1
|
Joshi D, Patel J, Munshi M, Mistry Z, Prajapati A, Mukherjee A, Ramachandran AV, Parashar NC, Parashar G, Haque S, Tuli HS. Hormones as a double-edged sword: the role of hormones in cancer progression and the potential of targeted hormone therapies. Med Oncol 2024; 41:283. [PMID: 39400627 DOI: 10.1007/s12032-024-02517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Cancer remains a significant cause of mortality in the world, with increasing prevalence worldwide. There are numerous treatments ranging from surgery to chemotherapy and radiotherapy, but since cancer is a heterogeneous disease, only few patients possibly respond to treatments. However, it opens a huge space for the advent of targeted therapies such as hormone therapy, immunotherapy, and target-specific drugs. Hormonal therapy using hormone agonists/antagonists or hormone receptor inhibitors-called the next-generation hormonal agents-hits distinct hormonal pathways that are involved in breast, prostate and ovarian cancer. Preliminary results show that through combination of drugs, it is possible that the synergistic effects may actually lead to better survival than with the use of single drugs. With manageable adverse effects, hormonal therapy offers much hope for treatment of this rather challenging malignancy of the hormone-sensitive cancers, especially in combination with other treatments.
Collapse
Affiliation(s)
- Dixita Joshi
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Janaki Patel
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Muskaan Munshi
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Zeel Mistry
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Alok Prajapati
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Asmi Mukherjee
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - A V Ramachandran
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Nidarshana Chaturvedi Parashar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India.
| | - Gaurav Parashar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 11022801, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
2
|
Püsküllüoğlu M, Rudzińska A, Pacholczak-Madej R. Antibody-drug conjugates in HER-2 negative breast cancers with poor prognosis. Biochim Biophys Acta Rev Cancer 2023; 1878:188991. [PMID: 37758021 DOI: 10.1016/j.bbcan.2023.188991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Antibody drug conjugates (ADCs) comprise a rapidly growing class of targeted drugs that selectively deliver a cytotoxic agent to cancer cells, reducing the side effects associated with conventional chemotherapy. Breast cancer (BC) is a heterogeneous entity. The need for effective therapies for HER-2 negative BCs with poor prognosis, such as triple-negative or endocrine-resistant BC, remains unmet due to the lack of potential targets for treatments. These BC subtypes are not candidates for hormonal or anti-HER-2 agents. However, ongoing clinical trials exploring the use of ADCs with a wide range of targets have shown potential for this treatment modality. In this review, we present the current state of knowledge regarding the role of ADC and speculate on novel approaches including ADC combination therapies, new molecular targets, and the role of other subclasses of ADCs (bicycle drug conjugates, bispecific ADCs, immune modulating ADCs) in this clinical scenario.
Collapse
Affiliation(s)
- Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Garncarska Street 11, 31-115 Krakow, Poland.
| | - Agnieszka Rudzińska
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Garncarska Street 11, 31-115 Krakow, Poland
| | - Renata Pacholczak-Madej
- Department of Anatomy, Jagiellonian University, Medical College, Kopernika Street 12, 31-034 Krakow, Poland; Department of Chemotherapy, The District Hospital, 22 Szpitalna Street, 34-200 Sucha Beskidzka, Poland
| |
Collapse
|
3
|
Functional Relationships between Long Non-Coding RNAs and Estrogen Receptor Alpha: A New Frontier in Hormone-Responsive Breast Cancer Management. Int J Mol Sci 2023; 24:ijms24021145. [PMID: 36674656 PMCID: PMC9863308 DOI: 10.3390/ijms24021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In the complex and articulated machinery of the human genome, less than 2% of the transcriptome encodes for proteins, while at least 75% is actively transcribed into non-coding RNAs (ncRNAs). Among the non-coding transcripts, those ≥200 nucleotides long (lncRNAs) are receiving growing attention for their involvement in human diseases, particularly cancer. Genomic studies have revealed the multiplicity of processes, including neoplastic transformation and tumor progression, in which lncRNAs are involved by regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels by mechanism(s) that still need to be clarified. In breast cancer, several lncRNAs were identified and demonstrated to have either oncogenic or tumor-suppressive roles. The functional understanding of the mechanisms of lncRNA action in this disease could represent a potential for translational applications, as these molecules may serve as novel biomarkers of clinical use and potential therapeutic targets. This review highlights the relationship between lncRNAs and the principal hallmark of the luminal breast cancer phenotype, estrogen receptor α (ERα), providing an overview of new potential ways to inhibit estrogenic signaling via this nuclear receptor toward escaping resistance to endocrine therapy.
Collapse
|
4
|
Hsu H, Chu P, Chang T, Huang K, Hung W, Jiang SS, Lin H, Tsai H. Mitochondrial phosphoenolpyruvate carboxykinase promotes tumor growth in estrogen receptor-positive breast cancer via regulation of the mTOR pathway. Cancer Med 2022; 12:1588-1601. [PMID: 35757841 PMCID: PMC9883444 DOI: 10.1002/cam4.4969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Tumor cells may aberrantly express metabolic enzymes to adapt to their environment for survival and growth. Targeting cancer-specific metabolic enzymes is a potential therapeutic strategy. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the conversion of oxaloacetate to phosphoenolpyruvate and links the tricarboxylic acid cycle and glycolysis/gluconeogenesis. Mitochondrial PEPCK (PEPCK-M), encoded by PCK2, is an isozyme of PEPCK and is distributed in mitochondria. Overexpression of PCK2 has been identified in many human cancers and demonstrated to be important for the survival program initiated upon metabolic stress in cancer cells. We evaluated the expression status of PEPCK-M and investigated the function of PEPCK-M in breast cancer. METHODS We checked the expression status of PEPCK-M in breast cancer samples by immunohistochemical staining. We knocked down or overexpressed PCK2 in breast cancer cell lines to investigate the function of PEPCK-M in breast cancer. RESULTS PEPCK-M was highly expressed in estrogen receptor-positive (ER+ ) breast cancers. Decreased cell proliferation and G0 /G1 arrest were induced in ER+ breast cancer cell lines by knockdown of PCK2. PEPCK-M promoted the activation of mTORC1 downstream signaling molecules and the E2F1 pathways in ER+ breast cancer. In addition, glucose uptake, intracellular glutamine levels, and mTORC1 pathways activation by glucose and glutamine in ER+ breast cancer were attenuated by PCK2 knockdown. CONCLUSION PEPCK-M promotes proliferation and cell cycle progression in ER+ breast cancer via upregulation of the mTORC1 and E2F1 pathways. PCK2 also regulates nutrient status-dependent mTORC1 pathway activation in ER+ breast cancer. Further studies are warranted to understand whether PEPCK-M is a potential therapeutic target for ER+ breast cancer.
Collapse
Affiliation(s)
- Hui‐Ping Hsu
- Department of SurgeryNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Pei‐Yi Chu
- Department of PathologyShow Chwan Memorial HospitalChanghuaTaiwan,National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan,School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan,Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| | - Tsung‐Ming Chang
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan,Department of Medical Laboratory ScienceCollege of Medical Science and Technology, I‐Shou UniversityKaohsiungTaiwan
| | - Kuo‐Wei Huang
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Wen‐Chun Hung
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Shih Sheng Jiang
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Hui‐You Lin
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan
| | - Hui‐Jen Tsai
- National Institute of Cancer ResearchNational Health Research InstitutesTainanTaiwan,Department of Oncology, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan,Department of Internal Medicine, Kaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
5
|
Main SC, Cescon DW, Bratman SV. Liquid biopsies to predict CDK4/6 inhibitor efficacy and resistance in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:727-748. [PMID: 36176758 PMCID: PMC9511796 DOI: 10.20517/cdr.2022.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors combined with endocrine therapy have transformed the treatment of estrogen receptor-positive (ER+) and human epidermal growth factor receptor 2 negative (HER2-) metastatic breast cancer. However, some patients do not respond to this treatment, and patients inevitably develop resistance, such that novel biomarkers are needed to predict primary resistance, monitor treatment response for acquired resistance, and personalize treatment strategies. Circumventing the spatial and temporal limitations of tissue biopsy, newly developed liquid biopsy approaches have the potential to uncover biomarkers that can predict CDK4/6 inhibitor efficacy and resistance in breast cancer patients through a simple blood test. Studies on circulating tumor DNA (ctDNA)-based liquid biopsy biomarkers of CDK4/6 inhibitor resistance have focused primarily on genomic alterations and have failed thus far to identify clear and clinically validated predictive biomarkers, but emerging epigenetic ctDNA methodologies hold promise for further discovery. The present review outlines recent advances and future directions in ctDNA-based biomarkers of CDK4/6 inhibitor treatment response.
