1
|
King E, Struck R, Piskareva O. The triad in current neuroblastoma challenges: Targeting antigens, enhancing effective cytotoxicity and accurate 3D in vitro modelling. Transl Oncol 2025; 51:102176. [PMID: 39489087 PMCID: PMC11565549 DOI: 10.1016/j.tranon.2024.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Neuroblastoma is an embryonic tumour originating from neural crest cells and accounts for nearly 15 % of all childhood cancer deaths. Despite the implementation of intense multimodal therapy for neuroblastoma, half of the high-risk cohort will relapse with metastatic foci resistant to conventional therapies. There is an urgent need for novel precision medicine approaches to improve patient survival and ensure healthy post-treatment lives for these children. Immunotherapy holds promise for such therapeutics; however, developing effective options has been disappointing despite decades of research. The immunosuppressive tumour-immune microenvironment presents a significant challenge amplified with low mutational burden in neuroblastoma, even with the new discovered tumour antigens. Innovative, practical, and comprehensive approaches are crucial for designing and testing immunotherapies capable of passing clinical trials. Replacing animal models with physiologically relevant in vitro systems will expedite this process and provide new insights into exploitable tumour-immune cell interactions. This review examines this three-pronged approach in neuroblastoma immunotherapy: tumour antigen discovery, immunomodulation, and 3D in vitro tumour models, and discusses current and emerging insights into these strategies to address neuroblastoma immunotherapy challenges.
Collapse
Affiliation(s)
- Ellen King
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ronja Struck
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Olga Piskareva
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Ramírez-Pacheco A, Moreno-Guerrero SS, Rocha-Ramírez LM, Hernández-Pliego G, Escobar-Sánchez MA, Reyes-López A, Sienra-Monge JJL, Juárez-Villegas LE. Role of Genetic Polymorphisms -238 G>A and -308 G>A, and Serum TNF-α Levels in a Cohort of Mexican Pediatric Neuroblastoma Patients: Preliminary Study. Int J Mol Sci 2024; 25:10590. [PMID: 39408920 PMCID: PMC11477149 DOI: 10.3390/ijms251910590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The results of in vitro and in vivo studies have shown the pro-tumor effects of TNF-α, and this cytokine's increased expression is associated with poor prognosis in patients with some types of cancer. Our study objective was to evaluate the possible association of TNF-α genetic polymorphisms and serum levels with susceptibility and prognosis in a cohort of Mexican patients with NB. We performed PCR-RFLP and ELISA methods to analyze the genetics of these SNPs and determine serum concentrations, respectively. The distribution of the -308 G>A and -238 G>A polymorphisms TNFα genotypes was considerably different between patients with NB and the control group. The SNP rs1800629 GG/GA genotypes were associated with a decreased risk of NB (OR = 0.1, 95% CI = 0.03-0.393, p = 0.001) compared with the AA genotype, which was associated with susceptibility to NB (OR = 2.89, 95% CI = 1.45-5.76, p = 0.003) and related to unfavorable histology and high-risk NB. The rs361525 polymorphism GG genotype was associated with a lower risk of developing NB compared with the GA and AA genotypes (OR = 0.2, 95% CI = 0.068-0.63, p = 0.006). Circulating TNF-α serum concentrations were significantly different (p < 0.001) between patients with NB and healthy controls; however, we found no relationship between the analyzed TNF-α serum levels and SNP genotypes. We found associations between the rs1800629AA genotype and lower event-free survival (p = 0.026); SNP rs361525 and TNF-α levels were not associated with survival in patients with NB. Our results suggest the TNF-α SNP rs1800629 as a probable factor of NB susceptibility. The -308 G/A polymorphism AA genotype has a probable role in promoting NB development and poor prognosis associated with unfavorable histology, high-risk tumors, and lower EFS in Mexican patients with NB. It should be noted that it is important to conduct research on a larger scale, through inter-institutional studies, to further evaluate the contribution of TNF-α genetic polymorphisms to the risk and prognosis of NB.
Collapse
Affiliation(s)
- Arturo Ramírez-Pacheco
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico; (A.R.-P.); (S.S.M.-G.); (G.H.-P.)
| | - Silvia Selene Moreno-Guerrero
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico; (A.R.-P.); (S.S.M.-G.); (G.H.-P.)
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico
| | - Gabriela Hernández-Pliego
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico; (A.R.-P.); (S.S.M.-G.); (G.H.-P.)
| | - María Argelia Escobar-Sánchez
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico;
| | - Alfonso Reyes-López
- Centro de Estudios Económicos y Sociales en Salud, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico;
| | - Juan José Luis Sienra-Monge
- Subdirección de Pediatría Ambulatoria, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico;
| | - Luis Enrique Juárez-Villegas
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Ciudad de México 06720, Mexico; (A.R.-P.); (S.S.M.-G.); (G.H.-P.)
| |
Collapse
|
3
|
Wang JX, Zhang HY, Yan ZJ, Cao ZY, Shao JB, Zou L. Identification and validation of a novel five-gene signature in high-risk MYCN-not-amplified neuroblastoma. Discov Oncol 2024; 15:456. [PMID: 39292372 PMCID: PMC11410741 DOI: 10.1007/s12672-024-01318-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE High-risk neuroblastoma patients often have poor outcomes despite multi-treatment options. The risk stratification of high-risk MYCN-not-amplified (HR-MYCN-NA) patients remains difficult. This study aims to identify a gene set signature that can help further stratify HR-MYCN-NA patients for a potential personalized therapeutic strategy. METHODS Three microarrays and one single-cell RNA sequence dataset were acquired and analyzed. Firstly, the prognostic-related genes (PRGs) in HR-MYCN-NA tumor cells were identified using TARGET-NB and GSE137804 datasets. Then, the prognostic model was established by LASSO-Cox regression, and verified in external cohort (GSE49710, GSE45547). Moreover, a time-dependent receiver operating characteristic curve (ROC) and area under the ROC (AUC) was used to assess survival prediction. A nomogram was established to predict the 1-, 3- and 5-year overall survival (OS) of HR-MYCN-NA patients. RESULTS In the training set, a five-PRGs signature, which include GAL, GFRA3, MARCKS, PSMD13, and ZNHIT3 genes, was identified and successfully stratified HR-MYCN-NA patients into ultra-high risk (UHR) and high-risk (HR) subtypes (HR = 4.29, P < 0.001). ROC curve analysis confirmed its predictive power (AUC = 0.74-0.82), suggesting a good predictive efficacy. Consistently, high-risk scores also predicted worse OS (HR = 2, P = 0.033) in the external validation dataset (AUC = 0.67-0.71). Moreover, the overall C-index of the nomogram was 0.75 (P < 0.001), which indicated good agreement between the observed and predicted survival rates. Further integrating the five PRGs signature with clinical factors, these 5 gene signature (HR = 4.45, P < 0.001) and tumor grade (HR = 4.15, P = 0.02) were found to be independent prognostic factors for HR-MYCN-NA patients. CONCLUSION The novel five PRGs signature could well predict the survival of HR-MYCN-NA patients, which may provide constructive information for these subsets.
Collapse
Affiliation(s)
- Jin-Xia Wang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Hong-Yang Zhang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Zi-Jun Yan
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Zi-Yang Cao
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Jing-Bo Shao
- Department of Hematology and Cancer, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| | - Lin Zou
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| |
Collapse
|
4
|
Nokchan N, Suthapot P, Choochuen P, Khongcharoen N, Hongeng S, Anurathapan U, Surachat K, Sangkhathat S, Thai Pediatric Cancer Atlas Tpca Consortium. Whole-Exome Sequencing Reveals Novel Candidate Driver Mutations and Potential Druggable Mutations in Patients with High-Risk Neuroblastoma. J Pers Med 2024; 14:950. [PMID: 39338204 PMCID: PMC11433071 DOI: 10.3390/jpm14090950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Neuroblastoma is the most prevalent solid tumor in early childhood, with a 5-year overall survival rate of 40-60% in high-risk cases. Therefore, the identification of novel biomarkers for the diagnosis, prognosis, and therapy of neuroblastoma is crucial for improving the clinical outcomes of these patients. In this study, we conducted the whole-exome sequencing of 48 freshly frozen tumor samples obtained from the Biobank. Somatic variants were identified and selected using a bioinformatics analysis pipeline. The mutational signatures were determined using the Mutalisk online tool. Cancer driver genes and druggable mutations were predicted using the Cancer Genome Interpreter. The most common mutational signature was single base substitution 5. MUC4, MUC16, and FLG were identified as the most frequently mutated genes. Using the Cancer Genome Interpreter, we identified five recurrent cancer driver mutations spanning MUC16, MUC4, ALK, and CTNND1, with the latter being novel and containing a missense mutation, R439C. We also identified 11 putative actionable mutations including NF1 Q1798*, Q2616*, and S636X, ALK F1174L and R1275Q, SETD2 P10L and Q1829E, BRCA1 R612S, NOTCH1 D1670V, ATR S1372L, and FGFR1 N577K. Our findings provide a comprehensive overview of the novel information relevant to the underlying molecular pathogenesis and therapeutic targets of neuroblastoma.
Collapse
Affiliation(s)
- Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Praewa Suthapot
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Natthapon Khongcharoen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | |
Collapse
|
5
|
Barr EK, Naranjo A, Twist CJ, Tenney SC, Schmidt ML, London WB, Gastier-Foster J, Adkins ES, Mattei P, Handler MH, Matthay KK, Park JR, Maris JM, Desai AV, Cohn SL. Long-term follow-up of patients with intermediate-risk neuroblastoma treated with response- and biology-based therapy: A report from the Children's Oncology Group study ANBL0531. Pediatr Blood Cancer 2024; 71:e31089. [PMID: 38822537 DOI: 10.1002/pbc.31089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND We previously reported excellent three-year overall survival (OS) for patients with newly diagnosed intermediate-risk neuroblastoma treated with a biology- and response-based algorithm on the Children's Oncology Group study ANBL0531. We now present the long-term follow-up results. METHODS All patients who met the age, stage, and tumor biology criteria for intermediate-risk neuroblastoma were eligible. Treatment was based on prognostic biomarkers and overall response. Event-free survival (EFS) and OS were estimated by the Kaplan-Meier method. RESULTS The 10-year EFS and OS for the entire study cohort (n = 404) were 82.0% (95% confidence interval (CI), 77.2%-86.9%) and 94.7% (95% CI, 91.8%-97.5%), respectively. International Neuroblastoma Staging System stage 4 patients (n = 133) had inferior OS compared with non-stage 4 patients (n = 271; 10-year OS: 90.8% [95% CI, 84.5%-97.0%] vs 96.6% [95% CI, 93.9%-99.4%], p = .02). Infants with stage 4 tumors with ≥1 unfavorable biological feature (n = 47) had inferior EFS compared with those with favorable biology (n = 61; 10-year EFS: 66.8% [95% CI, 50.4%-83.3%] vs 86.9% [95% CI, 76.0%-97.8%], p = .02); OS did not differ (10-year OS: 84.4% [95% CI, 71.8%-97.0%] vs 95.0% [95% CI, 87.7%-100.0%], p = .08). Inferior EFS but not OS was observed among patients with tumors with (n = 26) versus without (n = 314) 11q loss of heterozygosity (10-year EFS: 68.4% [95% CI, 44.5%-92.2%] vs 83.9% [95% CI, 78.7%-89.2%], p = .03; 10-year OS: 88.0% [95% CI, 72.0%-100.0%] vs 95.7% [95% CI, 92.8%-98.6%], p = .09). CONCLUSIONS The ANBL0531 trial treatment algorithm resulted in excellent long-term survival. More effective treatments are needed for subsets of patients with unfavorable biology tumors.
