1
|
Kotoulas SC, Spyratos D, Porpodis K, Domvri K, Boutou A, Kaimakamis E, Mouratidou C, Alevroudis I, Dourliou V, Tsakiri K, Sakkou A, Marneri A, Angeloudi E, Papagiouvanni I, Michailidou A, Malandris K, Mourelatos C, Tsantos A, Pataka A. A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer. Cancers (Basel) 2025; 17:882. [PMID: 40075729 PMCID: PMC11898928 DOI: 10.3390/cancers17050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
According to data from the World Health Organization (WHO), lung cancer is becoming a global epidemic. It is particularly high in the list of the leading causes of death not only in developed countries, but also worldwide; furthermore, it holds the leading place in terms of cancer-related mortality. Nevertheless, many breakthroughs have been made the last two decades regarding its management, with one of the most prominent being the implementation of artificial intelligence (AI) in various aspects of disease management. We included 473 papers in this thorough review, most of which have been published during the last 5-10 years, in order to describe these breakthroughs. In screening programs, AI is capable of not only detecting suspicious lung nodules in different imaging modalities-such as chest X-rays, computed tomography (CT), and positron emission tomography (PET) scans-but also discriminating between benign and malignant nodules as well, with success rates comparable to or even better than those of experienced radiologists. Furthermore, AI seems to be able to recognize biomarkers that appear in patients who may develop lung cancer, even years before this event. Moreover, it can also assist pathologists and cytologists in recognizing the type of lung tumor, as well as specific histologic or genetic markers that play a key role in treating the disease. Finally, in the treatment field, AI can guide in the development of personalized options for lung cancer patients, possibly improving their prognosis.
Collapse
Affiliation(s)
- Serafeim-Chrysovalantis Kotoulas
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Dionysios Spyratos
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Konstantinos Porpodis
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Kalliopi Domvri
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Afroditi Boutou
- Pulmonary Department General, Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (A.B.); (A.T.)
| | - Evangelos Kaimakamis
- 1st ICU, Medical Informatics Laboratory, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece;
| | - Christina Mouratidou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Ioannis Alevroudis
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Vasiliki Dourliou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Kalliopi Tsakiri
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Agni Sakkou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Alexandra Marneri
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Elena Angeloudi
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Ioanna Papagiouvanni
- 4th Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Anastasia Michailidou
- 2nd Propaedeutic Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Konstantinos Malandris
- 2nd Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Constantinos Mourelatos
- Biology and Genetics Laboratory, Aristotle’s University of Thessaloniki, 54624 Thessaloniki, Greece;
| | - Alexandros Tsantos
- Pulmonary Department General, Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (A.B.); (A.T.)
| | - Athanasia Pataka
- Respiratory Failure Clinic and Sleep Laboratory, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece;
| |
Collapse
|
2
|
Bosbach WA, Senge JF, Nemeth B, Omar SH, Mitrakovic M, Beisbart C, Horváth A, Heverhagen J, Daneshvar K. Ability of ChatGPT to generate competent radiology reports for distal radius fracture by use of RSNA template items and integrated AO classifier. Curr Probl Diagn Radiol 2024; 53:102-110. [PMID: 37263804 DOI: 10.1067/j.cpradiol.2023.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023]
Abstract
The amount of acquired radiology imaging studies grows worldwide at a rapid pace. Novel information technology tools for radiologists promise an increase of reporting quality and as well quantity at the same time. Automated text report drafting is one branch of this development. We defined for the present study in total 9 cases of distal radius fracture. Command files structured according to a template of the Radiological Society of North America (RSNA) and to Arbeitsgemeinschaft Osteosynthese (AO) classifiers were given as input to the natural language processing tool ChatGPT. ChatGPT was tasked with drafting an appropriate radiology report. A parameter study (n = 5 iterations) was performed. An overall high appraisal of ChatGPT radiology report quality was obtained in a score card based assessment. ChatGPT demonstrates the capability to adjust output files in response to minor changes in input command files. Existing shortcomings were found in technical terminology and medical interpretation of findings. Text drafting tools might well support work of radiologists in the future. They would allow a radiologist to focus time on the observation of image details and patient pathology. ChatGPT can be considered a substantial step forward towards that aim.
Collapse
Affiliation(s)
- Wolfram A Bosbach
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Jan F Senge
- Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany; Max-Planck Dioscuri Centre for Topological Data Analysis, Warsaw, Poland
| | - Bence Nemeth
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Switzerland; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Siti H Omar
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for Radiology, Kuala Lumpur Hospital, Ministry of Health of Malaysia, Kuala Lumpur, Malaysia
| | - Milena Mitrakovic
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Claus Beisbart
- Institute of Philosophy, University of Bern, Bern, Switzerland; Center for Artificial Intelligence in Medicine, University of Bern, Bern, Switzerland
| | - András Horváth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Johannes Heverhagen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Keivan Daneshvar
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
3
|
Zygmont ME, Ikuta I, Nguyen XV, Frigini LAR, Segovis C, Naeger DM. Clinical Decision Support: Impact on Appropriate Imaging Utilization. Acad Radiol 2023; 30:1433-1440. [PMID: 36336523 DOI: 10.1016/j.acra.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Matthew E Zygmont
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia.
| | - Ichiro Ikuta
- Department of Radiology & Biomedical Imaging, Neuroradiology, Yale University School of Medicine, New Haven, Connecticut
| | - Xuan V Nguyen
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Colin Segovis
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - David M Naeger
- Denver Health and Hospital Authority, Department of Radiology, Denver CO, and the University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
4
|
Senthil Kumar K, Miskovic V, Blasiak A, Sundar R, Pedrocchi ALG, Pearson AT, Prelaj A, Ho D. Artificial Intelligence in Clinical Oncology: From Data to Digital Pathology and Treatment. Am Soc Clin Oncol Educ Book 2023; 43:e390084. [PMID: 37235822 DOI: 10.1200/edbk_390084] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recently, a wide spectrum of artificial intelligence (AI)-based applications in the broader categories of digital pathology, biomarker development, and treatment have been explored. In the domain of digital pathology, these have included novel analytical strategies for realizing new information derived from standard histology to guide treatment selection and biomarker development to predict treatment selection and response. In therapeutics, these have included AI-driven drug target discovery, drug design and repurposing, combination regimen optimization, modulated dosing, and beyond. Given the continued advances that are emerging, it is important to develop workflows that seamlessly combine the various segments of AI innovation to comprehensively augment the diagnostic and interventional arsenal of the clinical oncology community. To overcome challenges that remain with regard to the ideation, validation, and deployment of AI in clinical oncology, recommendations toward bringing this workflow to fruition are also provided from clinical, engineering, implementation, and health care economics considerations. Ultimately, this work proposes frameworks that can potentially integrate these domains toward the sustainable adoption of practice-changing AI by the clinical oncology community to drive improved patient outcomes.
Collapse
Affiliation(s)
- Kirthika Senthil Kumar
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Vanja Miskovic
- Department of Electronics, Informatics, and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Agata Blasiak
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Raghav Sundar
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore
| | | | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Arsela Prelaj
- Department of Electronics, Informatics, and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Dean Ho
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Yu P, Kibbe W. Cancer Data Science and Computational Medicine. JCO Clin Cancer Inform 2021; 5:487-489. [PMID: 33950710 DOI: 10.1200/cci.21.00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Peter Yu
- Hartford Healthcare Cancer Institute, Hartford, CT
| | | |
Collapse
|