Collapse
Affiliation(s)
- Sasha C Main
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Ontario, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto M5T 1P5, Ontario, Canada
| |
Collapse
|
6
|
Mitra S, Lami MS, Ghosh A, Das R, Tallei TE, Fatimawali, Islam F, Dhama K, Begum MY, Aldahish A, Chidambaram K, Emran TB. Hormonal Therapy for Gynecological Cancers: How Far Has Science Progressed toward Clinical Applications? Cancers (Basel) 2022; 14:759. [PMID: 35159024 PMCID: PMC8833573 DOI: 10.3390/cancers14030759] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, hormone therapy has been shown to be a remarkable treatment option for cancer. Hormone treatment for gynecological cancers involves the use of medications that reduce the level of hormones or inhibit their biological activity, thereby stopping or slowing cancer growth. Hormone treatment works by preventing hormones from causing cancer cells to multiply. Aromatase inhibitors, anti-estrogens, progestin, estrogen receptor (ER) antagonists, GnRH agonists, and progestogen are effectively used as therapeutics for vulvar cancer, cervical cancer, vaginal cancer, uterine cancer, and ovarian cancer. Hormone replacement therapy has a high success rate. In particular, progestogen and estrogen replacement are associated with a decreased incidence of gynecological cancers in women infected with human papillomavirus (HPV). The activation of estrogen via the transcriptional functionality of ERα may either be promoted or decreased by gene products of HPV. Hormonal treatment is frequently administered to patients with hormone-sensitive recurring or metastatic gynecologic malignancies, although response rates and therapeutic outcomes are inconsistent. Therefore, this review outlines the use of hormonal therapy for gynecological cancers and identifies the current knowledge gaps.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Mashia Subha Lami
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Avoy Ghosh
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia;
- The University Center of Excellence for Biotechnology and Conservation of Wallacea, Institute for Research and Community Services, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Fatimawali
- The University Center of Excellence for Biotechnology and Conservation of Wallacea, Institute for Research and Community Services, Sam Ratulangi University, Manado 95115, Indonesia;
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health of Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India;
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.A.); (K.C.)
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.A.); (K.C.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
7
|
Goldner M, Pandolfi N, Maciel D, Lima J, Sanches S, Pondé N. Combined endocrine and targeted therapy in luminal breast cancer. Expert Rev Anticancer Ther 2021; 21:1237-1251. [PMID: 34338570 DOI: 10.1080/14737140.2021.1960160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: For decades, endocrine therapy has been the cornerstone of management for luminal breast cancer. Despite the substantial benefit derived by patients from endocrine therapy, primary and secondary resistances to endocrine therapy are serious clinical issues.Areas covered: Today, in the advanced setting, three distinct classes of targeted agents mTOR, CDK 4/6, and PI3K inhibitors, are approved for use. CDK 4/6 inhibitors have improved outcomes substantially, changing the natural history of advanced luminal breast cancer. Current studies seek to bring CDK 4/6 inhibitors to the early setting. This review will cover all available data on target therapy combinations with endocrine therapy for both the early and advanced settings, including approved drugs and agents in development.Expert opinion: Combined endocrine and target therapy has changed the landscape in advanced disease. In early disease, it is possible to have a large impact, particularly in patients with higher risk of relapse. Trials like ADAPTCYCLE seek to leverage neoadjuvant data to de-escalate treatment, substituting chemotherapy for CDK 4/6 inhibitors. In advanced diseases, studies such as PADA-1 point toward a future in which ctDNA will be used to define management before clinical progression occurs.
Collapse
Affiliation(s)
- Marcelle Goldner
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Natasha Pandolfi
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Debora Maciel
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Julianne Lima
- Fellow of the European School of Oncology, Milan, Italy
| | - Solange Sanches
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Noam Pondé
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| |
Collapse
|
8
|
Buehler AM, Castilho G, Dionne PA, Stefani S. Cost-effectiveness of ribociclib plus letrozole versus palbociclib plus letrozole or letrozole as monotherapy in first-line treatment of postmenopausal women with HR+/HER2- locally advanced or metastatic breast cancer: a Brazilian private payer perspective. Ther Adv Med Oncol 2021; 13:17588359211000593. [PMID: 33948121 PMCID: PMC8053836 DOI: 10.1177/17588359211000593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/05/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The global burden of breast cancer (BC) is high, especially in advanced stages. CDK 4/6 inhibitors represent a paradigm shift in the treatment of advanced BC HR+/HER2-, given the clinically and statistically significant gain in overall survival associated with this new class of medications. Nevertheless, as an innovation, the incorporation of these drugs impacts healthcare budgets, requiring cost-effectiveness analyses for decision-making. The aim of this study was to evaluate the cost-effectiveness of ribociclib plus letrozole compared with palbociclib plus letrozole or letrozole as monotherapy for first-line treatment of postmenopausal women with HR+/HER2- locally advanced or metastatic BC (aBC) from a Brazilian private healthcare system perspective. METHODS A model including progression-free survival (PFS), progressed disease, and death health states was used to simulate lifetime costs and outcomes. PFS and overall survival were derived from the MONALEESA-2 trial (lifetime horizon). Healthcare costs included drug acquisition and monitoring, subsequent therapies, adverse events, and end-of-life costs. Effectiveness was measured in quality-adjusted life-years (QALYs). Deterministic and probabilistic sensitivity analyses were performed. RESULTS The total cost of treatment with ribociclib plus letrozole was USD 72,091.82 versus USD 92,749.64 for palbociclib plus letrozole. Total QALYs were 3.30 and 3.16, respectively. Base-case analysis showed ribociclib as dominant over palbociclib in first-line treatment of women with HR+/HER2- aBC, associated with cost savings and QALY gains. The total cost of treatment with ribociclib plus letrozole was USD 83,058.73 versus USD 29,215.10 for letrozole. Total QALYs were 3.84 and 2.61, respectively. Compared with letrozole, ribociclib plus letrozole was associated with an incremental cost of USD 53,843.64 and an incremental QALY gain of 1.23, with incremental cost-effectiveness ratio of USD 43,826.91 per QALY gained. CONCLUSIONS As demonstrated by the cost-effectiveness dominance over palbociclib, ribociclib results in savings when used as first-line treatment in postmenopausal women with HR+/HER2- aBC, warranting incorporation in the private healthcare system.
