodegeneration and long-term cognitive impairments. Challenged by a recent US Food and Drug Administration (FDA) warning about potentially neurotoxic effects of GAs in children, there is an urgent need to develop safer GAs. METHODS Postnatal Day 7 (P7) rat pups of both sexes were exposed to six (repeated every 2 h) injections of equipotent hypnotic doses of ketamine or the neuroactive steroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH) for 12 h. Loss of righting reflex was used to assess hypnotic properties and therapeutic index; quantitative caspase-3 immunohistochemistry was used to assess developmental neuroapoptosis; patch-clamp recordings in acute brain slices were used to assess the effects of 3β-OH on neuronal excitability and synaptic transmission. Cognitive abilities of rats exposed to ketamine, 3β-OH, or vehicle at P7 were assessed in young adulthood using the radial arm maze. RESULTS The neuroactive steroid 3β-OH has a therapeutic index similar to ketamine, a commonly used clinical GA. We report that 3β-OH is safe and, unlike ketamine, does not cause neuroapoptosis or impair cognitive development when administered to P7 rat pups. Interestingly, 3β-OH blocks T-type calcium channels and presynaptically dampens synaptic transmission at hypnotically-relevant brain concentrations, but it lacks a direct effect on γ-aminobutyric acid A or glutamate-gated ion channels. CONCLUSIONS The neurosteroid 3β-OH is a relatively safe hypnotic that warrants further consideration for paediatric anaesthesia.
Collapse
|
9
|
Walton KD, Maillet EL, Garcia J, Cardozo T, Galatzer-Levy I, Llinás RR. Differential Modulation of Rhythmic Brain Activity in Healthy Adults by a T-Type Calcium Channel Blocker: An MEG Study. Front Hum Neurosci 2017; 11:24. [PMID: 28217089 PMCID: PMC5289965 DOI: 10.3389/fnhum.2017.00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/11/2017] [Indexed: 01/08/2023] Open
Abstract
1-octanol is a therapeutic candidate for disorders involving the abnormal activation of the T-type calcium current since it blocks this current specifically. Such disorders include essential tremor and a group of neurological and psychiatric disorders resulting from thalamocortical dysrhythmia (TCD). For example, clinically, the observable phenotype in essential tremor is the tremor itself. The differential diagnostic of TCD is not based only on clinical signs and symptoms. Rather, TCD incorporates an electromagnetic biomarker, the presence of abnormal thalamocortical low frequency brain oscillations. The effect of 1-octanol on brain activity has not been tested. As a preliminary step to such a TCD study, we examined the short-term effects of a single dose of 1-octanol on resting brain activity in 32 healthy adults using magnetoencephalograpy. Visual inspection of baseline power spectra revealed that the subjects fell into those with strong low frequency activity (set 2, n = 11) and those without such activity, but dominated by an alpha peak (set 1, n = 22). Cross-validated linear discriminant analysis, using mean spectral density (MSD) in nine frequency bands as predictors, found overall that 82.5% of the subjects were classified as determined by visual inspection. The effect of 1-octanol on the MSD in narrow frequency bands differed between the two subject groups. In set 1 subjects the MSD increased in the 4.5-6.5Hz and 6.5-8.5 Hz bands. This was consistent with a widening of the alpha peak toward lower frequencies. In the set two subjects the MSD decrease in the 2.5-4.5 Hz and 4.5-6.5 Hz bands. This decreased power is consistent with the blocking effect of 1-octanol on T-type calcium channels. The subjects reported no adverse effects of the 1-octanol. Since stronger low frequency activity is characteristic of patients with TCD, 1-octanol and other T-type calcium channel blockers are good candidates for treatment of this group of disorders following a placebo-controlled study.