Collapse
Affiliation(s)
- Erin K Barr
- Department of Pediatrics, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Arlene Naranjo
- Department of Biostatistics, University of Florida Children's Oncology Group Statistics and Data Center, Gainesville, Florida, USA
| | - Clare J Twist
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sheena C Tenney
- Department of Biostatistics, University of Florida Children's Oncology Group Statistics and Data Center, Gainesville, Florida, USA
| | - Mary Lou Schmidt
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie Gastier-Foster
- Department of Pediatrics and Pathology/Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - E Stanton Adkins
- Department of Pediatrics, Palmetto Health-USC Medical Group, Columbia, South Carolina, USA
| | - Peter Mattei
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael H Handler
- Department of Neurosurgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Katherine K Matthay
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Julie R Park
- Department of Oncology, St.Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John M Maris
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ami V Desai
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Kum Özşengezer S, Altun ZS, Sanlav G, Baran B, Kızmazoğlu D, Aktaş S, Keskinoğlu P, Olgun N. Investigation of YAP-1, OTX-2, and nestin protein expressions in neuroblastoma: a preliminary study. Ann Clin Transl Neurol 2024; 11:2153-2165. [PMID: 38925618 PMCID: PMC11330229 DOI: 10.1002/acn3.52136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Neuroblastoma is the most common extracranial solid tumor in childhood. YAP (Yes-associated protein) is a highly expressed protein in NB. Nestin is an important marker of neuronal differentiation in NB. Orthodenticle homeobox (OTX) is a transcription factor and is overexpressed in blastoma-derived tumors. The aim of this study was to examine the potential roles of YAP-1, Nestin, and OTX-2 proteins in prognosis and risk stratification in neuroblastoma METHODS: Tumor sections of 56 patients with different NB risk groups were analyzed. YAP-1, Nestin, and OTX-2 protein expression levels were evaluated by immunohistochemical staining in NB patient tissue samples. RESULTS YAP-1, Nestin, and OTX-2 protein expression levels were evaluated together with the clinical findings of NB patients. YAP-1 was expressed in 18% of all tissues, while Nestin was expressed in 20.4%. OTX-2 protein expression was found in 41.1% of the NB patients. YAP-1 was expressed in 26.9% of high-risk and 11.5% of low-risk patients. Nestin was expressed in 24.4% high-risk and 33.3% low-risk patients. OTX-2 was expressed in 68.2% high-risk and 60% low-risk patients.YAP-1 was shown to provide survival advantages among risk groups. INTERPRETATION The findings of this study support that YAP-1 may be a potential prognostic biomarker for staging and risk-group assignment of NB patients. YAP-1 expression in neuroblastoma is associated with significantly poorer survival probabilities and should be considered as a potential therapeutic target. OTX-2 is a promising predictive biomarker candidate, but its mechanisms need further investigation in neuroblastoma, as nestin expression is not significantly linked to patient survival.
Collapse
Affiliation(s)
- Selen Kum Özşengezer
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Zekiye Sultan Altun
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Gamze Sanlav
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Burçin Baran
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Deniz Kızmazoğlu
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| | - Safiye Aktaş
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Pembe Keskinoğlu
- Department of Basic Medical Sciences, Department of Biostatistics and Medical InformaticsFaculty of Medicine, Dokuz Eylül UniversityIzmirTurkey
| | - Nur Olgun
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
7
|
Hayn D, Kreiner K, Sandner E, Baumgartner M, Jammerbund B, Falgenhauer M, Düster V, Devi-Marulkar P, Schleiermacher G, Ladenstein R, Schreier G. Use Cases Requiring Privacy-Preserving Record Linkage in Paediatric Oncology. Cancers (Basel) 2024; 16:2696. [PMID: 39123424 PMCID: PMC11311357 DOI: 10.3390/cancers16152696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Large datasets in paediatric oncology are inherently rare. Therefore, it is paramount to fully exploit all available data, which are distributed over several resources, including biomaterials, images, clinical trials, and registries. With privacy-preserving record linkage (PPRL), personalised or pseudonymised datasets can be merged, without disclosing the patients' identities. Although PPRL is implemented in various settings, use case descriptions are currently fragmented and incomplete. The present paper provides a comprehensive overview of current and future use cases for PPRL in paediatric oncology. We analysed the literature, projects, and trial protocols, identified use cases along a hypothetical patient journey, and discussed use cases with paediatric oncology experts. To structure PPRL use cases, we defined six key dimensions: distributed personalised records, pseudonymisation, distributed pseudonymised records, record linkage, linked data, and data analysis. Selected use cases were described (a) per dimension and (b) on a multi-dimensional level. While focusing on paediatric oncology, most aspects are also applicable to other (particularly rare) diseases. We conclude that PPRL is a key concept in paediatric oncology. Therefore, PPRL strategies should already be considered when starting research projects, to avoid distributed data silos, to maximise the knowledge derived from collected data, and, ultimately, to improve outcomes for children with cancer.
Collapse
Affiliation(s)
- Dieter Hayn
- Center for Health and Bioresources, AIT Austrian Institute of Technology, 8020 Graz, Austria (M.B.)
| | - Karl Kreiner
- Center for Health and Bioresources, AIT Austrian Institute of Technology, 8020 Graz, Austria (M.B.)
| | - Emanuel Sandner
- Center for Health and Bioresources, AIT Austrian Institute of Technology, 8020 Graz, Austria (M.B.)
| | - Martin Baumgartner
- Center for Health and Bioresources, AIT Austrian Institute of Technology, 8020 Graz, Austria (M.B.)
- Institute of Neural Engineering, Graz University of Technology, 8010 Graz, Austria
| | - Bernhard Jammerbund
- Center for Health and Bioresources, AIT Austrian Institute of Technology, 8020 Graz, Austria (M.B.)
| | - Markus Falgenhauer
- Center for Health and Bioresources, AIT Austrian Institute of Technology, 8020 Graz, Austria (M.B.)
| | - Vanessa Düster
- St. Anna Kinderkrebsforschungs GmbH, 1090 Wien, Austria (R.L.)
| | | | | | - Ruth Ladenstein
- St. Anna Kinderkrebsforschungs GmbH, 1090 Wien, Austria (R.L.)
| | - Guenter Schreier
- Center for Health and Bioresources, AIT Austrian Institute of Technology, 8020 Graz, Austria (M.B.)
| |
Collapse
|
8
|
Forrest SJ, Gupta H, Ward A, Li YY, Doan D, Al-Ibraheemi A, Alexandrescu S, Bandopadhayay P, Shusterman S, Mullen EA, Collins NB, Chi SN, Wright KD, Kumari P, Mazor T, Ligon KL, Shivdasani P, Manam M, MacConaill LE, Ceca E, Benich SN, London WB, Schilsky RL, Bruinooge SS, Guidry Auvil JM, Cerami E, Rollins BJ, Meyerson ML, Lindeman NI, Johnson BE, Cherniack AD, Church AJ, Janeway KA. Molecular profiling of 888 pediatric tumors informs future precision trials and data-sharing initiatives in pediatric cancer. Nat Commun 2024; 15:5837. [PMID: 38992034 PMCID: PMC11239876 DOI: 10.1038/s41467-024-49944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
To inform clinical trial design and real-world precision pediatric oncology practice, we classified diagnoses, assessed the landscape of mutations, and identified genomic variants matching trials in a large unselected institutional cohort of solid tumors patients sequenced at Dana-Farber / Boston Children's Cancer and Blood Disorders Center. Tumors were sequenced with OncoPanel, a targeted next-generation DNA sequencing panel. Diagnoses were classified according to the International Classification of Diseases for Oncology (ICD-O-3.2). Over 6.5 years, 888 pediatric cancer patients with 95 distinct diagnoses had successful tumor sequencing. Overall, 33% (n = 289/888) of patients had at least 1 variant matching a precision oncology trial protocol, and 14% (41/289) were treated with molecularly targeted therapy. This study highlights opportunities to use genomic data from hospital-based sequencing performed either for research or clinical care to inform ongoing and future precision oncology clinical trials. Furthermore, the study results emphasize the importance of data sharing to define the genomic landscape and targeted treatment opportunities for the large group of rare pediatric cancers we encounter in clinical practice.
Collapse
Affiliation(s)
- Suzanne J Forrest
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Hersh Gupta
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Abigail Ward
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Yvonne Y Li
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Duong Doan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alyaa Al-Ibraheemi
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Sanda Alexandrescu
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Suzanne Shusterman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Natalie B Collins
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Susan N Chi
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Karen D Wright
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Tali Mazor
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keith L Ligon
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Evelina Ceca
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Sidney N Benich
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | | | | | | | - Barrett J Rollins
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew L Meyerson
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Bruce E Johnson
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew D Cherniack
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alanna J Church
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Friedman DN, Goodman PJ, Leisenring WM, Diller LR, Cohn SL, Howell RM, Smith SA, Tonorezos ES, Wolden SL, Neglia JP, Ness KK, Gibson TM, Nathan PC, Turcotte LM, Weil BR, Robison LL, Oeffinger KC, Armstrong GT, Sklar CA, Henderson TO. Impact of risk-based therapy on late morbidity and mortality in neuroblastoma survivors: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 2024; 116:885-894. [PMID: 38460547 PMCID: PMC11160496 DOI: 10.1093/jnci/djae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Early efforts at risk-adapted therapy for neuroblastoma are predicted to result in differential late effects; the magnitude of these differences has not been well described. METHODS Late mortality, subsequent malignant neoplasms (SMNs), and severe/life-threatening chronic health conditions (CHCs), graded according to CTCAE v4.03, were assessed among 5-year Childhood Cancer Survivor Study (CCSS) survivors of neuroblastoma diagnosed 1987-1999. Using age, stage at diagnosis, and treatment, survivors were classified into risk groups (low [n = 425]; intermediate [n = 252]; high [n = 245]). Standardized mortality ratios (SMRs) and standardized incidence ratios (SIRs) of SMNs were compared with matched population controls. Cox regression models estimated hazard ratios (HRs) and 95% confidence intervals for CHC compared with 1029 CCSS siblings. RESULTS Among survivors (49.8% male; median age = 21 years, range = 7-42; median follow-up = 19.3 years, range = 5-29.9), 80% with low-risk disease were treated with surgery alone, whereas 79.1% with high-risk disease received surgery, radiation, chemotherapy ± autologous stem cell transplant (ASCT). All-cause mortality was elevated across risk groups (SMRhigh = 27.7 [21.4-35.8]; SMRintermediate = 3.3 [1.7-6.5]; SMRlow = 2.8 [1.7-4.8]). SMN risk was increased among high- and intermediate-risk survivors (SIRhigh = 28.0 [18.5-42.3]; SIRintermediate = 3.7 [1.2-11.3]) but did not differ from the US population for survivors of low-risk disease. Compared with siblings, survivors had an increased risk of grade 3-5 CHCs, particularly among those with high-risk disease (HRhigh = 16.1 [11.2-23.2]; HRintermediate = 6.3 [3.8-10.5]; HRlow = 1.8 [1.1-3.1]). CONCLUSION Survivors of high-risk disease treated in the early days of risk stratification carry a markedly elevated burden of late recurrence, SMN, and organ-related multimorbidity, whereas survivors of low/intermediate-risk disease have a modest risk of late adverse outcomes.
Collapse
Affiliation(s)
- Danielle Novetsky Friedman
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Pamela J Goodman
- Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Wendy M Leisenring
- Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lisa R Diller
- Department of Pediatrics, The Dana-Farber Cancer Institute, Boston, MA, USA
| | - Susan L Cohn
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Rebecca M Howell
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | - Susan A Smith
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | - Emily S Tonorezos
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Suzanne L Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph P Neglia
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Todd M Gibson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Paul C Nathan
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lucie M Turcotte
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Brent R Weil
- Department of Pediatrics, The Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Surgery, Boston Children’s Hospital, Boston, MA, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kevin C Oeffinger
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Charles A Sklar
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Tara O Henderson
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Pomaville M, Chennakesavalu M, Wang P, Jiang Z, Sun HL, Ren P, Borchert R, Gupta V, Ye C, Ge R, Zhu Z, Brodnik M, Zhong Y, Moore K, Salwen H, George RE, Krajewska M, Chlenski A, Applebaum MA, He C, Cohn SL. Small-molecule inhibition of the METTL3/METTL14 complex suppresses neuroblastoma tumor growth and promotes differentiation. Cell Rep 2024; 43:114165. [PMID: 38691450 PMCID: PMC11181463 DOI: 10.1016/j.celrep.2024.114165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/10/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
The N6-methyladenosine (m6A) RNA modification is an important regulator of gene expression. m6A is deposited by a methyltransferase complex that includes methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14). High levels of METTL3/METTL14 drive the growth of many types of adult cancer, and METTL3/METTL14 inhibitors are emerging as new anticancer agents. However, little is known about the m6A epitranscriptome or the role of the METTL3/METTL14 complex in neuroblastoma, a common pediatric cancer. Here, we show that METTL3 knockdown or pharmacologic inhibition with the small molecule STM2457 leads to reduced neuroblastoma cell proliferation and increased differentiation. These changes in neuroblastoma phenotype are associated with decreased m6A deposition on transcripts involved in nervous system development and neuronal differentiation, with increased stability of target mRNAs. In preclinical studies, STM2457 treatment suppresses the growth of neuroblastoma tumors in vivo. Together, these results support the potential of METTL3/METTL14 complex inhibition as a therapeutic strategy against neuroblastoma.