Collapse
Affiliation(s)
- Anna Maria Buehler
- Strategic Market Access & HEOR – Breast Cancer Franchise, Novartis Biociências S.A., Av Professor Vicente Rao, 90, São Paulo, SP 04636-000, Brazil
| | - Gabriela Castilho
- Launches & Strategy Oncology BU Board - Novartis Biociências S.A., São Paulo, SP, Brazil
| | | | - Stephen Stefani
- Oncoclínicas, Unimed Central Rio Grande do Sul, Canoas, RS, Brazil
| |
Collapse
|
9
|
Gumusay O, Vitiello PP, Wabl C, Corcoran RB, Bardelli A, Rugo HS. Strategic Combinations to Prevent and Overcome Resistance to Targeted Therapies in Oncology. Am Soc Clin Oncol Educ Book 2020; 40:e292-e308. [PMID: 32453634 DOI: 10.1200/edbk_280845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in the understanding of underlying molecular signaling mechanisms of cancer susceptibility and progression have led to an increase in the use of targeted therapies for cancer treatment. Despite improvements in survival with new treatment options in oncology, resistance to therapy is a major obstacle to the long-term effectiveness of targeted agents in metastatic cancer treatment, culminating in insensitivity to treatment and tumor outgrowth. Adaptive resistance can play an important role in primary and upfront resistance to therapy as well as in secondary or acquired resistance. By focusing on colorectal and breast tumors, we discuss how therapeutic combinations based on specific drivers of tumor biology can be used to overcome resistance. We present how monitoring tumor dynamics over time may allow early adaptation of treatment. Breast cancer is the most common malignancy in women worldwide, and the majority of these cancers are sensitive to endocrine therapy (ET) blocking the production of or response to estrogen. However, primary and acquired resistance limits efficacy. Recent combinations of agents targeted to pathways that drive tumor growth resistance with ET have resulted in remarkable improvements in disease response and control, improving survival in some settings. In this review, we summarize adaptive resistance mechanisms, approaches to combination strategies, and dynamic tumor monitoring to improve efficacy and overcome resistance. We provide examples of combination therapy to enhance the efficacy of targeted therapies in breast and colorectal tumors.
Collapse
Affiliation(s)
- Ozge Gumusay
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA.,Department of Internal Medicine, Division of Medical Oncology, Gaziosmanpasa University Faculty of Medicine, Tokat, Turkey
| | - Pietro Paolo Vitiello
- Department of Oncology, University of Torino, Candiolo (TO), Italy.,Dipartimento di Medicina di Precisione, Unità di Oncologia Medica, Università degli Studi della Campania Luigi Vanvitelli, Italy
| | - Chiara Wabl
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | | | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo (TO), Italy.,Candiolo Cancer Institute, Candiolo (TO), Italy
| | - Hope S Rugo
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| |
Collapse
|
10
|
Freitag CE, Mei P, Wei L, Parwani AV, Li Z. Genetic alterations and their association with clinicopathologic characteristics in advanced breast carcinomas: focusing on clinically actionable genetic alterations. Hum Pathol 2020; 102:94-103. [PMID: 32445652 DOI: 10.1016/j.humpath.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Breast carcinomas (BCs) are genetically heterogeneous and associated with numerous mutations which can be used to predict outcomes and initiate targeted therapies. We investigated clinicopathologic characteristics associated with gene mutations detected using the FoundationOne CDx assay in a cohort of 223 clinically advanced BCs (66 locally recurrent and 157 metastatic) from our institution. One hundred fifty unique mutations were identified (total 1008) in the cohort, with the most prevalent (>10%) including TP53 (53.8%), PIK3CA (35%), MYC (22%), CCND1 (19.7%), FGF19 (19.7%), FGF4 (16.6%), FGF3 (16.1%), ZNF703 (14.8%), ESR1 (13.9%), FGFR1 (13.5%), PTEN (12.1%), and CDH1 (10.8%). ERBB2 genetic alteration was most common in human epidermal growth factor receptor 2 (HER2)-positive BCs, and GATA3 and ESR1 mutations were only identified in hormone receptor-positive BC. Mutations enriched in triple-negative BCs (TNBCs) included TP53, PTEN, RB1, and CDKN2A/B. CDH1 mutation was predominantly found in lobular carcinomas, and PIK3CA mutation was also enriched. Mutations enriched in metaplastic carcinomas with heterologous mesenchymal differentiation included TP53, PTEN, MCL1, CDKN2A/B, and NOTCH2. An increase in mutations of CCND1, FGF19, FGF4, FGF3, ESR1, and EMSY was identified in metastatic BCs compared with locally recurrent BCs. Overall, PIK3CA was the most frequent clinically actionable genetic alteration (35%), followed by MYC (22%), CCND1 (19.7%), and FGF3/FGF4/FGFR1 (16%). In conclusion, our study provides genetic insight into the biology of advanced BCs and summarizes their most frequent clinically actionable genetic alterations, generating useful genomic information for potential improvement of patient management.
Collapse
Affiliation(s)
- Cody Eric Freitag
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ping Mei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Lai Wei
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Anil V Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Biswal NC, Fu X, Jagtap JM, Shea MJ, Kumar V, Lords T, Roy R, Schiff R, Joshi A. In vivo longitudinal imaging of RNA interference-induced endocrine therapy resistance in breast cancer. JOURNAL OF BIOPHOTONICS 2020; 13:e201900180. [PMID: 31595691 PMCID: PMC9229172 DOI: 10.1002/jbio.201900180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 05/04/2023]
Abstract
Endocrine therapy resistance in breast cancer is a major obstacle in the treatment of patients with estrogen receptor-positive (ER+) tumors. Herein, we demonstrate the feasibility of longitudinal, noninvasive and semiquantitative in vivo molecular imaging of resistance to three endocrine therapies by using an inducible fluorescence-labeled short hairpin RNA (shRNA) system in orthotopic mice xenograft tumors. We employed a dual fluorescent doxycycline (Dox)-regulated lentiviral inducer system to transfect ER+ MCF7L breast cancer cells, with green fluorescent protein (GFP) expression as a marker of transfection and red fluorescent protein (RFP) expression as a surrogate marker of Dox-induced tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) knockdown. Xenografted MCF7L tumor-bearing nude mice were randomized to therapies comprising estrogen deprivation, tamoxifen or an ER degrader (fulvestrant) and an estrogen-treated control group. Longitudinal imaging was performed by a home-built multispectral imaging system based on a cooled image intensified charge coupled device camera. The GFP signal, which corresponds to number of viable tumor cells, exhibited excellent correlation to caliper-measured tumor size (P << .05). RFP expression was substantially higher in mice exhibiting therapy resistance and strongly and significantly (P < 1e-7) correlated with the tumor size progression for the mice with shRNA-induced PTEN knockdown. PTEN loss was strongly correlated with resistance to estrogen deprivation, tamoxifen and fulvestrant therapies.
Collapse
Affiliation(s)
- Nrusingh C. Biswal
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence Nrusingh C. Biswal, Department of Radiation Oncology, University of Maryland, Baltimore, 850. W Baltimore St, MD 21201, USA,
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jaidip M. Jagtap
- Departments of Biomedical Engineering and Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Martin J. Shea
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vijetha Kumar
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamika Lords
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronita Roy
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amit Joshi
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Biomedical Engineering and Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Chen X, Xu D, Li X, Zhang J, Xu W, Hou J, Zhang W, Tang J. Latest Overview of the Cyclin-Dependent Kinases 4/6 Inhibitors in Breast Cancer: The Past, the Present and the Future. J Cancer 2019; 10:6608-6617. [PMID: 31777590 PMCID: PMC6856891 DOI: 10.7150/jca.33079] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
Endocrine resistance in hormone receptor positive breast cancer patients urges us to develop novel approaches such as inhibitors of the cyclin-dependent kinases (CDK) 4/6 to reverse its resistance. Nowadays, three selective CDK4/6 inhibitors (Palbociclib, Ribociclib and Abemaciclib) are approved by Federal Drug Administration and the European Medicines Agency for the treatment of advanced and metastatic HR+/HER2- breast cancer. However, no consistent conclusion has been reached to its application in other types of breast cancer. Therefore, the purpose of our study was to overview the clinical trials about the beneficial effects of Palbociclib, Ribociclib and Abemaciclib in breast cancer with their tolerable adverse effects, and discuss their resistant mechanisms thus looking for useful biomarkers to predict the efficiency of the CDK4/6 inhibitors. The CDK4/6 inhibitors application after the support of preclinic and clinic data will be helpful to provide other alternatively suitable strategies for different types of breast cancer patients.
