1
|
Gibson TM, Karyadi DM, Hartley SW, Arnold MA, Berrington de Gonzalez A, Conces MR, Howell RM, Kapoor V, Leisenring WM, Neglia JP, Sampson JN, Turcotte LM, Chanock SJ, Armstrong GT, Morton LM. Polygenic risk scores, radiation treatment exposures and subsequent cancer risk in childhood cancer survivors. Nat Med 2024; 30:690-698. [PMID: 38454124 PMCID: PMC11029534 DOI: 10.1038/s41591-024-02837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Survivors of childhood cancer are at increased risk for subsequent cancers attributable to the late effects of radiotherapy and other treatment exposures; thus, further understanding of the impact of genetic predisposition on risk is needed. Combining genotype data for 11,220 5-year survivors from the Childhood Cancer Survivor Study and the St Jude Lifetime Cohort, we found that cancer-specific polygenic risk scores (PRSs) derived from general population, genome-wide association study, cancer loci identified survivors of European ancestry at increased risk of subsequent basal cell carcinoma (odds ratio per s.d. of the PRS: OR = 1.37, 95% confidence interval (CI) = 1.29-1.46), female breast cancer (OR = 1.42, 95% CI = 1.27-1.58), thyroid cancer (OR = 1.48, 95% CI = 1.31-1.67), squamous cell carcinoma (OR = 1.20, 95% CI = 1.00-1.44) and melanoma (OR = 1.60, 95% CI = 1.31-1.96); however, the association for colorectal cancer was not significant (OR = 1.19, 95% CI = 0.94-1.52). An investigation of joint associations between PRSs and radiotherapy found more than additive increased risks of basal cell carcinoma, and breast and thyroid cancers. For survivors with radiotherapy exposure, the cumulative incidence of subsequent cancer by age 50 years was increased for those with high versus low PRS. These findings suggest a degree of shared genetic etiology for these malignancy types in the general population and survivors, which remains evident in the context of strong radiotherapy-related risk.
Collapse
Affiliation(s)
- Todd M Gibson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Danielle M Karyadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen W Hartley
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Arnold
- Department of Pathology, Children's Hospital of Colorado, University of Colorado, Denver, CO, USA
| | | | - Miriam R Conces
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Rebecca M Howell
- Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vidushi Kapoor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy M Leisenring
- Cancer Prevention and Clinical Statistics Programs, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joseph P Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lucie M Turcotte
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Aguado-Barrera ME, Sosa-Fajardo P, Gómez-Caamaño A, Taboada-Valladares B, Couñago F, López-Guerra JL, Vega A. Radiogenomics in lung cancer: Where are we? Lung Cancer 2023; 176:56-74. [PMID: 36621035 DOI: 10.1016/j.lungcan.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Huge technological and biomedical advances have improved the survival and quality of life of lung cancer patients treated with radiotherapy. However, during treatment planning, a probability that the patient will experience adverse effects is assumed. Radiotoxicity is a complex entity that is largely dose-dependent but also has important intrinsic factors. One of the most studied is the genetic variants that may be associated with susceptibility to the development of adverse effects of radiotherapy. This review aims to present the current status of radiogenomics in lung cancer, integrating results obtained in association studies of SNPs (single nucleotide polymorphisms) related to radiotherapy toxicities. We conclude that despite numerous publications in this field, methodologies and endpoints vary greatly, making comparisons between studies difficult. Analyzing SNPs from the candidate gene approach, together with the study in cohorts limited by the sample size, has complicated the possibility of having validated results. All this delays the incorporation of genetic biomarkers in predictive models for clinical application. Thus, from all analysed SNPs, only 12 have great potential as esophagitis genetic risk factors and deserve further exploration. This review highlights the efforts that have been made to date in the radiogenomic study of radiotoxicity in lung cancer.
