Liu YH, Lu YL, Han CH, Hou WC. Inhibitory activities of acteoside, isoacteoside, and its structural constituents against protein glycation in vitro.
BOTANICAL STUDIES 2013;
54:6. [PMID:
28510849 PMCID:
PMC5432847 DOI:
10.1186/1999-3110-54-6]
[Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/13/2013] [Indexed: 06/05/2023]
Abstract
BACKGROUND
Advanced glycation end products (AGE) are substances that can induce insulin resistance in adipocyte, hepatocyte and muscle cells. This resistance correlates highly with cardiovascular disease and diabetic complications. Acteoside (A), a phenylethanoid glycoside, is an active compound in several plants and traditional herbal medicines. Acteoside, its structural isomer, isoacteoside (I), and their constituents, caffeic acid (C) and 3,4-dihydroxyphenylethanol (D), were used in the study to investigate the inhibitory activity against AGE formations in vitro.
RESULTS
AGE formations were detected by anti-(Nϵ-(carboxymethyl)lysine (anti-CML), using bovine serum albumin (BSA)/glucose (glc) and BSA/galactose (gal) as models, or by anti-argpyrimidine (anti-AP), using BSA/methylglyoxal (MGO) as models. It was found that A, I, C, or D, each at 5 mM, could attenuate the CML formations detected by ELISA in the BSA/gal model of a 3-day or 5-day reaction, and showed significant differences (P < 0.01 or P < 0.001) compared to the control. However, these compounds showed a minor effect after a 7-day incubation. It was also found that C or D could lower the CML formations in the BSA/glc model and showed significant differences (P < 0.05 or P < 0.01) compared to the control after a 3-day, 5-day and 7-day reaction. It was found that A, I, C, or D, each at 0.5 mM or 5 mM, could attenuate the AP formations in the BSA/MGO model of a 3-day reaction and showed significant differences (P < 0.001) compared to the control.
CONCLUSIONS
The results suggest the potential anti-glycation activities of A and I in vitro may apply to cell models at higher glucose concentrations or to diabetic animal models, and need further investigation.
Collapse