Collapse
Affiliation(s)
- Monica Pomaville
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | | | - Pingluan Wang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Zhiwei Jiang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Hui-Lung Sun
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Peizhe Ren
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ryan Borchert
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Varsha Gupta
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Chang Ye
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ruiqi Ge
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Zhongyu Zhu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Mallory Brodnik
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Yuhao Zhong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Kelley Moore
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Helen Salwen
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Rani E George
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Malgorzata Krajewska
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Alexandre Chlenski
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Mark A Applebaum
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, Il 60637 USA
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Nakatani N, Win KHN, Mon CY, Fujikawa T, Uemura S, Saito A, Ishida T, Mori T, Hasegawa D, Kosaka Y, Inoue S, Nishimura A, Nino N, Tamura A, Yamamoto N, Nozu K, Nishimura N. Distinct Expression Profiles of Neuroblastoma-Associated mRNAs in Peripheral Blood and Bone Marrow of Non-High-Risk and High-Risk Neuroblastoma Patients. BIOLOGY 2024; 13:345. [PMID: 38785826 PMCID: PMC11117621 DOI: 10.3390/biology13050345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Non-high-risk (non-HR) neuroblastoma (NB) patients have excellent outcomes, with more than a 90% survival rate, whereas HR NB patients expect less than a 50% survival rate. Metastatic disease is the principal cause of death among both non-HR and HR NB patients. Previous studies have reported the significant but limited prognostic value of quantitative PCR (qPCR)-based assays, measuring overlapping but different sets of neuroblastoma-associated mRNAs (NB-mRNAs), to detect metastatic disease in both non-HR and HR patient samples. A droplet digital PCR (ddPCR)-based assay measuring seven NB-mRNAs (CRMP1, DBH, DDC, GAP43, ISL1, PHOX2B, and TH mRNAs) was recently developed and exhibited a better prognostic value for HR patient samples than qPCR-based assays. However, it remained to be tested on non-HR patient samples. In the present study, we employed the ddPCR-based assay to study peripheral blood (PB) and bone marrow (BM) samples collected at diagnosis from eight non-HR and eleven HR cases and characterized the expression profiles of NB-mRNAs. The most highly expressed NB-mRNAs in PB and BM differed between non-HR and HR cases, with the CRMP1 mRNA being predominant in non-HR cases and the GAP43 mRNA in HR cases. The levels of NB-mRNAs in PB and BM were 5 to 1000 times lower in non-HR cases than in HR cases. The PB to BM ratio of NB-mRNAs was 10 to 100 times higher in non-HR cases compared to HR cases. The present case series suggests that non-HR and HR NB patients have the distinct expression profiles of NB-mRNAs in their PB and BM.
Collapse
Affiliation(s)
- Naoko Nakatani
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Kaung Htet Nay Win
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe 654-0142, Japan; (K.H.N.W.); (C.Y.M.)
| | - Cho Yee Mon
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe 654-0142, Japan; (K.H.N.W.); (C.Y.M.)
| | - Tomoko Fujikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Suguru Uemura
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Atsuro Saito
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Toshiaki Ishida
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Takeshi Mori
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Daiichiro Hasegawa
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Yoshiyuki Kosaka
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Shotaro Inoue
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Akihiro Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Nanako Nino
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan; (S.U.); (A.S.); (T.I.); (T.M.); (D.H.); (Y.K.); (N.N.)
| | - Akihiro Tamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (N.N.); (T.F.); (S.I.); (A.N.); (A.T.); (N.Y.); (K.N.)
| | - Noriyuki Nishimura
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe 654-0142, Japan; (K.H.N.W.); (C.Y.M.)
| |
Collapse
|
12
|
MacDonald IR, Farhat Z, Amoako-Tuffor Y, Maianski I, Erker C, Romao R, Moineddin R, Mata-Mbemba D. MR Imaging of Pediatric Neuroblastoma: Is Gadolinium Enhancement Necessary for Evaluation of Image-Defined-Risk Factors? Can Assoc Radiol J 2024; 75:404-411. [PMID: 38146213 DOI: 10.1177/08465371231218240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
Background: Pre-treatment stratification and outcomes of neuroblastoma patients often depend on the assessment of image-defined risk factors (IDRFs) on MR Imaging, usually using Gadolinium-contrast materials which are cautioned in pediatrics. We aimed to address whether gadolinium contrast-enhanced sequences are necessary to identify the presence/absence of IDRFs. Methods: Patients with neuroblastoma with MR imaging were retrospectively identified from 2005 to 2021. Ninety confirmed IDRFs were evaluated in 23 patients. Corresponding MR studies were anonymized, randomized, and independently evaluated by 3 fellowship-trained pediatric radiologists. Each radiologist assessed the studies twice. At the first reading, all enhanced sequences were omitted, while in the second reading, the full study with enhanced sequences were included. Consensus reading was obtained among readers. Inter- and intra-rater agreements using Kappa statistics (κ) as well as the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of non-enhanced MR in assessing IDRFs with respect to enhanced MR were calculated. Results: There were substantial (ĸ: 0.64-0.73) intra-reader agreements, and moderate to substantial (ĸ: 0.57-0.62) inter-reader agreements among radiologists in identifying IDRFs using non-enhanced MR. Non-enhanced MR had a sensitivity of 87.8% (95% CI [79-94]), specificity of 93% (89-96), PPV of 82.3 (73-89), NPV of 95.4 (92-98), and accuracy of 91.6 (88-94) in identifying IDRFs. However, 5/23 patients (21.7%) had a change in staging with the inclusion of contrast sequences. Conclusion: Although contrast sequences have a role in IDRF assessment, the majority can be adequately assessed on MR without gadolinium-contrast enhancement. Validation in a larger cohort is an important next step.
Collapse
Affiliation(s)
- Ian R MacDonald
- Department of Diagnostic Imaging, IWK Health Centre and Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Ziad Farhat
- Department of Diagnostic Imaging, IWK Health Centre and Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Yaw Amoako-Tuffor
- Department of Diagnostic Imaging, IWK Health Centre and Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Irit Maianski
- Department of Diagnostic Imaging, IWK Health Centre and Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Craig Erker
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, IWK Health Centre and Dalhousie University, Halifax, NS, Canada
| | - Rodrigo Romao
- Department of Pediatric General Surgery and Urology, IWK Health Centre and Dalhousie University, Halifax, NS, Canada
| | - Rahim Moineddin
- Departments of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Daddy Mata-Mbemba
- Department of Diagnostic Imaging, IWK Health Centre and Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Wang Q, Fan W, Hao Z, Liang B, Fan M, Zhao Z, Li Z. REC8 regulates neuroblastoma cell proliferation, migration, invasion, and angiogenesis via STAT3/VEGF signaling. J Egypt Natl Canc Inst 2023; 35:41. [PMID: 38105365 DOI: 10.1186/s43046-023-00197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/28/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Neuroblastoma, one of the most prevalent childhood cancers, is often treated with surgery, radiation, and chemotherapy. However, prognosis and survival are still dismal for children with neuroblastoma at high risk. Consequently, it is vital to identify new and effective treatment targets. As a component of the meiotic cohesion complex, REC8 is involved in a wide range of malignancies. The current work assessed the impact of REC8 knockdown on SH-SY5Y and SK-N-AS neuroblastoma cells and delved into the molecular mechanism behind this effect. METHODS Knockdown of REC8 using the small interfering (si) RNA technology, and the results were verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. The Cell Counting Kit-8 (CCK-8) was used to examine cell proliferation, while flow cytometry was used to examine cell cycle progression and apoptosis. Analyses of angiogenesis included tube formation experiments. Transwell tests were used to examine cell migration and invasion. RESULTS The data showed that downregulation of the REC8 led to a substantial decrease in cell proliferation by stopping the cell cycle in the G1 phase. REC8 knockdown significantly reduced neuroblastoma cell proliferation, migration, invasion, angiogenesis, induced cell cycle arrest, and enhanced apoptosis. We also discovered that repressing REC8 expression in neuroblastoma cell lines SH-SY5Y and SK-N-AS reduced their ability to activate the STAT3/VEGF signaling pathway. CONCLUSIONS Neuroblastoma therapy may benefit from targeting REC8 and its downstream targets.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Wei Fan
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - ZengHui Hao
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Bingxue Liang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Meili Fan
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zijian Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
14
|
Chennakesavalu M, Pudela C, Applebaum MA, Lee SM, Che Y, Naranjo A, Park JR, Volchenboum SL, Henderson TO, Cohn SL, Desai AV. Persistence of Racial and Ethnic Disparities in Risk and Survival for Patients with Neuroblastoma over Two Decades. EJC PAEDIATRIC ONCOLOGY 2023; 2:100022. [PMID: 38213818 PMCID: PMC10783478 DOI: 10.1016/j.ejcped.2023.100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND Racial/ethnic survival disparities in neuroblastoma were first reported more than a decade ago. We sought to investigate if these disparities have persisted with current era therapy. METHODS Two patient cohorts were identified in the International Neuroblastoma Risk Group Data Commons (INRGdc) (Cohort 1: diagnosed 2001-2009, n=4359; Cohort 2: diagnosed 2010-2019, n=4891). Chi-squared tests were used to assess the relationship between race/ethnicity and clinical and biologic features. Survival was estimated by the Kaplan-Meier method. Cox proportional hazards regression analyses were performed to investigate the association between racial/ethnic groups and prognostic markers. RESULTS Significantly higher 5-year event-free survival (EFS) and overall survival (OS) were observed for Cohort 2 compared to Cohort 1 (P<0.001 and P<0.001, respectively). Compared to White patients, Black patients in both cohorts had a higher proportion of high-risk disease (Cohort 1: P<0.001; Cohort 2: P<0.001) and worse EFS (Cohort 1: P<0.001; Cohort 2 P<0.001) and OS (Cohort 1: P<0.001; Cohort 2: P<0.001). In Cohort 1, Native Americans also had a higher proportion of high-risk disease (P=0.03) and inferior EFS/OS. No significant survival disparities were observed for low- or intermediate-risk patients in either cohort or high-risk patients in Cohort 1. Hispanic patients with high-risk disease in Cohort 2 had significantly inferior OS (P=0.047). Significantly worse OS, but not EFS, (P=0.006 and P=0.02, respectively) was also observed among Black and Hispanic patients assigned to receive post-Consolidation dinutuximab on clinical trials (n=885). CONCLUSION Racial/ethnic survival disparities have persisted over time and were observed among high-risk patients assigned to receive post-Consolidation dinutuximab.
Collapse
Affiliation(s)
| | - Caileigh Pudela
- MedStar Georgetown University Hospital, Washington, D.C., USA
| | | | - Sang Mee Lee
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Yan Che
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Arlene Naranjo
- Children’s Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Julie R. Park
- St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | | | - Susan L. Cohn
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Ami V. Desai
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Yu Y, Zhang M, Yao X, Guan X, Jia C, Chu P, Zhang R, Yang Y, Jin Y, Wang H, Ni X, He L, Guo Y. Translational practice of fluorescence in situ hybridisation to identify neuroblastic tumours with TERT rearrangements. J Pathol Clin Res 2023; 9:475-487. [PMID: 37608330 PMCID: PMC10556277 DOI: 10.1002/cjp2.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/24/2023]
Abstract
Recently, telomerase reverse transcriptase (TERT) gene rearrangements have been identified in neuroblastoma (NB), the typical pathological type of neuroblastic tumours (NTs); however, the prevalence of TERT rearrangements in other types of NT remains unknown. This study aimed to develop a practical method for detecting TERT defects and to evaluate the clinical relevance of TERT rearrangements as a biomarker for NT prognosis. A TERT break-apart probe for fluorescence in situ hybridisation (FISH) was designed, optimised, and applied to assess the genomic status of TERT in Chinese children with NTs at the Beijing Children's Hospital from 2016 to 2019. Clinical, histological, and genetic characteristics of TERT-rearranged NTs were further addressed. Genomic TERT rearrangements could be effectively detected by FISH and were mutually exclusive with MYCN amplification. TERT rearrangements were identified in 6.0% (38/633) of NTs overall, but 12.4% (31/250) in high-risk patients. TERT rearrangements identified a subtype of aggressive NTs with the characteristics of Stage 3/4, high-risk category, over 18 months old, and presenting all histological subtypes of NB and ganglioneuroblastoma nodular. Moreover, TERT rearrangements were significantly associated with elevated TERT expression levels and decreased survival chances. Multivariable analysis confirmed that it was an independent prognostic marker for NTs. FISH is an easily applicable method for evaluating TERT defects, which define a subgroup of NTs with unfavourable prognosis. TERT rearrangements would contribute to characterising NT molecular signatures in clinical practice.