Collapse
Affiliation(s)
- Xiu Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Di Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingjiang Li
- Changzhou Wujin People's Hospital, Changzhou, Jiangsu, China
| | - Jian Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weilin Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junchen Hou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Flashner-Abramson E, Vasudevan S, Adejumobi IA, Sonnenblick A, Kravchenko-Balasha N. Decoding cancer heterogeneity: studying patient-specific signaling signatures towards personalized cancer therapy. Theranostics 2019; 9:5149-5165. [PMID: 31410207 PMCID: PMC6691586 DOI: 10.7150/thno.31657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/05/2019] [Indexed: 01/25/2023] Open
Abstract
The past years have witnessed a rapid increase in the amount of large-scale tumor datasets. The challenge has now become to find a way to obtain useful information from these masses of data that will allow to determine which combination of FDA-approved drugs is best suited to treat the specific tumor. Various statistical analyses are being developed to extract significant signals from cancer datasets. However, tumors are still being assigned to pre-defined categories (breast luminal A, triple negative, etc.), conceptually contradicting the vast heterogeneity that is known to exist among tumors, and likely overlooking unique tumors that must be addressed and treated individually. We present herein an approach based on information theory that, rather than searches for what makes a tumor similar to other tumors, addresses tumors individually and unbiasedly, and impartially decodes the critical patient-specific molecular network reorganization in every tumor. Methods: Using a large dataset obtained from ~3500 tumors of 11 types we decipher the altered protein network structure in each tumor, namely the patient-specific signaling signature. Each signature can harbor several altered protein subnetworks. We suggest that simultaneous targeting of central proteins from every altered subnetwork is essential to efficiently disturb the altered signaling in each tumor. We experimentally validate our ability to dissect sample-specific signaling signatures and to rationally design personalized drug combinations. Results: We unraveled a surprisingly simple order that underlies the extreme apparent complexity of tumor tissues, demonstrating that only 17 altered protein subnetworks characterize ~3500 tumors of 11 types. Each tumor was described by a specific subset of 1-4 subnetworks out of 17, i.e. a tumor-specific altered signaling signature. We show that the majority of tumor-specific signaling signatures are extremely rare, and are shared by only 5 tumors or less, supporting a personalized, comprehensive study of tumors in order to design the optimal combination therapy for every patient. We validate the results by confirming that the processes identified in the 11 original cancer types characterize patients harboring a different cancer type as well. We show experimentally, using different cancer cell lines, that the individualized combination therapies predicted by us achieved higher rates of killing than the clinically prescribed treatments. Conclusions: We present a new strategy to deal with the inter-tumor heterogeneity and to break down the high complexity of cancer systems into simple, easy to crack, patient-specific signaling signatures that guide the rational design of personalized drug therapies.
Collapse
|
14
|
Tyran M, Carbuccia N, Garnier S, Guille A, Adelaïde J, Finetti P, Toulzian J, Viens P, Tallet A, Goncalves A, Metellus P, Birnbaum D, Chaffanet M, Bertucci F. A Comparison of DNA Mutation and Copy Number Profiles of Primary Breast Cancers and Paired Brain Metastases for Identifying Clinically Relevant Genetic Alterations in Brain Metastases. Cancers (Basel) 2019; 11:cancers11050665. [PMID: 31086113 PMCID: PMC6562582 DOI: 10.3390/cancers11050665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/15/2022] Open
Abstract
Improving the systemic treatment of brain metastases (BM) in primary breast cancer (PBC) is impaired by the lack of genomic characterization of BM. To estimate the concordance of DNA copy-number-alterations (CNAs), mutations, and actionable genetic alterations (AGAs) between paired samples, we performed whole-genome array-comparative-genomic-hybridization, and targeted-next-generation-sequencing on 14 clinical PBC–BM pairs. We found more CNAs, more mutations, and higher tumor mutational burden, and more AGAs in BM than in PBC; 92% of the pairs harbored at least one AGA in the BM not observed in the paired PBC. This concerned various therapeutic classes, including tyrosine-kinase-receptor-inhibitors, phosphatidylinositol 3-kinase/AKT/ mammalian Target of Rapamycin (PI3K/AKT/MTOR)-inhibitors, poly ADP ribose polymerase (PARP)-inhibitors, or cyclin-dependent kinase (CDK)-inhibitors. With regards to the PARP-inhibitors, the homologous recombination defect score was positive in 79% of BM, compared to 43% of PBC, discordant in 7 out of 14 pairs, and positive in the BM in 5 out of 14 cases. CDK-inhibitors were associated with the largest percentage of discordant AGA appearing in the BM. When considering the AGA with the highest clinical-evidence level, for each sample, 50% of the pairs harbored an AGA in the BM not detected or not retained from the analysis of the paired PBC. Thus, the profiling of BM provided a more reliable opportunity, than that of PBC, for diagnostic decision-making based on genomic analysis. Patients with BM deserve an investigation of several targeted therapies.
Collapse
Affiliation(s)
- Marguerite Tyran
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département de Radiothérapie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Nadine Carbuccia
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Séverine Garnier
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Arnaud Guille
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - José Adelaïde
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Julien Toulzian
- Département d'Anatomopathologie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Patrice Viens
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| | - Agnès Tallet
- Département de Radiothérapie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Anthony Goncalves
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| | - Philippe Metellus
- Département de Neurochirurgie et de Neuro-oncologie, Hôpital Privé Clairval, Ramsay-Générale de Santé and Institut de Neurophysiopathologie Equipe 10, UMR0751, CNRS, 13009 Marseille, France.
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Max Chaffanet
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| |
Collapse
|
15
|
Yang RM, Nanayakkara D, Kalimutho M, Mitra P, Khanna KK, Dray E, Gonda TJ. MYB regulates the DNA damage response and components of the homology-directed repair pathway in human estrogen receptor-positive breast cancer cells. Oncogene 2019; 38:5239-5249. [PMID: 30971760 DOI: 10.1038/s41388-019-0789-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 11/09/2022]
Abstract
Over 70% of human breast cancers are estrogen receptor-positive (ER+), most of which express MYB. In these and other cell types, the MYB transcription factor regulates the expression of many genes involved in cell proliferation, differentiation, tumorigenesis, and apoptosis. So far, no clear link has been established between MYB and the DNA damage response in breast cancer. Here, we found that silencing MYB in the ER+ breast cancer cell line MCF-7 led to increased DNA damage accumulation, as marked by increased γ-H2AX foci following induction of double-stranded breaks. We further found that this was likely mediated by decreased homologous recombination-mediated repair (HRR), since silencing MYB impaired the formation of RAD51 foci in response to DNA damage. Moreover, cells depleted for MYB exhibited reduced expression of several key genes involved in HRR including BRCA1, PALB2, and TOPBP1. Taken together, these data imply that MYB and its targets play an important role in the response of ER+ breast cancer cells to DNA damage, and suggest that induction of DNA damage along with inhibition of MYB activity could offer therapeutic benefits for ER+ breast cancer and possibly other cancer types.