Collapse
Affiliation(s)
- Kerry D Walton
- Center for Neuromagnetism, Department of Neuroscience and Physiology, New York University School of Medicine, New York NY, USA
| | - Emeline L Maillet
- Center for Neuromagnetism, Department of Neuroscience and Physiology, New York University School of Medicine, New York NY, USA
| | - John Garcia
- Center for Neuromagnetism, Department of Neuroscience and Physiology, New York University School of Medicine, New York NY, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York NY, USA
| | - Isaac Galatzer-Levy
- Steven and Alexandra Cohen Veterans Center for PostTraumatic Stress and Traumatic Brain Injury, Department of Psychiatry, New York University School of Medicine, New York NY, USA
| | - Rodolfo R Llinás
- Center for Neuromagnetism, Department of Neuroscience and Physiology, New York University School of Medicine, New York NY, USA
| |
Collapse
|
10
|
Chausson P, Leresche N, Lambert RC. Dynamics of intrinsic dendritic calcium signaling during tonic firing of thalamic reticular neurons. PLoS One 2013; 8:e72275. [PMID: 23991078 PMCID: PMC3749121 DOI: 10.1371/journal.pone.0072275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/16/2013] [Indexed: 11/30/2022] Open
Abstract
The GABAergic neurons of the nucleus reticularis thalami that control the communication between thalamus and cortex are interconnected not only through axo-dendritic synapses but also through gap junctions and dendro-dendritic synapses. It is still unknown whether these dendritic communication processes may be triggered both by the tonic and the T-type Ca2+ channel-dependent high frequency burst firing of action potentials displayed by nucleus reticularis neurons during wakefulness and sleep, respectively. Indeed, while it is known that activation of T-type Ca2+ channels actively propagates throughout the dendritic tree, it is still unclear whether tonic action potential firing can also invade the dendritic arborization. Here, using two-photon microscopy, we demonstrated that dendritic Ca2+ responses following somatically evoked action potentials that mimic wake-related tonic firing are detected throughout the dendritic arborization. Calcium influx temporally summates to produce dendritic Ca2+ accumulations that are linearly related to the duration of the action potential trains. Increasing the firing frequency facilitates Ca2+ influx in the proximal but not in the distal dendritic compartments suggesting that the dendritic arborization acts as a low-pass filter in respect to the back-propagating action potentials. In the more distal compartment of the dendritic tree, T-type Ca2+ channels play a crucial role in the action potential triggered Ca2+ influx suggesting that this Ca2+ influx may be controlled by slight changes in the local dendritic membrane potential that determine the T-type channels’ availability. We conclude that by mediating Ca2+ dynamic in the whole dendritic arborization, both tonic and burst firing of the nucleus reticularis thalami neurons might control their dendro-dendritic and electrical communications.
Collapse
Affiliation(s)
- Patrick Chausson
- UMR 7102 CNRS, Paris, France
- UPMC, Université Paris 6, Paris, France
| | | | - Régis C. Lambert
- UMR 7102 CNRS, Paris, France
- UPMC, Université Paris 6, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci 2012; 32:9374-82. [PMID: 22764245 DOI: 10.1523/jneurosci.0068-12.2012] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is generally accepted that presynaptic transmitter release is mainly regulated by subtypes of neuronal high-voltage-activated Ca(2+) channels. Here for the first time, we examined the role of T-type Ca(2+) channels (T-channels) in synaptic transmission in the dorsal horn (DH) of the spinal cord using patch-clamp recordings from acute spinal cord preparations from both rat and mouse. We found that selective pharmacological antagonism of T-channels inhibited spontaneous synaptic release of glutamate in superficial laminae I-II of the DH, while GABA release was spared. We found similar effect in identified nociceptive projection neurons of lamina I of the DH, but not in inhibitory DH interneurons. In comparison, antagonism of T-channels did not affect excitatory transmission in deeper non-nociceptive DH laminae. Furthermore, we used isoform-specific agents, knock-out mice and immunohistochemistry to specifically implicate presynaptic Ca(V)3.2 channels. We also used an animal model of painful diabetic neuropathy to demonstrate that blocking T-channels in superficial DH neurons suppressed spontaneous excitatory synaptic transmission in diabetic rats in greater degree than in healthy age-matched animals. These studies provide previously unknown information regarding the role of presynaptic T-channels in nociceptive signaling in the spinal cord.
Collapse
|
12
|
Zheng P. Neuroactive steroid regulation of neurotransmitter release in the CNS: Action, mechanism and possible significance. Prog Neurobiol 2009; 89:134-52. [DOI: 10.1016/j.pneurobio.2009.07.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 03/11/2009] [Accepted: 07/02/2009] [Indexed: 12/31/2022]
|
13
|
|