Collapse
Affiliation(s)
- Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in ChildrenBeijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Meng Zhang
- Department of Pathology, Beijing Children's HospitalCapital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Xingfeng Yao
- Department of Pathology, Beijing Children's HospitalCapital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Xiaoxing Guan
- Department of Pathology, Beijing Children's HospitalCapital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Chao Jia
- Department of Pathology, Beijing Children's HospitalCapital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in ChildrenBeijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Ruqian Zhang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in ChildrenBeijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in ChildrenBeijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in ChildrenBeijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's HospitalCapital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in ChildrenBeijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH)BeijingPR China
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's HospitalCapital Medical University, National Center for Children's Health (NCCH)BeijingPR China
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's HospitalCapital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Lejian He
- Department of Pathology, Beijing Children's HospitalCapital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in ChildrenBeijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH)BeijingPR China
| |
Collapse
|
16
|
Cheng H, Zhang L, Yang S, Ren Q, Chang S, Jin Y, Mou W, Qin H, Yang W, Zhang X, Zhang W, Wang H. Integration of clinical characteristics and molecular signatures of the tumor microenvironment to predict the prognosis of neuroblastoma. J Mol Med (Berl) 2023; 101:1421-1436. [PMID: 37712965 DOI: 10.1007/s00109-023-02372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
This study aimed to analyze the clinical characteristics, cell types, and molecular characteristics of the tumor microenvironment to better predict the prognosis of neuroblastoma (NB). The gene expression data and corresponding clinical information of 498 NB patients were obtained from the Gene Expression Omnibus (GEO: GSE62564) and ArrayExpress (accession: E-MTAB-8248). The relative cell abundances were estimated using single-sample gene set enrichment analysis (ssGSEA) with the R gene set variation analysis (GSVA) package. We performed Cox regression analyses to identify marker genes indicating cell subsets and combined these with prognostically relevant clinical factors to develop a new prognostic model. Data from the E-MTAB-8248 cohort verified the predictive accuracy of the prognostic model. Single-cell RNA-seq data were analyzed by using the R Seurat package. Multivariate survival analysis for each gene, using clinical characteristics as cofactors, identified 34 prognostic genes that showed a significant correlation with both event-free survival (EFS) and overall survival (OS) (log-rank test, P value < 0.05). The pathway enrichment analysis revealed that these prognostic genes were highly enriched in the marker genes of NB cells with mesenchymal features and protein translation. Ultimately, USP39, RPL8, IL1RAPL1, MAST4, CSRP2, ATP5E, International Neuroblastoma Staging System (INSS) stage, age, and MYCN status were selected to build an optimized Cox model for NB risk stratification. These samples were divided into two groups using the median of the risk score as a cutoff. The prognosis of samples in the poor prognosis group (PP) was significantly worse than that of samples in the good prognosis group (GP) (log-rank test, P value < 0.0001, median EFS: 640.5 vs. 2247 days, median OS: 1279.5 vs. 2519 days). The risk model was also regarded as a prognostic indicator independent of MYCN status, age, and stage. Finally, through scRNA-seq data, we found that as an important prognostic marker, USP39 might participate in the regulation of RNA splicing in NB. Our study established a multivariate Cox model based on gene signatures and clinical characteristics to better predict the prognosis of NB and revealed that mesenchymal signature genes of NB cells, especially USP39, were more abundant in patients with a poor prognosis than in those with a good prognosis. KEY MESSAGES: Our study established a multivariate Cox model based on gene signatures and clinical characteristics to better predict the prognosis of NB and revealed that mesenchymal signature genes of NB cells, especially USP39, were more abundant in patients with a poor prognosis than in those with a good prognosis. USP39, RPL8, IL1RAPL1, MAST4, CSRP2, ATP5E, International Neuroblastoma Staging System (INSS) stage, age, and MYCN status were selected to build an optimized Cox model for NB risk stratification. These samples were divided into two groups using the median of the risk score as a cutoff. The prognosis of samples in the poor prognosis group (PP) was significantly worse than that of samples in the good prognosis group (GP). Finally, through scRNA-seq data, we found that as an important prognostic marker, USP39 might participate in the regulation of RNA splicing in NB.
Collapse
Affiliation(s)
- Haiyan Cheng
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Li Zhang
- Shanghai Institute of Precision Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shen Yang
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Qinghua Ren
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Saishuo Chang
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenjun Mou
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hong Qin
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Wei Yang
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Xianwei Zhang
- Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant Tumors, Department of Pediatric Oncology Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Wancun Zhang
- Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant Tumors, Department of Pediatric Oncology Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Huanmin Wang
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China.
| |
Collapse
|
17
|
Nishimura N, Ishida T, Yokota I, Matsumoto K, Shichino H, Fujisaki H, Sarashina T, Kamijo T, Takimoto T, Iehara T, Tajiri T. Minimal Residual Disease Detected by the 7NB-mRNAs ddPCR Assay Is Associated with Disease Progression in High-Risk Neuroblastoma Patients: A Prospective Multicenter Observational Study in Japan. BIOLOGY 2023; 12:1350. [PMID: 37887060 PMCID: PMC10604505 DOI: 10.3390/biology12101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
High-risk neuroblastoma (HR-NB) patients remain far from obtaining optimal outcomes, with more than 50% relapse/regrowth rate despite current intensive multimodal therapy. This originated from the activation/proliferation of chemoresistant minimal residual disease (MRD). MRD with a significant prognostic was reported by several quantitative PCR (qPCR) or droplet digital PCR (ddPCR) assays quantitating different sets of NB-associated mRNAs (NB-mRNAs). The 7NB-mRNAs ddPCR assay quantitating CRMP1, DBH, DDC, GAP43, ISL1, PHOX2B, and TH mRNAs was reported to outperform other qPCR assays by a retrospective in-house observational study. In the present study, the Japan Children's Cancer Group (JCCG) Neuroblastoma Committee conducted a prospective multicenter observational study aimed at evaluating a prognostic value of MRD in bone marrow (BM-MRD) and peripheral blood (PB-MRD) detected by 7NB-mRNAs ddPCR assay. Between August 2018 and August 2022, 7 HR-NB patients who registered for JCCG clinical trials (JN-H-11 and JN-H-15) were enrolled. A total of 19 BM and 19 PB samples were collected, and 4/15 BM and 4/15 PB samples were classified as progressive disease (PD)/non-PD samples. BM-MRD and PB-MRD estimated area under curve (AUC) of 0.767 and 0.800 with a significant accuracy (AUC > 0.7). The present study validated a prognostic value of BM-MRD obtained by a previous study (AUC 0.723) and revealed the significant accuracy of PB-MRD as well as BM-MRD.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Department of Public Health, Graduate School of Health Science, Kobe University, Kobe 654-0142, Japan
| | - Toshiaki Ishida
- Department of Hematology/Oncology, Kobe Children’s Hospital, Kobe 650-0047, Japan;
| | - Isao Yokota
- Department of Biostatistics, Faculty of Medicine, Hokkaido University, Sapporo 060-0808, Japan;
| | - Kimikazu Matsumoto
- Children’s Cancer Center, National Center for Child Health and Development, Tokyo 157-8535, Japan;
| | - Hiroyuki Shichino
- Department of Pediatrics, National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Hiroyuki Fujisaki
- Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka 534-0021, Japan;
| | - Takeo Sarashina
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, 078-8510, Japan;
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806, Japan;
| | - Tetsuya Takimoto
- Department of Childhood Cancer Data Management, National Center for Child Health and Development, Tokyo 157-8535, Japan;
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Faculty of Medical Sciences, Kyushu University of Medicine, Fukuoka 812-8582, Japan;
| | | |
Collapse
|
18
|
Patiño-Morales CC, Jaime-Cruz R, Ramírez-Fuentes TC, Villavicencio-Guzmán L, Salazar-García M. Technical Implications of the Chicken Embryo Chorioallantoic Membrane Assay to Elucidate Neuroblastoma Biology. Int J Mol Sci 2023; 24:14744. [PMID: 37834193 PMCID: PMC10572838 DOI: 10.3390/ijms241914744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The chorioallantoic membrane (CAM) can be used as a valuable research tool to examine tumors. The CAM can be used to investigate processes such as migration, invasion, and angiogenesis and to assess novel antitumor drugs. The CAM can be used to establish tumors in a straightforward, rapid, and cost-effective manner via xenotransplantation of cells or tumor tissues with reproducible results; furthermore, the use of the CAM adheres to the three "R" principle, i.e., replace, reduce, and refine. To achieve successful tumor establishment and survival, several technical aspects should be taken into consideration. The complexity and heterogeneity of diseases including neuroblastoma and cancers in general and their impact on human health highlight the importance of preclinical models that help us describe tumor-specific biological processes. These models will not only help in understanding tumor biology, but also allow clinicians to explore therapeutic alternatives that will improve current treatment strategies. In this review, we summarize the technical characteristics as well as the main findings regarding the use of this model to study neuroblastoma for angiogenesis, metastasis, drug sensitivity, and drug resistance.
Collapse
Affiliation(s)
- Carlos César Patiño-Morales
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Cell Biology Laboratory, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico
| | - Ricardo Jaime-Cruz
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Department of Health Sciences, Universidad Tecnológica de México-UNITEC México-Campus Sur, Mexico City 09810, Mexico
| | - Tania Cristina Ramírez-Fuentes
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Section of Graduate Studies and Research, School of Medicine of the National Polytechnic Institute, Mexico City 11340, Mexico
| | - Laura Villavicencio-Guzmán
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
| | - Marcela Salazar-García
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
| |
Collapse
|
19
|
Yuan Y, Alzrigat M, Rodriguez-Garcia A, Wang X, Bexelius TS, Johnsen JI, Arsenian-Henriksson M, Liaño-Pons J, Bedoya-Reina OC. Target Genes of c-MYC and MYCN with Prognostic Power in Neuroblastoma Exhibit Different Expressions during Sympathoadrenal Development. Cancers (Basel) 2023; 15:4599. [PMID: 37760568 PMCID: PMC10527308 DOI: 10.3390/cancers15184599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Deregulation of the MYC family of transcription factors c-MYC (encoded by MYC), MYCN, and MYCL is prevalent in most human cancers, with an impact on tumor initiation and progression, as well as response to therapy. In neuroblastoma (NB), amplification of the MYCN oncogene and over-expression of MYC characterize approximately 40% and 10% of all high-risk NB cases, respectively. However, the mechanism and stage of neural crest development in which MYCN and c-MYC contribute to the onset and/or progression of NB are not yet fully understood. Here, we hypothesized that subtle differences in the expression of MYCN and/or c-MYC targets could more accurately stratify NB patients in different risk groups rather than using the expression of either MYC gene alone. We employed an integrative approach using the transcriptome of 498 NB patients from the SEQC cohort and previously defined c-MYC and MYCN target genes to model a multigene transcriptional risk score. Our findings demonstrate that defined sets of c-MYC and MYCN targets with significant prognostic value, effectively stratify NB patients into different groups with varying overall survival probabilities. In particular, patients exhibiting a high-risk signature score present unfavorable clinical parameters, including increased clinical risk, higher INSS stage, MYCN amplification, and disease progression. Notably, target genes with prognostic value differ between c-MYC and MYCN, exhibiting distinct expression patterns in the developing sympathoadrenal system. Genes associated with poor outcomes are mainly found in sympathoblasts rather than in chromaffin cells during the sympathoadrenal development.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Aida Rodriguez-Garcia
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Xueyao Wang
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Tomas Sjöberg Bexelius
- Paediatric Oncology Unit, Astrid Lindgren’s Children Hospital, SE-171 64 Solna, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - John Inge Johnsen
- Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Oscar C. Bedoya-Reina
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| |
Collapse
|
20
|
Bagatell R, DuBois SG, Naranjo A, Belle J, Goldsmith KC, Park JR, Irwin MS. Children's Oncology Group's 2023 blueprint for research: Neuroblastoma. Pediatr Blood Cancer 2023; 70 Suppl 6:e30572. [PMID: 37458162 PMCID: PMC10587593 DOI: 10.1002/pbc.30572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor in children and is known for its clinical heterogeneity. A greater understanding of the biology of this disease has led to both improved risk stratification and new approaches to therapy. Outcomes for children with low and intermediate risk disease are excellent overall, and efforts to decrease therapy for such patients have been largely successful. Although survival has improved over time for patients with high-risk disease and treatments evaluated in the relapse setting are now being moved into earlier phases of treatment, much work remains to improve survival and decrease therapy-related toxicities. Studies of highly annotated biobanked samples continue to lead to important insights regarding neuroblastoma biology. Such studies, along with correlative biology studies incorporated into therapeutic trials, are expected to continue to provide insights that lead to new and more effective therapies. A focus on translational science is accompanied by an emphasis on new agent development, optimized risk stratification, and international collaboration to address questions relevant to molecularly defined subsets of patients. In addition, the COG Neuroblastoma Committee is committed to addressing the patient/family experience, mitigating late effects of therapy, and studying social determinants of health in patients with neuroblastoma.