Collapse
Affiliation(s)
- Ren-Ming Yang
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia.,Keck School of Medicine at the Children's Hospital Los Angeles Campus, University of Southern California, Los Angeles, CA, 90027, USA
| | - Devathri Nanayakkara
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Murugan Kalimutho
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Partha Mitra
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, TRI, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Eloise Dray
- Institute of Health and Biomedical Innovations, QUT at the Translational Research Institute, Brisbane, QLD, 4102, Australia. .,Mater Research/UQ at the Translational Research Institute, Brisbane, QLD, 4102, Australia. .,University of Texas Health, San Antonio, Department of Biochemistry and Structural Biology, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Thomas J Gonda
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia. .,University of South Australia Cancer Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
16
|
Vendrell JA, Solassol J, Győrffy B, Vilquin P, Jarlier M, Donini CF, Gamba L, Maudelonde T, Rouanet P, Cohen PA. Evaluating ZNF217 mRNA Expression Levels as a Predictor of Response to Endocrine Therapy in ER+ Breast Cancer. Front Pharmacol 2019; 9:1581. [PMID: 30740056 PMCID: PMC6355665 DOI: 10.3389/fphar.2018.01581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
ZNF217 is a candidate oncogene with a wide variety of deleterious functions in breast cancer. Here, we aimed at investigating in a pilot prospective study the association between ZNF217 mRNA expression levels and the clinical response to neoadjuvant endocrine therapy (ET) in postmenopausal ER-positive (ER+) breast cancer patients. Core surgical biopsy samples before treatment initiation and post-treatment were obtained from 68 patients, and Ki-67 values measured by immunohistochemistry (IHC) were used to identify responders (n = 59) and non-responders (n = 9) after 4 months of ET. We report for the first time that high ZNF217 mRNA expression level measured by RT-qPCR in the initial tumor samples (pre-treatment) is associated with poor response to neoadjuvant ET. Indeed, the clinical positive response rate in patients with low ZNF217 expression levels was significantly higher than that in those with high ZNF217 expression levels (P = 0.027). Additionally, a retrospective analysis evaluating ZNF217 expression levels in primary breast tumor of ER+/HER2-/LN0 breast cancer patients treated with adjuvant ET enabled the identification of poorer responders prone to earlier relapse (P = 0.013), while ZNF217 did not retain any prognostic value in the ER+/HER2-/LN0 breast cancer patients who did not receive any treatment. Altogether, these data suggest that ZNF217 expression might be predictive of clinical response to ET.
Collapse
Affiliation(s)
- Julie A Vendrell
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Jérôme Solassol
- Département de Pathologie et Oncobiologie, Laboratoire de Biologie des Tumeurs Solides, CHU Montpellier, University of Montpellier, Montpellier, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Montpellier, France
| | - Balázs Győrffy
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.,MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Paul Vilquin
- Département de Pathologie et Oncobiologie, Laboratoire de Biologie des Tumeurs Solides, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Marta Jarlier
- Biometrics Unit, Institut du Cancer de Montpellier, University of Montpellier, Montpellier, France
| | - Caterina F Donini
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Laurent Gamba
- Département de Pathologie et Oncobiologie, Laboratoire de Biologie des Tumeurs Solides, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Thierry Maudelonde
- Département de Pathologie et Oncobiologie, Laboratoire de Biologie des Tumeurs Solides, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Philippe Rouanet
- Département de Chirurgie Oncologique, Institut du Cancer de Montpellier, University of Montpellier, Montpellier, France
| | - Pascale A Cohen
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
17
|
Zhang T, Feng F, Zhao W, Yao Y, Tian J, Zhou C, Zang C, Liu C, Wang X, Sun C. Comparative efficacy of different targeted therapies plus fulvestrant for advanced breast cancer following progression on prior endocrine therapy: a network meta-analysis. Cancer Manag Res 2018; 10:5869-5880. [PMID: 30510455 PMCID: PMC6248378 DOI: 10.2147/cmar.s176172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background We performed a network meta-analysis of randomized controlled trials (RCTs) to indirectly compare the efficacy of different targeted agents with fulvestrant for patients with hormone-receptor-positive (HR+) and human epidermal growth factor receptor type 2-negative (HER2-) advanced breast cancer (ABC) following progression on prior endocrine therapy. Methods The titles/abstracts were searched from the PubMed, EMBASE, and the Cochrane Library databases for RCTs to evaluate the efficacy of palbociclib plus fulvestrant vs alternative targeted therapies plus fulvestrant for postmenopausal HR+/HER2- ABC following progression on prior endocrine therapy. In addition, the primary measured outcome was progression-free survival (PFS) and objective response rate. The surface under the cumulative ranking (SUCRA) value of each treatment was calculated to achieve the best ranking for each treatment. Results A total of 11 studies, including 4,178 patients in the network meta-analysis, were included and analyzed. In terms of the pooled hazard ratios (HRs) for PFS, palbociclib plus fulvestrant was superior to other target agents plus fulvestrant (HR=0.62, 95% credible interval [CrI]: 0.40-0.96; HR=0.62, 95% CrI: 0.47-0.96; for pictilisib plus fulvestrant and buparlisib plus fulvestrant, respectively). Ribociclib plus fulvestrant has no difference in abemaciclib plus fulvestrant and palbociclib plus fulvestrant (HR =1.02, 95% CrI =0.72-1.45; HR =1.22, 95% CrI =0.84-1.78). In terms of objective response rate, compared with placebo plus fulvestrant, abemaciclib plus fulvestrant, dovitinib plus fulvestrant, buparlisib plus fulvestrant, and palbociclib plus fulvestrant had a significant difference (odds ratio [OR] =2.84, 95% CrI =1.91- 4.31; OR =3.62, 95% CrI =1.21-12.48; OR =1.80, 95% CrI =1.25-2.60; and OR =2.52, 95% CrI =1.43- 4.72, respectively). Conclusion According to the present study, palbociclib plus fulvestrant may be the optimal treatment for HR+/HER2- postmenopausal women with ABC after disease progression following endocrine therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, People's Republic of China,
| | - Wenge Zhao
- Clinical Medical College, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Yan Yao
- Clinical Medical College, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, People's Republic of China,
| | - Chuanxin Zang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xue Wang
- Medical Colleges, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, People's Republic of China, .,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China,
| |
Collapse
|
18
|
Stires H, Heckler MM, Fu X, Li Z, Grasso CS, Quist MJ, Lewis JA, Klimach U, Zwart A, Mahajan A, Győrffy B, Cavalli LR, Riggins RB. Integrated molecular analysis of Tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities. Mol Cell Endocrinol 2018; 471:105-117. [PMID: 28935545 PMCID: PMC5858970 DOI: 10.1016/j.mce.2017.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/26/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022]
Abstract
Invasive lobular breast cancer (ILC) is an understudied malignancy with distinct clinical, pathological, and molecular features that distinguish it from the more common invasive ductal carcinoma (IDC). Mounting evidence suggests that estrogen receptor-alpha positive (ER+) ILC has a poor response to Tamoxifen (TAM), but the mechanistic drivers of this are undefined. In the current work, we comprehensively characterize the SUM44/LCCTam ILC cell model system through integrated analysis of gene expression, copy number, and mutation, with the goal of identifying actionable alterations relevant to clinical ILC that can be co-targeted along with ER to improve treatment outcomes. We show that TAM has several distinct effects on the transcriptome of LCCTam cells, that this resistant cell model has acquired copy number alterations and mutations that impinge on MAPK and metabotropic glutamate receptor (GRM/mGluR) signaling networks, and that pharmacological inhibition of either improves or restores the growth-inhibitory actions of endocrine therapy.
Collapse
Affiliation(s)
- Hillary Stires
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Mary M Heckler
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zhao Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Joseph A Lewis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Uwe Klimach
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alan Zwart
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Akanksha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Luciane R Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
19
|
Steenbruggen TG, van Ramshorst MS, Kok M, Linn SC, Smorenburg CH, Sonke GS. Neoadjuvant Therapy for Breast Cancer: Established Concepts and Emerging Strategies. Drugs 2018; 77:1313-1336. [PMID: 28616845 DOI: 10.1007/s40265-017-0774-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the last decade, the systemic treatment approach for patients with early breast cancer has partly shifted from adjuvant treatment to neoadjuvant treatment. Systemic treatment administration started as a 'one size fits all' approach but is currently customized according to each breast cancer subtype. Systemic treatment in a neoadjuvant setting is at least as effective as in an adjuvant setting and has several additional advantages. First, it enables response monitoring and provides prognostic information; second, it downstages the tumor, allowing for less extensive surgery, improved cosmetic outcomes, and reduced postoperative complications such as lymphedema; and third, it enables early development of new treatment strategies by using pathological complete remission as a surrogate outcome of event-free and overall survival. In this review we give an overview of the current standard of neoadjuvant systemic treatment strategies for the three main subtypes of breast cancer: hormone receptor-positive, triple-negative, and human epidermal growth factor receptor 2-positive. Additionally, we summarize drugs that are under investigation for use in the neoadjuvant setting.