Collapse
Affiliation(s)
- Miguel E Aguado-Barrera
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain
| | - Paloma Sosa-Fajardo
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain
| | - Antonio Gómez-Caamaño
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Begoña Taboada-Valladares
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, C. del Maestro Ángel Llorca 8, 28003, Madrid, Spain
| | - José Luis López-Guerra
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), C. Antonio Maura Montaner s/n, 41013, Seville, Spain
| | - Ana Vega
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain; Biomedical Network on Rare Diseases (CIBERER), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Krebsprädispositions-Screening-Tools zur Vorhersage späterer maligner Erkrankungen bei Überlebenden nach einer Tumorerkrankung im Kindesalter. Strahlenther Onkol 2022; 198:866-868. [DOI: 10.1007/s00066-022-01956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
|
4
|
Jha SK, Imran M, Paudel KR, Mohammed Y, Hansbro P, Dua K. Treating primary lymphoma of the brain in AIDS patients via multifunctional oral nanoparticulate systems. Nanomedicine (Lond) 2022; 17:425-429. [PMID: 35109703 DOI: 10.2217/nnm-2021-0444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical & Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, NSW, 2007, Australia
| | - Yousuf Mohammed
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4102, Australia
| | - Philip Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, NSW, 2007, Australia.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, 2007, Ultimo, Australia
| |
Collapse
|
5
|
Munakata S, Yamamoto T. Application of immunocytochemical and molecular analysis of six genes in liquid-based endometrial cytology. Diagn Cytopathol 2021; 50:8-17. [PMID: 34783431 DOI: 10.1002/dc.24903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Yokohama System of Endometrial Cytology has been used for reporting endometrial cytology, which includes gray zone category, atypical endometrial cells (ATEC), subdivided into ATEC-US and ATEC-AE. ATEC-US has been reported to be correlated with malignancy in nearly 10% of the cases. For accurate diagnosis, application of ancillary techniques on endometrial cytology was investigated. METHODS Thirty-seven liquid based cytological specimens (SurePath™) with diagnosis of ATEC or malignant which have corresponding histological specimens, were subjected to immunocytochemical analysis for β-catenin, ARID1A, and PTEN. Hot spots of mutations for KRAS, BRAF and PIK3CA were evaluated by using i-densy system (ARKRAY). RESULTS In endometrial samples with the diagnosis of ATEC and malignant, aberrant gene expressions and/or gene mutations for β-catenin, ARID1A, PTEN, KRAS, BRAF, and PIK3CA were observed in 32.4, 18.9, 37.8, 18.8, 0, and 37.1%, respectively. When any of the genes had aberrant expression or mutation, only sensitivity was better than that of cytology (77 vs. 53.8%). However, specificity, positive predictive value, negative predictive value, and accuracy was better in cytology than those of ancillary techniques. Increasing rate of abnormality according to the consequent histology results was observed in ARID1A (p = .015). Frequent loss of PTEN immunostaining (45.8%) and PIK3CA mutation (43.5%) was observed in the cases with consequent benign histology results. CONCLUSION In ATEC category of endometrial cytology, gene expression and mutation analysis of six genes were insufficient to aid conventional cytological diagnoses albeit increased sensitivity. Further investigation would be necessary.
Collapse
Affiliation(s)
- Satoru Munakata
- Department of Pathology, Hakodate Municipal Hospital, Hakodate, Hokkaido, Japan
| | - Toshiya Yamamoto
- Department of Obstetrics and Gynecology, Sakai City Hospital Organization, Sakai City Medical Center, Osaka, Japan
| |
Collapse
|
6
|
Kautiainen RJ, Keeler C, Dwivedi B, MacDonald TJ, King TZ. MTHFR single nucleotide polymorphism associated with working memory in pediatric medulloblastoma survivors. Child Neuropsychol 2021; 28:287-301. [PMID: 34448443 DOI: 10.1080/09297049.2021.1970736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background Associations have been found between single nucleotide polymorphisms (SNPs) in the MTHFR gene and cognitive outcomes in cancer survivors. Prior research has demonstrated that the presence of MTHFR SNPs (rs1801131 and rs1801133) in survivors of acute lymphoblastic leukemia (ALL) corresponds to impairments in attention and executive functioning. The current study examines the associations between rs1801131 and/or rs1801133 SNPs and cognitive performance in long-term survivors of medulloblastoma. Procedure: Eighteen pediatric medulloblastoma survivors, on average 12.42 years post-diagnosis, completed the Digit Span Forward, Digit Span Backward, California Verbal Learning Test Trial 1, and Auditory Consonant Trigrams tests. MTHFR SNPs were detected using whole genome sequencing data and custom scripts within R software. Results: Survivors with a rs1801131 SNP performed significantly worse on Digit Span Backward than survivors without this SNP exhibiting a large effect (p = 0.049; d = 0.95). Survivors with a rs1801131 SNP performed worse on Digit Span Forward (d = 0.478) and the CVLT Trial 1 (d = 0.417) with medium effect sizes. In contrast to rs1801131, relationships were not identified between a rs1801133 SNP and these performance measures. Conclusions Our findings demonstrate the potential links between MTHFR SNPs and cognitive outcomes following treatment in brain tumor survivors. The current findings establish a novel relationship between rs1801131 and working memory in medulloblastoma. Increases in homocysteine levels and oxidative damage from radiation may lead to adverse long-term outcomes. This establishes the need to look beyond leukemia and methotrexate treatment to consider the risk of MTHFR SNPs for medulloblastoma survivors.