Collapse
Affiliation(s)
- Rochelle Bagatell
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Steven G DuBois
- Department of Pediatrics, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Arlene Naranjo
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Jen Belle
- Children's Oncology Group, Monrovia, California, USA
| | - Kelly C Goldsmith
- Department of Pediatrics, Children's Healthcare of Atlanta Inc Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA
| | - Julie R Park
- Department of Oncology, St Jude Children's Research Hospital Department of Oncology, Memphis, Tennessee, USA
| | - Meredith S Irwin
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
21
|
Wieczorek A, Żebrowska U, Ussowicz M, Sokół A, Stypińska M, Dembowska-Bagińska B, Pawińska-Wąsikowska K, Balwierz W. Dinutuximab Beta Maintenance Therapy in Patients with High-Risk Neuroblastoma in First-Line and Refractory/Relapsed Settings-Real-World Data. J Clin Med 2023; 12:5252. [PMID: 37629294 PMCID: PMC10455178 DOI: 10.3390/jcm12165252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Dinutuximab beta is approved for the maintenance treatment of patients with high-risk neuroblastoma (HR-NB), including patients with relapsed/refractory (R/R) disease. However, the data on its use in real-world clinical practice is limited. We retrospectively reviewed the clinical records of 54 patients with HR-NB who received maintenance therapy with dinutuximab beta in first-line (37 patients) or R/R settings (17 patients) at three centers in Poland. Of the 37 patients who received first-line treatment, twenty-eight had a complete response, two had a partial response, three had progressive disease, and four relapsed at the end of treatment. The median overall survival (OS) was 24.37 months, and the three-year progression-free survival (PFS) and OS were 0.63 and 0.80, respectively. Of the 17 patients in the R/R group, 11 had a complete response, two had a partial response, one had stable disease, and three had progressive disease or relapsed at the end of treatment. The median OS was 33.1 months and the three-year PFS and OS were 0.75 and 0.86, respectively. Treatment was generally well tolerated, including in patients with co-morbidities and those who had experienced toxicities with previous therapies. These findings demonstrate that the use of dinutuximab beta is feasible and beneficial as a first-line or R/R treatment in routine clinical practice in Poland.
Collapse
Affiliation(s)
- Aleksandra Wieczorek
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland
| | - Urszula Żebrowska
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland
| | - Marek Ussowicz
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Agnieszka Sokół
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Marzena Stypińska
- Department of Oncology, Children Memorial Health Institute, 04-730 Warsaw, Poland
| | | | - Katarzyna Pawińska-Wąsikowska
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland
| |
Collapse
|
22
|
Gupta M, Kannappan S, Jain M, Douglass D, Shah R, Bose P, Narendran A. Development and validation of a 21-gene prognostic signature in neuroblastoma. Sci Rep 2023; 13:12526. [PMID: 37532697 PMCID: PMC10397261 DOI: 10.1038/s41598-023-37714-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Survival outcomes for patients with neuroblastoma vary markedly and reliable prognostic markers and risk stratification tools are lacking. We sought to identify and validate a transcriptomic signature capable of predicting risk of mortality in patients with neuroblastoma. The TARGET NBL dataset (n = 243) was used to develop the model and two independent cohorts, E-MTAB-179 (n = 478) and GSE85047 (n = 240) were used as validation sets. EFS was the primary outcome and OS was the secondary outcome of interest for all analysis. We identified a 21-gene signature capable of stratifying neuroblastoma patients into high and low risk groups in the E-MTAB-179 (HR 5.87 [3.83-9.01], p < 0.0001, 5 year AUC 0.827) and GSE85047 (HR 3.74 [2.36-5.92], p < 0.0001, 5 year AUC 0.815) validation cohorts. Moreover, the signature remained independent of known clinicopathological variables, and remained prognostic within clinically important subgroups. Further, the signature was effectively incorporated into a risk model with clinicopathological variables to improve prognostic performance across validation cohorts (Pooled Validation HR 6.93 [4.89-9.83], p < 0.0001, 5 year AUC 0.839). Similar prognostic utility was also demonstrated with OS. The identified signature is a robust independent predictor of EFS and OS outcomes in neuroblastoma patients and can be combined with clinically utilized clinicopathological variables to improve prognostic performance.
Collapse
Affiliation(s)
- Mehul Gupta
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Sunand Kannappan
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mohit Jain
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - David Douglass
- Department of Pediatrics, Hematology/Oncology Section, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Ravi Shah
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Pinaki Bose
- Departments of Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Cumming School of Medicine, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Aru Narendran
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Departments of Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Cumming School of Medicine, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
23
|
Lode HN, Ladenstein R, Troschke-Meurer S, Struppe L, Siebert N, Zumpe M, Ehlert K, Huber S, Glogova E, Hundsdoerfer P, Eggert A, Zaniewska-Tekieli A, Balwierz W, Wieczorek A. Effect and Tolerance of N5 and N6 Chemotherapy Cycles in Combination with Dinutuximab Beta in Relapsed High-Risk Neuroblastoma Patients Who Failed at Least One Second-Line Therapy. Cancers (Basel) 2023; 15:3364. [PMID: 37444475 DOI: 10.3390/cancers15133364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The anti-disialoganglioside (GD2) monoclonal antibody dinutuximab beta is approved for the maintenance treatment of high-risk neuroblastoma. Dinutuximab beta combined with different chemotherapy regimens is being investigated in various clinical settings. We conducted a retrospective clinical chart review of 25 patients with relapsed/refractory neuroblastoma who had failed ≥1 second-line therapy and received compassionate use treatment with dinutuximab beta long-term infusion combined with the induction chemotherapy regimens N5 (cisplatin, etoposide, vindesine) and N6 (vincristine, dacarbazine, ifosfamide, doxorubicin) recommended by the German Pediatric Oncology and Hematology Group [GPOH] guidelines. The treatment did not result in any unexpected severe toxicities or in any major treatment delays. Grade 3/4 pain was reported by 4/25 patients in cycle 1, decreasing to 0/9 patients in cycles 3 and 4. The median follow-up was 0.6 years. The best response in this group was 48% (12/25 patients), which included three patients with minor responses. At 1 year, the estimated event-free survival was 27% (95% confidence interval [CI] 8-47) and overall survival was 44% (95% CI 24-65). Combining long-term infusion of dinutuximab beta with N5 and N6 chemotherapy demonstrated an acceptable safety profile and encouraging objective response rates in heavily pretreated patients with high-risk neuroblastoma, warranting further evaluation in clinical trials.
Collapse
Affiliation(s)
- Holger N Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Ruth Ladenstein
- Department of Paediatrics, St. Anna Children's Hospital, Medical University of Vienna, 1090 Vienna, Austria
- Department for Studies and Statistics and Integrated Research and Project, Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung GmbH, 1090 Vienna, Austria
| | - Sascha Troschke-Meurer
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Linda Struppe
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Maxi Zumpe
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Karoline Ehlert
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stefanie Huber
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Evgenia Glogova
- Department of Paediatrics, St. Anna Children's Hospital, Medical University of Vienna, 1090 Vienna, Austria
- Department for Studies and Statistics and Integrated Research and Project, Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung GmbH, 1090 Vienna, Austria
| | | | - Angelika Eggert
- Clinic for Pediatric Hematology and Oncology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Anna Zaniewska-Tekieli
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Aleksandra Wieczorek
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 31-008 Krakow, Poland
| |
Collapse
|
24
|
Bender HG, Irwin MS, Hogarty MD, Castleberry R, Maris JM, Kao PC, Zhang FF, Naranjo A, Cohn SL, London WB. Survival of Patients With Neuroblastoma After Assignment to Reduced Therapy Because of the 12- to 18-Month Change in Age Cutoff in Children's Oncology Group Risk Stratification. J Clin Oncol 2023; 41:3149-3159. [PMID: 37098238 PMCID: PMC10256433 DOI: 10.1200/jco.22.01946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 04/27/2023] Open
Abstract
PURPOSE In 2006, Children's Oncology Group (COG) reclassified subgroups of toddlers diagnosed with neuroblastoma from high-risk to intermediate-risk, when the age cutoff for high-risk assignment was raised from 365 days (12 months) to 547 days (18 months). The primary aim of this retrospective study was to determine if excellent outcome was maintained after assigned reduction of therapy. PATIENTS AND METHODS Children <3 years old at diagnosis, enrolled on a COG biology study from 1990 to 2018, were eligible (n = 9,189). Assigned therapy was reduced for two cohorts of interest on the basis of the age cutoff change: 365-546 days old with International Neuroblastoma Staging System (INSS) stage 4, MYCN not amplified (MYCN-NA), favorable International Neuroblastoma Pathology Classification (INPC), hyperdiploid tumors (12-18mo/Stage4/FavBiology), and 365-546 days old with INSS stage 3, MYCN-NA, and unfavorable INPC tumors (12-18mo/Stage3/MYCN-NA/Unfav). Log-rank tests compared event-free survival (EFS) and overall survival (OS) curves. RESULTS For 12-18mo/Stage4/FavBiology, 5-year EFS/OS (± SE) before (≤2006; n = 40) versus after (>2006; n = 55) assigned reduction in therapy was similar: 89% ± 5.1%/89% ± 5.1% versus 87% ± 4.6%/94% ± 3.2% (P = .7; P = .4, respectively). For 12-18mo/Stage3/MYCN-NA/Unfav, the 5-year EFS and OS were both 100%, before (n = 6) and after (n = 4) 2006. The 12-18mo/Stage4/FavBiology plus 12-18mo/Stage3/MYCN-NA/Unfav classified as high-risk ≤2006 had an EFS/OS of 91% ± 4.4%/91% ± 4.5% versus 38% ± 1.3%/43% ± 1.3% for all other high-risk patients <3 years old (P < .0001; P < .0001, respectively). The 12-18mo/Stage4/FavBiology plus 12-18mo/Stage3/MYCN-NA/Unfav classified as intermediate-risk >2006 had an EFS/OS of 88% ± 4.3%/95% ± 2.9% versus 88% ± 0.9%/95% ± 0.6% for all other intermediate-risk patients <3 years old (P = .87; P = .85, respectively). CONCLUSION Excellent outcome was maintained among subsets of toddlers with neuroblastoma assigned to reduced treatment after reclassification of risk group from high to intermediate on the basis of new age cutoffs. Importantly, as documented in prior trials, intermediate-risk therapy is not associated with the degree of acute toxicity and late effects commonly observed with high-risk regimens.
Collapse
Affiliation(s)
- Hannah G. Bender
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Meredith S. Irwin
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, ON, Canada
| | - Michael D. Hogarty
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - John M. Maris
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Pei-Chi Kao
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Fan F. Zhang
- Department of Biostatistics, Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, FL
| | - Arlene Naranjo
- Department of Biostatistics, Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, FL
| | - Susan L. Cohn
- Department of Pediatrics and Comer Children's Hospital, University of Chicago, Chicago, IL
| | - Wendy B. London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Desai AV, Elmuti L, Cahaney C, De Guzman RM, Streby KA, Cohn SL. Multimodality treatment for recurrent neuroblastoma in the central nervous system. Pediatr Blood Cancer 2023; 70:e30227. [PMID: 36720647 DOI: 10.1002/pbc.30227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
Survival for patients with recurrent central nervous system (CNS) neuroblastoma remains poor. A single-institutional study demonstrated the potential of multimodality therapy, including compartmental intrathecal radioimmunotherapy (cRIT) with 131 I-3F8 or 131 I-8H9 to increase the survival of neuroblastoma patients with CNS relapse. However, not all patients are able to receive this therapy. We report three patients with CNS neuroblastoma who remain disease-free 3-9 years after receiving multimodality treatment without cRIT. Additional studies to identify patients most likely to benefit from cRIT are warranted.
Collapse
Affiliation(s)
- Ami V Desai
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Lena Elmuti
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Christine Cahaney
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | | | - Keri A Streby
- Department of Pediatrics, The Ohio State University/Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
The RUNX Family Defines Trk Phenotype and Aggressiveness of Human Neuroblastoma through Regulation of p53 and MYCN. Cells 2023; 12:cells12040544. [PMID: 36831211 PMCID: PMC9954111 DOI: 10.3390/cells12040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The Runt-related transcription factor (RUNX) family, which is essential for the differentiation of cells of neural crest origin, also plays a potential role in neuroblastoma tumorigenesis. Consecutive studies in various tumor types have demonstrated that the RUNX family can play either pro-tumorigenic or anti-tumorigenic roles in a context-dependent manner, including in response to chemotherapeutic agents. However, in primary neuroblastomas, RUNX3 acts as a tumor-suppressor, whereas RUNX1 bifunctionally regulates cell proliferation according to the characterized genetic and epigenetic backgrounds, including MYCN oncogenesis. In this review, we first highlight the current knowledge regarding the mechanism through which the RUNX family regulates the neurotrophin receptors known as the tropomyosin-related kinase (Trk) family, which are significantly associated with neuroblastoma aggressiveness. We then focus on the possible involvement of the RUNX family in functional alterations of the p53 family members that execute either tumor-suppressive or dominant-negative functions in neuroblastoma tumorigenesis. By examining the tripartite relationship between the RUNX, Trk, and p53 families, in addition to the oncogene MYCN, we endeavor to elucidate the possible contribution of the RUNX family to neuroblastoma tumorigenesis for a better understanding of potential future molecular-based therapies.