Collapse
Affiliation(s)
- Tessa G Steenbruggen
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Mette S van Ramshorst
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Marleen Kok
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Sabine C Linn
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Carolien H Smorenburg
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Petrossian K, Nguyen D, Lo C, Kanaya N, Somlo G, Cui YX, Huang CS, Chen S. Use of dual mTOR inhibitor MLN0128 against everolimus-resistant breast cancer. Breast Cancer Res Treat 2018; 170:499-506. [PMID: 29623577 DOI: 10.1007/s10549-018-4779-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/31/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE HR+/HER2- aromatase inhibitor-resistant metastatic breast cancer can be treated with everolimus and a second AI until the cancer recurs. Targeting these everolimus-resistant patients with the latest standard of care, CDK4/6 inhibitors, has not been clearly addressed. Understanding the signaling transduction pathways, which everolimus resistance activates, will elucidate the mechanisms and offer treatment strategies of everolimus resistance. METHODS To mimic the clinical setting, letrozole-resistant cells were used to generate an everolimus-resistant model (RAD-R). Reverse phase protein array (RPPA) was performed to reveal changes in the signaling transduction pathways, and expression levels of key proteins were analyzed. Inhibitors targeting the major signaling pathways, a CDK4/6 inhibitor palbociclib and a mTORC1/2 inhibitor (MLN0128), were evaluated to establish resistance mechanisms of RAD-R. RESULTS RPPA results from RAD-R indicated changes to significant regulatory pathways and upregulation of p-AKT expression level associating with everolimus resistance. MLN0128, that inhibits the AKT phosphorylation, effectively suppressed the proliferation of RAD-R cells while treatment with palbociclib had no effect. CONCLUSION Among the many signaling transduction pathways, which are altered post everolimus resistance, targeting dual mTORC1/2 is a possible option for patients who have recurrent disease from previous everolimus treatment.
Collapse
Affiliation(s)
- Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Kaplan CRB, Room 2002C, Duarte, CA, USA
| | - Duc Nguyen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Kaplan CRB, Room 2002C, Duarte, CA, USA
| | - Chiao Lo
- Department of Breast Health, National Taiwan University Hospital, Taipei City, Taiwan
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Kaplan CRB, Room 2002C, Duarte, CA, USA
| | - George Somlo
- Department of Medical Oncology and Therapeutics Research, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Yvonne Xiaoyong Cui
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Kaplan CRB, Room 2002C, Duarte, CA, USA
| | - Chiun-Sheng Huang
- Department of Breast Health, National Taiwan University Hospital, Taipei City, Taiwan
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Kaplan CRB, Room 2002C, Duarte, CA, USA.
| |
Collapse
|
21
|
Abotaleb M, Kubatka P, Caprnda M, Varghese E, Zolakova B, Zubor P, Opatrilova R, Kruzliak P, Stefanicka P, Büsselberg D. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed Pharmacother 2018; 101:458-477. [PMID: 29501768 DOI: 10.1016/j.biopha.2018.02.108] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the second greatest cause of death among women worldwide; it comprises a group of heterogeneous diseases that evolves due to uncontrolled cellular growth and differentiation and the loss of normal programmed cell death. There are different molecular sub-types of breast cancer; therefore, various options are selected for treatment of different forms of metastatic breast cancer. However, the use of chemotherapeutic drugs is usually accompanied by deleterious side effects and the development of drug resistance when applied for a longer period. This review offers a classification of these chemotherapeutic agents according to their modes of action and therefore improves the understanding of molecular targets that are affected during treatment. Overall, it will allow the clinician to identify more specific targets to increase the effectiveness of a drug and to reduce general toxicity, resistance and other side effects.
Collapse
Affiliation(s)
- Mariam Abotaleb
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia; Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Medical Faculty, Comenius University in Bratislava, Bratislava, Slovakia
| | - Elizabeth Varghese
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Barbora Zolakova
- Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Clinic of Gynecology and Obsterics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Peter Kruzliak
- Department of Internal Medicine, Brothers of Mercy Hospital, Brno, Czech Republic; 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic.
| | - Patrik Stefanicka
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Comenius University and University Hospital, Antolska 11, 851 07, Bratislava, Slovakia.
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar.
| |
Collapse
|
22
|
S.M. FMB, Chitra K, Joseph B, Sundararajan R, S. H. Gelidiella acerosa inhibits lung cancer proliferation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:104. [PMID: 29558998 PMCID: PMC5861612 DOI: 10.1186/s12906-018-2165-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/09/2018] [Indexed: 12/04/2022]
Abstract
BACKGROUND Lung adenocarcinoma is the most common subtype of Non small cell lung cancer in which the PI3K/Akt cascade is frequently deregulated. The ubiquitous expression of the PI3K and the frequent inactivation of PTEN accounts for the prolonged survival, evasion of apoptosis and metastasis in cancer. This has led to the development of PI3K inhibitors in the treatment of cancer. Synthetic PI3K inhibitors undergoing clinical and preclinical studies are toxic in animals. Hence, there is a critical need to identify PI3K inhibitor(s) of natural origin. The current study aims to explore the efficacy of the red algae Gelidiella acerosaon inhibition of cell proliferation, migration and the expression of cell survival genes in lung adenocarcinoma cell line A549. METHODS The phytoconstituents of Gelidiella acerosa were extracted sequentially with solvents of different polarity, screened qualitatively and quantitatively for secondary metabolites and characterized by GC-MS. The in-vitro studies were performed to check the efficacy of the extract on cell proliferation (MTT assay), cell invasion (scratch assay and colony formation assay), apoptosis (fluorescent, confocal microscopy and flow cytometry) and expression of apoptosis and cell survival proteins including PI3K, Akt and GSK3β and matrix metalloproteinase MMP2 and MMP9 by Western blot method. The antitumor activity of GAE was analyzed in a tumor model of Zebrafish. RESULTS The outcomes of the in vitro analysis showed an inhibition of cell proliferation, induction of apoptosis, inhibition of cell migration and colonization by the crude extract. The analysis of protein expression showed the activation of caspases 3 and Pro apoptotic protein Bax accompanied by decreased expression of Bcl-2 and Bcl-XL. On the other hand, subsequent activation of GSK3β and down regulation of PI3K, Akt were observed. The decreased expression of MMP2 correlated with the antimetastatic activity of the extract. The in vivo studies showed an inhibition of tumor growth by GAE in Zebrafish. CONCLUSION The phytoconstituents of algal extract contributed to the anticancer properties as evidenced by in vitro and in vivo studies. These phytoconstituents can be considered as a natural source of PI3K/Akt inhibitor for treatment of cancers involving the PI3K cascade.
Collapse
Affiliation(s)
| | | | | | - Raji Sundararajan
- School of Engineering Technology, Purdue university, West Lafayette, IN 47907 USA
| | - Hemalatha S.