Collapse
Affiliation(s)
| | - Courtney Keeler
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tobey J MacDonald
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta GA, USA.,Emory University Medical School, Atlanta, GA, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
7
|
Cullinan N, Schiller I, Di Giuseppe G, Mamun M, Reichman L, Cacciotti C, Wheaton L, Caswell K, Di Monte B, Gibson P, Johnston DL, Fleming A, Pole JD, Malkin D, Foulkes WD, Dendukuri N, Goudie C, Nathan PC. Utility of a Cancer Predisposition Screening Tool for Predicting Subsequent Malignant Neoplasms in Childhood Cancer Survivors. J Clin Oncol 2021; 39:3207-3216. [PMID: 34383599 DOI: 10.1200/jco.21.00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Childhood cancer survivors (CCS) are at risk of developing subsequent malignant neoplasms (SMNs) resulting from exposure to prior therapies. CCS with underlying cancer predisposition syndromes are at additional genetic risk of SMN development. The McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG) tool identifies children with cancer at increased likelihood of having a cancer predisposition syndrome, guiding clinicians through a series of Yes or No questions that generate a recommendation for or against genetic evaluation. We evaluated MIPOGG's ability to predict SMN development in CCS. METHODS Using the provincial cancer registry (Ontario, Canada), and adopting a nested case-control approach, we identified CCS diagnosed and/or treated for a primary malignancy before age 18 years (1986-2015). CCS who developed an SMN (cases) were matched, by primary cancer and year of diagnosis, with CCS who did not develop an SMN (controls) over the same period (1:5 ratio). Potential predictors for SMN development (chemotherapy, radiation, and MIPOGG output) were applied retrospectively using clinical data pertaining to the first malignancy. Conditional logistic regression models estimated hazard ratios and 95% CIs associated with each covariate, alone and in combination, for SMN development. RESULTS Of 13,367 children with a primary cancer, 317 (2.4%) developed an SMN and were matched to 1,569 controls. A MIPOGG output recommending evaluation was significantly associated with SMN development (hazard ratio 1.53; 95% CI, 1.06 to 2.19) in a multivariable model that included primary cancer therapy exposures. MIPOGG was predictive of SMN development, showing value in nonhematologic malignancies and in CCS not exposed to radiation. CONCLUSION MIPOGG has additional value for SMN prediction beyond treatment exposures and may be beneficial in decision making for enhanced individualized SMN surveillance strategies for CCS.
Collapse
Affiliation(s)
- Noelle Cullinan
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Haematology/Oncology, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Ian Schiller
- Centre for Outcomes Research (CORE), Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Giancarlo Di Giuseppe
- Pediatric Oncology Group of Ontario, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed Mamun
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lara Reichman
- Research Institute of the McGill University Health Centre, Child Health and Human Development, McGill University, Montreal, Quebec, Canada
| | - Chantel Cacciotti
- Division of Hematology/Oncology, McMaster Children's Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada.,Division of Hematology/Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Laura Wheaton
- Division of Hematology/Oncology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Kimberly Caswell
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bruna Di Monte
- Pediatric Oncology Group of Ontario, Toronto, Ontario, Canada
| | - Paul Gibson
- Division of Hematology/Oncology, McMaster Children's Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Donna L Johnston
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Adam Fleming
- Division of Hematology/Oncology, McMaster Children's Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Jason D Pole
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Centre for Health Services Research, University of Queensland, Brisbane, Australia
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - William D Foulkes
- Department of Human Genetics, Cancer Research Program, McGill University Health Centre and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Nandini Dendukuri
- Centre for Outcomes Research (CORE), Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Catherine Goudie
- Research Institute of the McGill University Health Centre, Child Health and Human Development, McGill University, Montreal, Quebec, Canada.,Division of Hematology/Oncology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Paul C Nathan
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Marples B, Kerns S. Oncology Scan: Radiation Biology and Genomic Predictors of Response. Int J Radiat Oncol Biol Phys 2020; 107:393-397. [PMID: 32531379 DOI: 10.1016/j.ijrobp.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Brian Marples
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.
| | - Sarah Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
9
|
Morton LM. Testicular Cancer as a Model for Understanding the Impact of Evolving Treatment Strategies on the Long-Term Health of Cancer Survivors. JNCI Cancer Spectr 2020; 4:pkaa013. [PMID: 32455333 PMCID: PMC7236779 DOI: 10.1093/jncics/pkaa013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Lindsay M Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
10
|
Risk of second primary cancers in individuals diagnosed with index smoking- and non-smoking- related cancers. J Cancer Res Clin Oncol 2020; 146:1765-1779. [DOI: 10.1007/s00432-020-03232-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
|