Collapse
|
27
|
Wieczorek A, Zaniewska-Tekieli A, Ehlert K, Pawinska-Wasikowska K, Balwierz W, Lode H. Dinutuximab beta combined with chemotherapy in patients with relapsed or refractory neuroblastoma. Front Oncol 2023; 13:1082771. [PMID: 36816982 PMCID: PMC9936065 DOI: 10.3389/fonc.2023.1082771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Prognosis in children with refractory and relapsed high-risk neuroblastoma is poor. Only a minority of patients obtain remission when treated with second-line chemotherapy regimens. Chemotherapy combined with anti-GD2 antibodies has previously been shown to increase response and survival rates. We retrospectively analyzed a cohort of 25 patients with relapsed or refractory high-risk neuroblastoma who were treated with irinotecan/temozolomide chemotherapy in combination with the anti-GD2 antibody dinutuximab beta. The therapy resulted in an objective response rate of 64%, with 32% of patients achieving a complete response. Response to treatment was observed in patients with refractory disease (n=5) and those with first (n=12) or consecutive (n=8) relapses, including patients with progressing disease. In four patients, best response was achieved after more than 5 cycles, suggesting that some patients may benefit from prolonged chemotherapy and dinutuximab beta treatment. Fourteen of our 25 patients had previously received dinutuximab beta, four of whom achieved complete response and six partial response (objective response rate 71%). The therapy was well tolerated, even in heavily pre-treated patients and those who had previously received dinutuximab beta treatment. Toxicities were comparable to those previously reported for the individual therapies, and no discontinuations due to toxicities occurred. Combination of chemotherapy with dinutuximab beta is a promising treatment option for patients with relapsed or refractory high-risk neuroblastoma and should be further explored in clinical studies.
Collapse
Affiliation(s)
- Aleksandra Wieczorek
- Pediatric Oncology and Hematology, Jagiellonian University Medical College, Krakow, Poland
- Pediatric Oncology and Hematology, University Children's Hospital of Krakow, Krakow, Poland
| | - Anna Zaniewska-Tekieli
- Pediatric Oncology and Hematology, University Children's Hospital of Krakow, Krakow, Poland
| | - Karoline Ehlert
- Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Katarzyna Pawinska-Wasikowska
- Pediatric Oncology and Hematology, Jagiellonian University Medical College, Krakow, Poland
- Pediatric Oncology and Hematology, University Children's Hospital of Krakow, Krakow, Poland
| | - Walentyna Balwierz
- Pediatric Oncology and Hematology, Jagiellonian University Medical College, Krakow, Poland
- Pediatric Oncology and Hematology, University Children's Hospital of Krakow, Krakow, Poland
| | - Holger Lode
- Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
28
|
A nomogram for the preoperative estimation of neuroblastoma risk despite inadequate biopsy information. Pediatr Surg Int 2023; 39:98. [PMID: 36725741 DOI: 10.1007/s00383-023-05370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE If the preoperative pathological information is inadequate, a risk classification may not be able to be determined for some patients with neuroblastoma. Our objectives were to include imaging factors, serum biomarkers, and demographic factors in a nomogram to distinguish high-risk patients before surgical resection based on the COG classification. METHOD A total of 106 patients were included in the study. Of these, patients with clinicopathologically confirmed neuroblastoma at Tianjin Children's Hospital from January 2013 to November 2021 formed the training cohort (n = 82) for nomogram development, and those patients from January 2010 to December 2013 formed the validation cohort (n = 24) to confirm the model's performance. RESULT On multivariate analysis of the primary cohort, independent factors for high risk were the presence of distant metastasis (p = 0.004), lactate dehydrogenase (LDH) (p = 0.009), and tumor volume (p = 0.033), which were all selected into the nomogram. The calibration curve for probability showed good agreement between prediction by nomogram and actual observation. The C-index of the nomogram was 0.95 95% [0.916-0.99]. Application of the nomogram in the validation cohort still gave good discrimination and good calibration. CONCLUSION Three independent factors including the presence of distant metastasis, lactate dehydrogenase (LDH), and tumor volume are associated with high-risk neuroblastoma and selected into the nomogram. The novel nomogram has the flexibility to apply a clinically suitable cutoff to identify high-risk neuroblastoma patients despite inadequate preoperative pathological information. The nomogram can allow these patients to be offered suitable induction chemotherapy regimens and surgical plans. LEVELS OF EVIDENCE Level III.
Collapse
|
29
|
Horwacik I. The Extracellular Matrix and Neuroblastoma Cell Communication-A Complex Interplay and Its Therapeutic Implications. Cells 2022; 11:cells11193172. [PMID: 36231134 PMCID: PMC9564247 DOI: 10.3390/cells11193172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric neuroendocrine neoplasm. It arises from the sympatho-adrenal lineage of neural-crest-derived multipotent progenitor cells that fail to differentiate. NB is the most common extracranial tumor in children, and it manifests undisputed heterogeneity. Unsatisfactory outcomes of high-risk (HR) NB patients call for more research to further inter-relate treatment and molecular features of the disease. In this regard, it is well established that in the tumor microenvironment (TME), malignant cells are engaged in complex and dynamic interactions with the extracellular matrix (ECM) and stromal cells. The ECM can be a source of both pro- and anti-tumorigenic factors to regulate tumor cell fate, such as survival, proliferation, and resistance to therapy. Moreover, the ECM composition, organization, and resulting signaling networks are vastly remodeled during tumor progression and metastasis. This review mainly focuses on the molecular mechanisms and effects of interactions of selected ECM components with their receptors on neuroblastoma cells. Additionally, it describes roles of enzymes modifying and degrading ECM in NB. Finally, the article gives examples on how the knowledge is exploited for prognosis and to yield new treatment options for NB patients.
Collapse
Affiliation(s)
- Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
30
|
Nino N, Ishida T, Nakatani N, Lin KS, Win KHN, Mon CY, Nishimura A, Inoue S, Tamura A, Yamamoto N, Uemura S, Saito A, Mori T, Hasegawa D, Kosaka Y, Nozu K, Nishimura N. Minimal residual disease detected by droplet digital PCR in peripheral blood stem cell grafts has a prognostic impact on high-risk neuroblastoma patients. Heliyon 2022; 8:e10978. [PMID: 36276741 PMCID: PMC9578974 DOI: 10.1016/j.heliyon.2022.e10978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
More than half of high-risk neuroblastoma (NB) patients have experienced relapse due to the activation of chemoresistant minimal residual disease (MRD) even though they are treated by high-dose chemotherapy with autologous peripheral blood stem cell (PBSC) transplantation. Although MRD in high-risk NB patients can be evaluated by quantitative PCR with several sets of neuroblastoma-associated mRNAs (NB-mRNAs), the prognostic significance of MRD in PBSC grafts (PBSC-MRD) is unclear. In the present study, we collected 20 PBSC grafts from 20 high-risk NB patients and evaluated PBSC-MRD detected by droplet digital PCR (ddPCR) with 7NB-mRNAs (CRMP1, DBH, DDC, GAP43, ISL1, PHOX2B, and TH mRNA). PBSC-MRD in 11 relapsed patients was significantly higher than that in 9 non-relapsed patients. Patients with a higher PBSC-MRD had a lower 3-year event-free survival (P = 0.0148). The present study suggests that PBSC-MRD detected by ddPCR with 7NB-mRNAs has a prognostic impact on high-risk NB patients.
Collapse
Affiliation(s)
- Nanako Nino
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Ishida
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Naoko Nakatani
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyaw San Lin
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kaung Htet Nay Win
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Cho Yee Mon
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Akihiro Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shotaro Inoue
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Tamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Suguru Uemura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Atsuro Saito
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Takeshi Mori
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe, Japan,Corresponding author.
| |
Collapse
|
31
|
Yu EY, Cheung NKV, Lue NF. Connecting telomere maintenance and regulation to the developmental origin and differentiation states of neuroblastoma tumor cells. J Hematol Oncol 2022; 15:117. [PMID: 36030273 PMCID: PMC9420296 DOI: 10.1186/s13045-022-01337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
A cardinal feature that distinguishes clinically high-risk neuroblastoma from low-risk tumors is telomere maintenance. Specifically, neuroblastoma tumors with either active telomerase or alternative lengthening of telomeres exhibit aggressive growth characteristics that lead to poor outcomes, whereas tumors without telomere maintenance can be managed with observation or minimal treatment. Even though the need for cancer cells to maintain telomere DNA-in order to sustain cell proliferation-is well established, recent studies suggest that the neural crest origin of neuroblastoma may enforce unique relationships between telomeres and tumor malignancy. Specifically in neuroblastoma, telomere structure and telomerase activity are correlated with the adrenergic/mesenchymal differentiation states, and manipulating telomerase activity can trigger tumor cell differentiation. Both findings may reflect features of normal neural crest development. This review summarizes recent advances in the characterization of telomere structure and telomere maintenance mechanisms in neuroblastoma and discusses the findings in the context of relevant literature on telomeres during embryonic and neural development. Understanding the canonical and non-canonical roles of telomere maintenance in neuroblastoma could reveal vulnerabilities for telomere-directed therapies with potential applications to other pediatric malignancies.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
32
|
Tan E, Merchant K, Kn BP, Cs A, Zhao JJ, Saffari SE, Tan PH, Tang PH. CT-based morphologic and radiomics features for the classification of MYCN gene amplification status in pediatric neuroblastoma. Childs Nerv Syst 2022; 38:1487-1495. [PMID: 35460355 DOI: 10.1007/s00381-022-05534-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE MYCN onco-gene amplification in neuroblastoma confers patients to the high-risk disease category for which prognosis is poor and more aggressive multimodal treatment is indicated. This retrospective study leverages machine learning techniques to develop a computed tomography (CT)-based model incorporating semantic and non-semantic features for non-invasive prediction of MYCN amplification status in pediatric neuroblastoma. METHODS From 2009 to 2020, 54 pediatric patients treated for neuroblastoma at a specialized children's hospital with pre-treatment contrast-enhanced CT and MYCN status were identified (training cohort, n = 44; testing cohort, n = 10). Six morphologic features and 107 quantitative gray-level texture radiomics features extracted from manually drawn volume-of-interest were analyzed. Following feature selection and class balancing, the final predictive model was developed with eXtreme Gradient Boosting (XGBoost) algorithm. Accumulated local effects (ALE) plots were used to explore main effects of the predictive features. Tumor texture maps were also generated for visualization of radiomics features. RESULTS One morphologic and 2 radiomics features were selected for model building. The XGBoost model from the training cohort yielded an area under the receiver operating characteristics curve (AUC-ROC) of 0.930 (95% CI, 0.85-1.00), optimized F1-score of 0.878, and Matthews correlation coefficient (MCC) of 0.773. Evaluation on the testing cohort returned AUC-ROC of 0.880 (95% CI, 0.64-1.00), optimized F1-score of 0.933, and MCC of 0.764. ALE plots and texture maps showed higher "GreyLevelNonUniformity" values, lower "Strength" values, and higher number of image-defined risk factors contribute to higher predicted probability of MYCN amplification. CONCLUSION The machine learning model reliably classified MYCN amplification in pediatric neuroblastoma and shows potential as a surrogate imaging biomarker.