- School of Life Sciences, B.S. Abdur Rahman Crescent University, Chennai, 600048 India
| |
Collapse
|
23
|
Householder KT, DiPerna DM, Chung EP, Luning AR, Nguyen DT, Stabenfeldt SE, Mehta S, Sirianni RW. pH driven precipitation of quisinostat onto PLA-PEG nanoparticles enables treatment of intracranial glioblastoma. Colloids Surf B Biointerfaces 2018. [PMID: 29533842 PMCID: PMC6581030 DOI: 10.1016/j.colsurfb.2018.02.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone deacetylases (HDACs) are known to be key enzymes in cancer development and progression through their modulation of chromatin structure and the expression and post-translational modification of numerous proteins. Aggressive dedifferentiated tumors, like glioblastoma, frequently overexpress HDACs, while HDAC inhibition can lead to cell cycle arrest, promote cellular differentiation and induce apoptosis. Although multiple HDAC inhibitors, such as quisinostat, are of interest in oncology due to their potent in vitro efficacy, their failure in the clinic as monotherapies against solid tumors has been attributed to poor delivery. Thus, we were motivated to develop quisinostat loaded poly(D,L-lactide)-b-methoxy poly(ethylene glycol) nanoparticles (NPs) to test their ability to treat orthotopic glioblastoma. In developing our NP formulation, we identified a novel, pH-driven approach for achieving over 9% (w/w) quisinostat loading. We show quisinostat-loaded NPs maintain drug potency in vitro and effectively slow tumor growth in vivo, leading to a prolonged survival compared to control mice.
Collapse
Affiliation(s)
- Kyle T Householder
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA; School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Danielle M DiPerna
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Eugene P Chung
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Anne Rosa Luning
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Duong T Nguyen
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Shwetal Mehta
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA; School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA.
| |
Collapse
|
24
|
Abstract
Endocrine therapy (ET) of hormone receptor (HR)-positive and human epidermal growth factor receptor 2-(HER2)-negative metastatic breast cancer (MBC) historically focused on estrogen deprivation and antagonism. The identification of several intracellular pathways promoting resistance to antiestrogen therapy led to the introduction of novel endocrine drug combinations that reformed treatment schema and expanded therapeutic options. There is no doubt that efforts to overcome or delay resistance to ET are fruiting, particularly with the introduction of cyclin-dependent kinase 4/6 inhibitors such as palbociclib and ribociclib, and mechanistic target of rapamycin inhibitors such as everolimus. Although still considered incurable by currently available treatment modalities, many patients with MBC nowadays enjoy several years of good quality life coupled with decent tumor control. The diversity of therapies and unusual pattern of side effects can be quite perplexing to the treating physician. The sequence of variable agents and management of side effects, in addition to the timing of initiation of cytotoxic chemotherapy, is among the challenges faced by oncologists. In this review, we shed a spotlight on mechanisms of resistance to ET, and provide a review of landmark studies that have recently reshaped the landscape of treatment options for patients with metastatic HR-positive, HER2-negative MBC. A suggested treatment strategy for newly diagnosed patients is also discussed herein.
Collapse
Affiliation(s)
- Mohamad Adham Salkeni
- Department of Medicine, West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Samantha June Hall
- Department of Medicine, West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| |
Collapse
|
25
|
Sonke GS, Hart LL, Campone M, Erdkamp F, Janni W, Verma S, Villanueva C, Jakobsen E, Alba E, Wist E, Favret AM, Bachelot T, Hegg R, Wheatley-Price P, Souami F, Sutradhar S, Miller M, Germa C, Burris HA. Ribociclib with letrozole vs letrozole alone in elderly patients with hormone receptor-positive, HER2-negative breast cancer in the randomized MONALEESA-2 trial. Breast Cancer Res Treat 2017; 167:659-669. [PMID: 29058175 PMCID: PMC5807486 DOI: 10.1007/s10549-017-4523-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 12/29/2022]
Abstract
Purpose Determine the efficacy and safety of first-line ribociclib plus letrozole in elderly patients with HR+, HER2− advanced breast cancer. Methods 668 postmenopausal women with HR+, HER2− advanced breast cancer and no prior systemic therapy for advanced disease were enrolled in the Phase III MONALEESA-2 trial (NCT01958021); 295 patients were aged ≥ 65 years. Patients were randomized to ribociclib (600 mg/day; 3-weeks-on/1-week-off) plus letrozole (2.5 mg/day) or placebo plus letrozole until disease progression, unacceptable toxicity, death, or treatment discontinuation. The primary endpoint was PFS, which was evaluated in elderly (≥ 65 years) and younger (< 65 years) patients. Secondary endpoints included response rates and safety. Results Ribociclib plus letrozole significantly improved PFS vs placebo plus letrozole in elderly (hazard ratio: 0.608; 95% CI 0.394–0.937) and younger patients (hazard ratio: 0.523; 95% CI 0.378–0.723). Overall response rates were numerically higher in the ribociclib vs placebo arm, regardless of age. Ribociclib plus letrozole was well tolerated in elderly patients, with the safety profile similar to the overall study population. Nausea, vomiting, alopecia, and diarrhea were > 10% more frequent in the ribociclib plus letrozole vs placebo plus letrozole arm in both subgroups; most events were grade 1/2. In elderly patients, grade 1/2 anemia and fatigue were > 10% more frequent in the ribociclib plus letrozole vs placebo plus letrozole arm and discontinuation rates were similar in both arms. Conclusions Addition of ribociclib to letrozole is a valid therapeutic option for elderly patients with HR+, HER2− advanced breast cancer in the first-line setting.
Collapse
Affiliation(s)
- Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute/BOOG Study Center, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Lowell L Hart
- Florida Cancer Specialists, 8931 Colonial Center Dr Suite 300, Fort Myers, FL, 33905, USA.,Sarah Cannon Research Institute, 250 25th Avenue North #100, Nashville, TN, 37203, USA
| | - Mario Campone
- Institut de Cancérologie de l'Ouest - René Gauducheau Centre de Recherche en Cancérologie, Boulevard Jacques Monod, Nantes, 44805, Saint-Herblain, France
| | - Frans Erdkamp
- Zuyderland Medical Center, Sittard-Geleen/Heerlen, 6162 BG, Geleen, The Netherlands
| | - Wolfgang Janni
- Universitätsklinikum Ulm, Prittwitzstraße 43, 89075, Ulm, Germany
| | - Sunil Verma
- Tom Baker Cancer Centre, 1331 29th Street NW, Calgary, AB, T2N 4N2, Canada
| | - Cristian Villanueva
- University Hospital of Besançon, Hospital Jean-Minjoz, 25000, Besançon, France
| | - Erik Jakobsen
- Lillebælt Hospital, Kabbeltoft 25, 7100, Vejle, Denmark
| | - Emilio Alba
- Hospital Universitario Virgen de la Victoria, IBIMA, 29010, Málaga, Spain
| | - Erik Wist
- Oslo University Hospital, Ullernchausseen 70 Radiumhospitalet, 0379, Oslo, Norway
| | - Anne M Favret
- Virginia Cancer Specialists PC, US Oncology, 8503 Arlington Blvd #400, Fairfax, VA, 22031, USA
| | - Thomas Bachelot
- Centre Léon Bérard, 28 Prom. Léa et Napoléon Bullukian, 69008, Lyon, France
| | - Roberto Hegg
- Hospital Pérola Byington Centro de Referência da Saúde da Mulher, Av. Brigadeiro Luís Antônio, 683-Bela Vista, São Paulo, SP, 01317-000, Brazil
| | - Paul Wheatley-Price
- Ottawa Hospital Research Institute, University of Ottawa, 501, Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | | | - Santosh Sutradhar
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936, USA
| | - Michelle Miller
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936, USA
| | - Caroline Germa
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936, USA
| | - Howard A Burris
- Sarah Cannon Research Institute, 250 25th Avenue North #100, Nashville, TN, 37203, USA
| |
Collapse
|
26
|
Mayer S, Erbes T, Timme-Bronsert S, Jaeger M, Rücker G, Kuf F, Stickeler E, Gitsch G, Hirschfeld M. Clinical relevance of Cyr61 expression in patients with hormone-dependent breast cancer. Oncol Lett 2017; 14:2334-2340. [PMID: 28789451 PMCID: PMC5529991 DOI: 10.3892/ol.2017.6406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/07/2017] [Indexed: 01/13/2023] Open
Abstract
Tumor resistance to endocrine therapy triggers estrogen-independent cancer progression, which is a major obstacle to the successful treatment of hormone receptor positive breast cancer (BC). The underlying molecular mechanisms of endocrine resistance are not fully understood yet. The matricellular protein cysteine-rich angiogenic inducer 61 (Cyr61) is associated with tumor invasiveness and the induction of tumorigenesis in various malignancies in vivo and the induction of estrogen-independence and endocrine therapy resistance in BC. The present study evaluated the potential effects and clinical relevance of Cyr61 expression levels in 67 patients with primary non-metastatic BC. Immunohistochemical analysis of formalin-fixed paraffin-embedded tissue sections was performed, and the association between Cyr61 protein expression and clinicopathological factors and survival was analyzed. Cyr61 overexpression was revealed to be significantly associated with a positive estrogen receptor (ER)/progesterone receptor (PR) status (P=0.016) and to the molecular subtype of BC (P=0.039). Compared with patients without Cyr61 overexpression, patients with Cyr61 overexpression exhibited an increased recurrence rate (30.6 vs. 22.6%) and decreased long-term survival (10-year overall survival, 62.9 vs. 69.7%); however, these associations did not reach statistically significant levels in Cox regression model analysis. Similar results were identified in the subgroup analysis of patients with ER/PR positive BC. These results indicate that Cyr61 serves a role in the development of endocrine therapy resistance in BC and is thus a potential therapeutic target to overcome endocrine therapy resistance. However, additional long-term survival analyses with large patient populations are required.
Collapse
Affiliation(s)
- Sebastian Mayer
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Sylvia Timme-Bronsert
- Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
- Institute of Surgical Pathology, Department of Pathology, Medical Center - University of Freiburg, D-79106 Freiburg, Germany
| | - Markus Jaeger
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Gerta Rücker
- Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
- Institute for Medical Biometry and Statistics, Medical Center - University of Freiburg, D-79106 Freiburg, Germany
| | - Franciska Kuf
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Elmar Stickeler
- Department of Gynecology and Obstetrics, University Medical Center RWTH Aachen, D-52062 Aachen, Germany
| | - Gerald Gitsch
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
- Institute of Veterinary Medicine, University of Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
27
|
Rubovszky G, Horváth Z. Recent Advances in the Neoadjuvant Treatment of Breast Cancer. J Breast Cancer 2017; 20:119-131. [PMID: 28690648 PMCID: PMC5500395 DOI: 10.4048/jbc.2017.20.2.119] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, neoadjuvant therapy for breast cancer has gained considerable therapeutic importance. Despite extensive clinical investigations, it has not yet been clarified whether neoadjuvant therapy would result in improved survival in comparison with the standard adjuvant setting in any subgroups of patients with breast cancer. Chemotherapy is especially effective in the treatment of endocrine insensitive tumors, and such ther-apeutic benefit can be assumed for patients with triple-negative, or hormone receptor-negative and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, dose escalation, modification of the therapeutic regimens according to early tumor response, as well as the optimal sequence of administration are still matters of debate. There is a current debate between clinical experts regarding the concomitant and sequential administration of carboplatin and capecitabine, respectively, as part of the standard neoadjuvant treatment, as well as the use of bevacizumab, as part of the preoperative treatment. In case of HER2 positive tumors, an anti-HER2 agent can be administered as part of the preoperative treatment, and according to preliminary clinical data, dual HER2 blockade can also be reasonable. Further, chemotherapy-free regimens can be justified in highly endocrine sensitive tumors, while immune modulating agents may also gain particular importance in the case of certain subtypes of breast cancer. Several small-molecule targeted therapies are under clinical investigation and are expected to provide new neoadjuvant treatment options. However, novel, more predictive biomarkers are required for further evaluation of the neoadjuvant therapies, as well as the effect of novel targeted agents intended to be incorporated into neoadjuvant therapy.
Collapse
Affiliation(s)
- Gábor Rubovszky
- Department of Medical Oncology and Clinical Pharmacology “B”, National Institute of Oncology, Budapest, Hungary
| | - Zsolt Horváth
- Faculty of Medicine, Institute of Oncology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
28
|
Musolino A, Campone M, Neven P, Denduluri N, Barrios CH, Cortes J, Blackwell K, Soliman H, Kahan Z, Bonnefoi H, Squires M, Zhang Y, Deudon S, Shi MM, André F. Phase II, randomized, placebo-controlled study of dovitinib in combination with fulvestrant in postmenopausal patients with HR +, HER2 - breast cancer that had progressed during or after prior endocrine therapy. Breast Cancer Res 2017; 19:18. [PMID: 28183331 PMCID: PMC5301372 DOI: 10.1186/s13058-017-0807-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/22/2017] [Indexed: 01/22/2023] Open
Abstract
Background Overexpression of fibroblast growth factor receptor 1 (FGFR1), found in ≤8% of hormone receptor–positive (HR+), human epidermal growth factor receptor 2–negative (HER2−) breast cancer cases, is correlated with decreased overall survival and resistance to endocrine therapy (ET). Dovitinib, a potent FGFR inhibitor, has demonstrated antitumor activity in heavily pretreated patients with FGFR pathway–amplified breast cancer. Methods In this randomized, placebo-controlled phase II trial, we evaluated whether the addition of dovitinib to fulvestrant would improve outcomes in postmenopausal patients with HR+, HER2− advanced breast cancer that had progressed during or after prior ET. Patients were stratified by FGF pathway amplification and presence of visceral disease, and they were randomized 1:1 to receive fulvestrant plus dovitinib or placebo. The primary endpoint was progression-free survival (PFS). Results From 15 May 2012 to 26 November 2014, 97 patients from 36 centers were enrolled. The frequency of FGF pathway amplification was lower than anticipated, and the study was terminated early owing to slow accrual of patients with FGF pathway amplification. The median PFS (95% CI) was 5.5 (3.8–14.0) months vs 5.5 (3.5–10.7) months in the dovitinib vs placebo arms, respectively (HR, 0.68; did not meet predefined efficacy criteria). For the FGF pathway–amplified subgroup (n = 31), the median PFS (95% CI) was 10.9 (3.5–16.5) months vs 5.5 (3.5–16.4) months in the dovitinib vs placebo arms, respectively (HR, 0.64; met the predefined superiority criteria). Frequently reported adverse events in the dovitinib (diarrhea, nausea, vomiting, asthenia, and headache) and placebo (diarrhea, fatigue, nausea, and asthenia) arms were mostly low grade. Conclusions The safety profile of dovitinib plus fulvestrant was consistent with the known safety profile of single-agent dovitinib. Dovitinib in combination with fulvestrant showed promising clinical activity in the FGF pathway–amplified subgroup. However, the data reported herein should be interpreted with caution, given that fewer PFS events occurred in the FGF pathway–amplified patients than was expected and that an effect of dovitinib regardless of FGR pathway amplification status cannot be excluded, because the population was smaller than expected. Trial registration ClinicalTrials.gov identifier: NCT01528345. Registered 31 January 2012. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0807-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonino Musolino
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Mario Campone
- Institut de Cancerologie de l'Ouest, René Gauducheau, Saint-Herblain, France
| | | | - Neelima Denduluri
- Virginia Cancer Specialists, US Oncology Research, Arlington, VA, USA
| | - Carlos H Barrios
- Pontificia Universidade Católica do Rio Grande do Sul School of Medicine, Porto Alegre, Brazil
| | - Javier Cortes
- Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Ramon y Cajal University Hospital, Madrid, Spain
| | | | | | | | - Hervé Bonnefoi
- Institut Bergonié Comprehensive Cancer Centre, Université de Bordeaux, Bordeaux, France
| | | | - Yong Zhang
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Michael M Shi
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | |
Collapse
|