Collapse
Affiliation(s)
- Eelin Tan
- Department of Diagnostic & Interventional Imaging, KK Womens' and Childrens' Hospital, 100 Bukit Timah Rd, Singapore, 229899, Singapore.
| | - Khurshid Merchant
- Department of Pathology and Laboratory Medicine, KK Womens' and Childrens' Hospital, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| | - Bhanu Prakash Kn
- Bioinformatics Institute, A*Star, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Arvind Cs
- Bioinformatics Institute, A*Star, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Joseph J Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
| | - Seyed Ehsan Saffari
- Center for Quantitative Medicine, Duke-NUS Graduate Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Poh Hwa Tan
- Department of Diagnostic & Interventional Imaging, KK Womens' and Childrens' Hospital, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| | - Phua Hwee Tang
- Department of Diagnostic & Interventional Imaging, KK Womens' and Childrens' Hospital, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| |
Collapse
|
33
|
Desai AV, Applebaum MA, Karrison TG, Oppong A, Yuan C, Berg KR, MacQuarrie K, Sokol E, Hall AG, Pinto N, Wolfe I, Mody R, Shusterman S, Smith V, Foster JH, Nassin M, LaBelle JL, Bagatell R, Cohn SL. Efficacy of post-induction therapy for high-risk neuroblastoma patients with end-induction residual disease. Cancer 2022; 128:2967-2977. [PMID: 35665495 PMCID: PMC10764281 DOI: 10.1002/cncr.34263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND High-risk neuroblastoma patients with end-induction residual disease commonly receive post-induction therapy in an effort to increase survival by improving the response before autologous stem cell transplantation (ASCT). The authors conducted a multicenter, retrospective study to investigate the efficacy of this approach. METHODS Patients diagnosed between 2008 and 2018 without progressive disease with a partial response or worse at end-induction were stratified according to the post-induction treatment: 1) no additional therapy before ASCT (cohort 1), 2) post-induction "bridge" therapy before ASCT (cohort 2), and 3) post-induction therapy without ASCT (cohort 3). χ2 tests were used to compare patient characteristics. Three-year event-free survival (EFS) and overall survival (OS) were estimated by the Kaplan-Meier method and survival curves were compared by log-rank test. RESULTS The study cohort consisted of 201 patients: cohort 1 (n = 123), cohort 2 (n = 51), and cohort 3 (n = 27). Although the end-induction response was better for cohort 1 than cohorts 2 and 3, the outcomes for cohorts 1 and 2 were not significantly different (P = .77 for EFS and P = .85 for OS). Inferior outcomes were observed for cohort 3 (P < .001 for EFS and P = .06 for OS). Among patients with end-induction stable metastatic disease, 3-year EFS was significantly improved for cohort 2 versus cohort 1 (P = .04). Cohort 3 patients with a complete response at metastatic sites after post-induction therapy had significantly better 3-year EFS than those with residual metastatic disease (P = .01). CONCLUSIONS Prospective studies to confirm the benefits of bridge treatment and the prognostic significance of metastatic response observed in this study are warranted.
Collapse
Affiliation(s)
- Ami V. Desai
- Department of Pediatrics, University of Chicago, Chicago, IL
| | | | | | - Akosua Oppong
- Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Cindy Yuan
- Department of Radiology, University of Chicago, Chicago, IL
| | - Katherine R. Berg
- Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA
| | - Kyle MacQuarrie
- Ann and Robert H. Lurie Children’s Hospital of Chicago and Northwestern University, Chicago, IL
| | - Elizabeth Sokol
- Ann and Robert H. Lurie Children’s Hospital of Chicago and Northwestern University, Chicago, IL
| | - Anurekha G. Hall
- Seattle Children’s Hospital and University of Washington, Seattle, WA
| | - Navin Pinto
- Seattle Children’s Hospital and University of Washington, Seattle, WA
| | - Ian Wolfe
- C.S Mott Children’s Hospital and University of Michigan, Ann Arbor, MI
| | - Rajen Mody
- C.S Mott Children’s Hospital and University of Michigan, Ann Arbor, MI
| | - Suzanne Shusterman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Valeria Smith
- Texas Children’s Hospital and Baylor College of Medicine, Houston, TX
| | | | - Michele Nassin
- Department of Pediatrics, University of Chicago, Chicago, IL
| | | | - Rochelle Bagatell
- Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA
| | - Susan L. Cohn
- Department of Pediatrics, University of Chicago, Chicago, IL
| |
Collapse
|
34
|
Molecular Basis of Beckwith–Wiedemann Syndrome Spectrum with Associated Tumors and Consequences for Clinical Practice. Cancers (Basel) 2022; 14:cancers14133083. [PMID: 35804856 PMCID: PMC9265096 DOI: 10.3390/cancers14133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Beckwith–Wiedemann syndrome (BWS, OMIM 130650) is an inborn overgrowth disorder caused by molecular alterations in chromosome 11p15.5. These molecular changes affect so-called imprinted genes, i.e., genes which underlie a complex regulation which is linked to the parental origin of the gene copy. Thus, either the maternal gene copy is expressed or the paternal, but this balanced regulation is prone to disturbances. In fact, different types of molecular variants have been identified in BWS, resulting in a variable phenotype; thus, it was consented that the syndromic entity was extended to the Beckwith–Wiedemann spectrum (BWSp). Some molecular subgroups of BWSp are associated with an increased embryonic tumor risk and have different likelihoods for specific tumors. Therefore, the precise determination of the molecular subgroup is needed for precise monitoring and treatment, but the molecular diagnostic procedure has several limitations and challenges which have to be considered. Abstract Beckwith–Wiedemann syndrome (BWS, OMIM 130650) is a congenital imprinting condition with a heterogenous clinical presentation of overgrowth and an increased childhood cancer risk (mainly nephroblastoma, hepatoblastoma or neuroblastoma). Due to the varying clinical presentation encompassing classical, clinical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly, the syndromic entity was extended to the Beckwith–Wiedemann spectrum (BWSp). The tumor risk of up to 30% depends on the molecular subtype of BWSp with causative genetic or epigenetic alterations in the chromosomal region 11p15.5. The molecular diagnosis of BWSp can be challenging for several reasons, including the range of causative molecular mechanisms which are frequently mosaic. The molecular basis of tumor formation appears to relate to stalled cellular differentiation in certain organs that predisposes persisting embryonic cells to accumulate additional molecular defects, which then results in a range of embryonal tumors. The molecular subtype of BWSp not only influences the overall risk of neoplasia, but also the likelihood of specific embryonal tumors.
Collapse
|
35
|
Giljević JS, Rajačić N, Mikulić D, Batoš AT. Dinutuximab Beta in Children with High-Risk Neuroblastoma: Experience from a Single Center in Croatia. CHILDREN 2022; 9:children9070943. [PMID: 35883927 PMCID: PMC9318789 DOI: 10.3390/children9070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
To determine the potential benefits and feasibility of administering maintenance therapy with dinutuximab beta for high-risk neuroblastoma (HRNB) in clinical practice, a retrospective review of charts of patients with HRNB treated at a single center in Croatia (2012–2021) was undertaken. Of 23 patients with HRNB, 11 received up to five cycles of dinutuximab beta as part of multimodal therapy; 12 patients did not (i.e., no immunotherapy). In the no immunotherapy group, one patient had complete remission (8%), and 11 patients died of tumor progression (92%). In the dinutuximab beta group, eight patients had complete remission (73%; median duration of response 5 years and 2 months), one had stable disease (9%), and two died of disease (18%). Patients who received dinutuximab beta had a higher median event-free survival (40.0 months [range: 12.5–83.0]) and median overall survival (56.0 months [range: 16.2–101.0]) than those who did not (12.9 months [range: 3.3–126.0] and 20.7 months [3.3–126.0], respectively). Dinutuximab beta was generally well tolerated; adverse events were manageable and as reported in clinical studies. These results confirm the benefits and feasibility of maintenance therapy with dinutuximab beta as part of multimodal therapy for patients with HRNB in real-world clinical practice.
Collapse
Affiliation(s)
- Jasminka Stepan Giljević
- Department of Pediatric Oncology and Haematology, Children’s Hospital Zagreb, Ul. Vjekoslava Klaića 16, 10000 Zagreb, Croatia; (N.R.); (A.T.B.)
- Correspondence: ; Tel.: +385-1-4600-111
| | - Nada Rajačić
- Department of Pediatric Oncology and Haematology, Children’s Hospital Zagreb, Ul. Vjekoslava Klaića 16, 10000 Zagreb, Croatia; (N.R.); (A.T.B.)
| | - Danko Mikulić
- Department of Surgery, University Hospital Merkur, 10000 Zagreb, Croatia;
| | - Ana Tripalo Batoš
- Department of Pediatric Oncology and Haematology, Children’s Hospital Zagreb, Ul. Vjekoslava Klaića 16, 10000 Zagreb, Croatia; (N.R.); (A.T.B.)
| |
Collapse
|
36
|
Metovic J, Napoli F, Osella-Abate S, Bertero L, Tampieri C, Orlando G, Bianchi M, Carli D, Fagioli F, Volante M, Papotti M. Overexpression of INSM1, NOTCH1, NEUROD1, and YAP1 genes is associated with adverse clinical outcome in pediatric neuroblastoma. Virchows Arch 2022; 481:925-933. [PMID: 36121500 PMCID: PMC9734219 DOI: 10.1007/s00428-022-03406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/12/2022] [Accepted: 08/27/2022] [Indexed: 01/22/2023]
Abstract
Pediatric neuroblastoma is responsible for approximately 8-10% of pediatric tumors, and it is one of the leading causes of tumor-related deaths in children. Although significant progress has been made in the characterization of neuroblastoma in recent years, the mechanisms influencing the prognosis of neuroblastoma patients remain largely unknown. Our aim was to investigate if the major neuroendocrine-associated transcriptional drivers, including ASCL1, NEUROD1, DLL3, NOTCH1, INSM1, MYCL1, POU2F3 and YAP1 are correlated with specific clinical and pathological characteristics. We selected a retrospective series of 46 primary pediatric neuroblastoma, composed of 30 treatment-naïve and 16 post-chemotherapy cases. Gene expression levels were explored by means of quantitative real-time PCR. An increased expression of NOTCH1 (p = 0.005), NEUROD1 (p = 0.0059), and YAP1 (p = 0.0008) was found in stage IV tumors, while the highest levels of MYCL1 and ASCL1 were seen in stages IVS and III, respectively (p = 0.0182 and p = 0.0134). A higher level of NOTCH1 (p = 0.0079) and YAP1 (p = 0.0026) was found in cases with differentiating morphology, while high mitosis-karyorrhexis index cases demonstrated significantly lower levels of POU2F3 (p = 0.0277). High expression of NOTCH1 (p = 0.008), NEUROD1 (p = 0.026), INSM1 (p = 0.010), and YAP1 (p = 0.005) together with stage IV (p = 0.043) was associated with shorter disease-free survival. In summary, our data indicate that the assessment of gene expression levels of neuroendocrine-lineage transcription factors might help to identify neuroblastoma patients with the risk of relapse.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | | | - Luca Bertero
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giulia Orlando
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Maurizio Bianchi
- Pediatric Onco-hemathology Unit, "Città della Salute e della Scienza" Hospital, Turin, Italy
| | - Diana Carli
- Pediatric Onco-hemathology Unit, "Città della Salute e della Scienza" Hospital, Turin, Italy
| | - Franca Fagioli
- Department of Sciences of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Orbassano, Turin, Italy.
| | - Mauro Papotti
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
37
|
Yan J, Jie L, Jiaxing Y, Yanna C, Zhanglin L, Zhongyuan L, Daowei W, Guangzong Z, Benfu Z, Jie Y, Qiang Z. Analysis of the efficacy of autologous peripheral blood stem cell transplantation in high-risk neuroblastoma. Int J Med Sci 2022; 19:1715-1723. [PMID: 36237985 PMCID: PMC9553861 DOI: 10.7150/ijms.76305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
Objective: This study aimed to analyze the efficacy of autologous peripheral blood stem cell transplantation for high-risk neuroblastoma in China. Methods: The data of 90 high-risk neuroblastoma patients treated with the CCCG-NB 2015 regimen were reviewed. The baseline clinicopathological characteristics and prognosis were analyzed and compared. In addition, the prognoses of tandem autologous stem cell transplantation and single autologous stem cell transplantation groups were compared. Results: The results of survival analysis showed that autologous peripheral blood stem cell transplantation based on this pretreatment regimen significantly improved the prognosis of children in the high-risk group. The 3-year event-free survival (EFS) and overall survival (OS) rates for the transplantation group and the nontransplantation group were 65.5% vs. 41.3% (p=0.023) and 77.1% vs. 57.9% (p=0.03), respectively. There was no difference in the distribution of baseline clinical case characteristics between the single transplantation group and the tandem transplantation group (p>0.05), and there was no significant difference in EFS and OS between the two groups (p>0.05). Conclusion: Based on this pretreatment programme, autologous peripheral blood stem cell transplantation is safe and tolerable and significantly improves the prognosis of children in the high-risk group. The value of tandem autologous stem cell transplantation is worthy of further discussion, which should consider various aspects such as the transplantation medication regimen and the patient's state.
Collapse
Affiliation(s)
- Jin Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Li Jie
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yang Jiaxing
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Cao Yanna
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Li Zhanglin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Li Zhongyuan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wang Daowei
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhao Guangzong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhong Benfu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yan Jie
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhao Qiang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
38
|
Retrospective Analysis of INRG Clinical and Genomic Factors for 605 Neuroblastomas in Japan: A Report from the Japan Children’s Cancer Group Neuroblastoma Committee (JCCG-JNBSG). Biomolecules 2021; 12:biom12010018. [PMID: 35053166 PMCID: PMC8774029 DOI: 10.3390/biom12010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Neuroblastomas (NBs) exhibit broad and divergent clinical behaviors and tumor risk classification at diagnosis is crucial for the selection of an appropriate therapeutic strategy for each patient. The present study aimed to validate the clinical relevance of International Neuroblastoma Risk Group (INRG) prognostic and genomic markers in a Japanese NB cohort using a retrospective analysis. Follow-up data based on 30 common INRG queries in 605 NB cases diagnosed in Japan between 1990 and 2014 were collected and the genome signature of each tumor sample was integrated. As previously indicated, age, tumor stage, MYCN, DNA ploidy, the adrenals as the primary tumor site, serum ferritin and lactate dehydrogenase (LDH) levels, segmental chromosome aberrations, and the number of chromosome breakpoints (BP) correlated with lower survival rates, while the thorax as the primary tumor site and numerical chromosome aberrations correlated with a favorable prognosis. In the patient group with stage 4, MYCN non-amplified tumors (n = 225), one of the challenging subsets for risk stratification, age ≥ 18 months, LDH ≥ 1400 U/L, and BP ≥ 7 correlated with lower overall and event-free survival rates (p < 0.05). The genome subgroup GG-P2s (partial chromosome gain/loss type with 1p/11q losses and 17q gain, n = 30) was strongly associated with a lower overall survival rate (5-year survival rate: 34%, p < 0.05). Therefore, the combination of the tumor genomic pattern (GG-P2s and BP ≥ 7) with age at diagnosis and LDH will be a promising predictor for MYCN-non-amplified high-risk NBs in patient subsets, in accordance with previous findings from the INRG project.
Collapse
|
39
|
Irwin MS, Naranjo A, Zhang FF, Cohn SL, London WB, Gastier-Foster JM, Ramirez NC, Pfau R, Reshmi S, Wagner E, Nuchtern J, Asgharzadeh S, Shimada H, Maris JM, Bagatell R, Park JR, Hogarty MD. Revised Neuroblastoma Risk Classification System: A Report From the Children's Oncology Group. J Clin Oncol 2021; 39:3229-3241. [PMID: 34319759 PMCID: PMC8500606 DOI: 10.1200/jco.21.00278] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 06/30/2021] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Treatment planning for children with neuroblastoma requires accurate assessment of prognosis. The most recent Children's Oncology Group (COG) risk classification system used tumor stage as defined by the International Neuroblastoma Staging System. Here, we validate a revised classifier using the International Neuroblastoma Risk Group Staging System (INRGSS) and incorporate segmental chromosome aberrations (SCA) as an additional genomic biomarker. METHODS Newly diagnosed patients enrolled on the COG neuroblastoma biology study ANBL00B1 between 2007 and 2017 with known age, International Neuroblastoma Staging System, and INRGSS stage were identified (N = 4,832). Tumor MYCN status, ploidy, SCA status (1p and 11q), and International Neuroblastoma Pathology Classification histology were determined centrally. Survival analyses were performed for combinations of prognostic factors used in COG risk classification according to the prior version 1, and to validate a revised algorithm (version 2). RESULTS Most patients with locoregional tumors had excellent outcomes except for those with image-defined risk factors (INRGSS L2) with MYCN amplification (5-year event-free survival and overall survival: 76.3% ± 5.8% and 79.9% ± 5.5%, respectively) or patients age ≥ 18 months with L2 MYCN nonamplified tumors with unfavorable International Neuroblastoma Pathology Classification histology (72.7% ± 5.4% and 82.4% ± 4.6%), which includes the majority of L2 patients with SCA. For patients with stage M (metastatic) and MS (metastatic, special) disease, genomic biomarkers affected risk group assignment for those < 12 months (MYCN) or 12-18 months (MYCN, histology, ploidy, and SCA) of age. In a retrospective analysis of patient outcome, the 5-year event-free survival and overall survival using COG version 1 were low-risk: 89.4% ± 1.1% and 97.9% ± 0.5%; intermediate-risk: 86.1% ± 1.3% and 94.9% ± 0.8%; high-risk: 50.8% ± 1.4% and 61.9% ± 1.3%; and using COG version 2 were low-risk: 90.7% ± 1.1% and 97.9% ± 0.5%; intermediate-risk: 85.1% ± 1.4% and 95.8% ± 0.8%; high-risk: 51.2% ± 1.4% and 62.5% ± 1.3%, respectively. CONCLUSION A revised 2021 COG neuroblastoma risk classifier (version 2) that uses the INRGSS and incorporates SCAs has been adopted to prospectively define COG clinical trial eligibility and treatment assignment.
Collapse
Affiliation(s)
- Meredith S. Irwin
- Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, FL
| | - Fan F. Zhang
- Children's Oncology Group Statistics and Data Center, Monrovia, CA
| | - Susan L. Cohn
- Department of Pediatrics, The University of Chicago, Chicago, IL
| | - Wendy B. London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Julie M. Gastier-Foster
- Institute for Genomic Medicine and Biopathology Center, Nationwide Children's Hospital, Columbus, OH
- Departments of Pathology and Pediatrics, Ohio State University, Columbus, OH
| | - Nilsa C. Ramirez
- Institute for Genomic Medicine and Biopathology Center, Nationwide Children's Hospital, Columbus, OH
- Departments of Pathology and Pediatrics, Ohio State University, Columbus, OH
| | - Ruthann Pfau
- Institute for Genomic Medicine and Biopathology Center, Nationwide Children's Hospital, Columbus, OH
- Departments of Pathology and Pediatrics, Ohio State University, Columbus, OH
| | - Shalini Reshmi
- Institute for Genomic Medicine and Biopathology Center, Nationwide Children's Hospital, Columbus, OH
- Departments of Pathology and Pediatrics, Ohio State University, Columbus, OH
| | - Elizabeth Wagner
- Institute for Genomic Medicine and Biopathology Center, Nationwide Children's Hospital, Columbus, OH
| | - Jed Nuchtern
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Shahab Asgharzadeh
- Division of Hematology/Oncology, Children's Hospital of Los Angeles, Los Angeles, CA
| | - Hiroyuki Shimada
- Departments of Pathology and Pediatrics, Stanford University, Stanford, CA
| | - John M. Maris
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rochelle Bagatell
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Julie R. Park
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Michael D. Hogarty
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
40
|
Balyasny S, Lee SM, Desai AV, Volchenboum SL, Naranjo A, Park JR, London WB, Cohn SL, Applebaum MA. Association Between Participation in Clinical Trials and Overall Survival Among Children With Intermediate- or High-risk Neuroblastoma. JAMA Netw Open 2021; 4:e2116248. [PMID: 34236408 PMCID: PMC8267607 DOI: 10.1001/jamanetworkopen.2021.16248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
IMPORTANCE Participants in clinical trials may experience benefits associated with new therapeutic strategies as well as tight adherence to best supportive care practices. OBJECTIVES To investigate whether participation in a clinical trial is associated with improved survival among children with neuroblastoma and investigate potential recruitment bias of patients in clinical trials. DESIGN, SETTING, AND PARTICIPANTS This cohort study included pediatric patients with intermediate- or high-risk neuroblastoma in North American studies who were included in the International Neuroblastoma Risk Group Data Commons and who received a diagnosis between January 1, 1991, and March 1, 2020. EXPOSURE Enrollment in a clinical trial. MAIN OUTCOMES AND MEASURES Event-free survival and overall survival (OS) of patients with intermediate- or high-risk neuroblastoma enrolled in an up-front Children's Oncology Group (COG) clinical trial vs a biology study alone were analyzed using log-rank tests and Cox proportional hazards regression models. The racial/ethnic composition and the demographic characteristics of the patients in both groups were compared. RESULTS The cohort included 3058 children with intermediate-risk neuroblastoma (1533 boys [50.1%]; mean [SD] age, 10.7 [14.7] months) and 6029 children with high-risk neuroblastoma (3493 boys [57.9%]; mean [SD] age, 45.8 [37.4] months) who were enrolled in a Children's Oncology Group or legacy group neuroblastoma biology study between 1991 and 2020. A total of 1513 patients with intermediate-risk neuroblastoma (49.5%) and 2473 patients with high-risk neuroblastoma (41.0%) were also enrolled in a clinical trial, for a cohort total of 3986 of 9087 children (43.9%) enrolled in a clinical trial. The prevalence of prognostic markers for the clinical trial and non-clinical trial cohorts differed, although representation of patients from racial/ethnic minority groups was similar in both cohorts. Among patients with intermediate-risk neuroblastoma, OS was higher among those who participated in a clinical trial compared with those enrolled only in a biology study (OS, 95% [95% CI, 94%-96%] vs 91% [95% CI, 89%-94%]; P = .01). Among patients with high-risk neuroblastoma, participation in a clinical trial was not associated with OS (OS, 38% [95% CI, 35%-41%] in the clinical trial group vs 41% [95% CI, 38%-44%] in the biology study group; P = .23). CONCLUSIONS AND RELEVANCE Approximately 44% of patients in this large cohort of patients with neuroblastoma were enrolled in up-front clinical trials. Compared with children not enrolled in clinical trials, a higher prevalence of favorable prognostic markers was identified among patients with intermediate-risk neuroblastoma enrolled in clinical trials, and unfavorable features were more prevalent among patients with high-risk neuroblastoma enrolled in clinical trials. No evidence of recruitment bias according to race/ethnicity was observed. Participation in a clinical trial was not associated with OS in this cohort, likely reflecting the common practice of treating nontrial participants with therapeutic and supportive care regimens used in a previous therapeutic trial.
Collapse
Affiliation(s)
- Skye Balyasny
- College of the Liberal Arts, Penn State University, University Park, Pennsylvania
| | - Sang Mee Lee
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Ami V. Desai
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | | | - Arlene Naranjo
- Children’s Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville
| | - Julie R. Park
- Seattle Children’s Hospital, University of Washington, Seattle
| | - Wendy B. London
- Boston Children’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Susan L. Cohn
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
41
|
Discovery of Spatial Peptide Signatures for Neuroblastoma Risk Assessment by MALDI Mass Spectrometry Imaging. Cancers (Basel) 2021; 13:cancers13133184. [PMID: 34202325 PMCID: PMC8269054 DOI: 10.3390/cancers13133184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The childhood tumor, neuroblastoma, has a broad clinical presentation. Risk assessment at diagnosis is particularly difficult in molecularly heterogeneous high-risk cases. Here we investigate the potential of imaging mass spectrometry to directly detect intratumor heterogeneity on the protein level in tissue sections. We show that this approach can produce discriminatory peptide signatures separating high- from low- and intermediate-risk tumors, identify 8 proteins aassociated with these signatures and validate two marker proteins using tissue immunostaining that have promise for further basic and translational research in neuroblastoma. We provide proof-of-concept that mass spectrometry-based technology could assist early risk assessment in neuroblastoma and provide insights into peptide signature-based detection of intratumor heterogeneity. Abstract Risk classification plays a crucial role in clinical management and therapy decisions in children with neuroblastoma. Risk assessment is currently based on patient criteria and molecular factors in single tumor biopsies at diagnosis. Growing evidence of extensive neuroblastoma intratumor heterogeneity drives the need for novel diagnostics to assess molecular profiles more comprehensively in spatial resolution to better predict risk for tumor progression and therapy resistance. We present a pilot study investigating the feasibility and potential of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to identify spatial peptide heterogeneity in neuroblastoma tissues of divergent current risk classification: high versus low/intermediate risk. Univariate (receiver operating characteristic analysis) and multivariate (segmentation, principal component analysis) statistical strategies identified spatially discriminative risk-associated MALDI-based peptide signatures. The AHNAK nucleoprotein and collapsin response mediator protein 1 (CRMP1) were identified as proteins associated with these peptide signatures, and their differential expression in the neuroblastomas of divergent risk was immunohistochemically validated. This proof-of-concept study demonstrates that MALDI-MSI combined with univariate and multivariate analysis strategies can identify spatially discriminative risk-associated peptide signatures in neuroblastoma tissues. These results suggest a promising new analytical strategy improving risk classification and providing new biological insights into neuroblastoma intratumor heterogeneity.
Collapse
|
42
|
Yu P, Kibbe W. Cancer Data Science and Computational Medicine. JCO Clin Cancer Inform 2021; 5:487-489. [PMID: 33950710 DOI: 10.1200/cci.21.00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Peter Yu
- Hartford Healthcare Cancer Institute, Hartford, CT
| | | |
Collapse
|