1
|
Marquez B, Wooten ZT, Salazar RM, Peterson CB, Fuentes DT, Whitaker TJ, Jhingran A, Pollard-Larkin J, Prajapati S, Beadle B, Cardenas CE, Netherton TJ, Court LE. Analyzing the Relationship between Dose and Geometric Agreement Metrics for Auto-Contouring in Head and Neck Normal Tissues. Diagnostics (Basel) 2024; 14:1632. [PMID: 39125508 PMCID: PMC11311423 DOI: 10.3390/diagnostics14151632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to determine the relationship between geometric and dosimetric agreement metrics in head and neck (H&N) cancer radiotherapy plans. A total 287 plans were retrospectively analyzed, comparing auto-contoured and clinically used contours using a Dice similarity coefficient (DSC), surface DSC (sDSC), and Hausdorff distance (HD). Organs-at-risk (OARs) with ≥200 cGy dose differences from the clinical contour in terms of Dmax (D0.01cc) and Dmean were further examined against proximity to the planning target volume (PTV). A secondary set of 91 plans from multiple institutions validated these findings. For 4995 contour pairs across 19 OARs, 90% had a DSC, sDSC, and HD of at least 0.75, 0.86, and less than 7.65 mm, respectively. Dosimetrically, the absolute difference between the two contour sets was <200 cGy for 95% of OARs in terms of Dmax and 96% in terms of Dmean. In total, 97% of OARs exhibiting significant dose differences between the clinically edited contour and auto-contour were within 2.5 cm PTV regardless of geometric agreement. There was an approximately linear trend between geometric agreement and identifying at least 200 cGy dose differences, with higher geometric agreement corresponding to a lower fraction of cases being identified. Analysis of the secondary dataset validated these findings. Geometric indices are approximate indicators of contour quality and identify contours exhibiting significant dosimetric discordance. For a small subset of OARs within 2.5 cm of the PTV, geometric agreement metrics can be misleading in terms of contour quality.
Collapse
Affiliation(s)
- Barbara Marquez
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.M.S.); (T.J.W.); (J.P.-L.); (L.E.C.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | | | - Ramon M. Salazar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.M.S.); (T.J.W.); (J.P.-L.); (L.E.C.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Christine B. Peterson
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David T. Fuentes
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - T. J. Whitaker
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.M.S.); (T.J.W.); (J.P.-L.); (L.E.C.)
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julianne Pollard-Larkin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.M.S.); (T.J.W.); (J.P.-L.); (L.E.C.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Surendra Prajapati
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.M.S.); (T.J.W.); (J.P.-L.); (L.E.C.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Beth Beadle
- Department of Radiation Oncology–Radiation Therapy, Stanford University, Stanford, CA 94305, USA;
| | - Carlos E. Cardenas
- Department of Radiation Oncology, The University of Alabama, Birmingham, AL 35294, USA
| | - Tucker J. Netherton
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.M.S.); (T.J.W.); (J.P.-L.); (L.E.C.)
| | - Laurence E. Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.M.S.); (T.J.W.); (J.P.-L.); (L.E.C.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
2
|
Cheung MY, Netherton TJ, Court LE, Veeraraghavan A, Balakrishnan G. METRIC-GUIDED IMAGE RECONSTRUCTION BOUNDS VIA CONFORMAL PREDICTION. ARXIV 2024:arXiv:2404.15274v2. [PMID: 38711427 PMCID: PMC11071610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Recent advancements in machine learning have led to the development of novel medical imaging systems and algorithms that address ill-posed problems. Assessing their trustworthiness and understanding how to deploy them safely at test time remains an important and open problem. In this work, we propose using conformal prediction to compute valid and distribution-free bounds on downstream metrics given reconstructions generated by one algorithm, and retrieve upper/lower bounds and inlier/outlier reconstructions according to the adjusted bounds. Our work offers 1) test time image reconstruction evaluation without ground truth, 2) downstream performance guarantees, 3) meaningful upper/lower bound reconstructions, and 4) meaningful statistical inliers/outlier reconstructions. We demonstrate our method on post-mastectomy radiotherapy planning using 3D breast CT reconstructions, and show 1) that metric-guided bounds have valid coverage for downstream metrics while conventional pixel-wise bounds do not and 2) anatomical differences of upper/lower bounds between metric-guided and pixel-wise methods. Our work paves way for more meaningful and trustworthy test-time evaluation of medical image reconstructions. Code available at https://github.com/matthewyccheung/conformal-metric.
Collapse
Affiliation(s)
- Matt Y Cheung
- Department of Electrical & Computer Engineering, Rice University, Houston TX
| | - Tucker J Netherton
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston TX
| | - Laurence E Court
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston TX
| | - Ashok Veeraraghavan
- Department of Electrical & Computer Engineering, Rice University, Houston TX
| | - Guha Balakrishnan
- Department of Electrical & Computer Engineering, Rice University, Houston TX
| |
Collapse
|
3
|
Skett S, Patel T, Duprez D, Gupta S, Netherton T, Trauernicht C, Aldridge S, Eaton D, Cardenas C, Court LE, Smith D, Aggarwal A. Autocontouring of primary lung lesions and nodal disease for radiotherapy based only on computed tomography images. Phys Imaging Radiat Oncol 2024; 31:100637. [PMID: 39297080 PMCID: PMC11408859 DOI: 10.1016/j.phro.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Background and purpose In many clinics, positron-emission tomography is unavailable and clinician time extremely limited. Here we describe a deep-learning model for autocontouring gross disease for patients undergoing palliative radiotherapy for primary lung lesions and/or hilar/mediastinal nodal disease, based only on computed tomography (CT) images. Materials and methods An autocontouring model (nnU-Net) was trained to contour gross disease in 379 cases (352 training, 27 test); 11 further test cases from an external centre were also included. Anchor-point-based post-processing was applied to remove extraneous autocontoured regions. The autocontours were evaluated quantitatively in terms of volume similarity (Dice similarity coefficient [DSC], surface Dice coefficient, 95th percentile Hausdorff distance [HD95], and mean surface distance), and scored for usability by two consultant oncologists. The magnitude of treatment margin needed to account for geometric discrepancies was also assessed. Results The anchor point process successfully removed all erroneous regions from the autocontoured disease, and identified two cases to be excluded from further analysis due to 'missed' disease. The average DSC and HD95 were 0.8 ± 0.1 and 10.5 ± 7.3 mm, respectively. A 10-mm uniform margin-distance applied to the autocontoured region was found to yield "full coverage" (sensitivity > 0.99) of the clinical contour for 64 % of cases. Ninety-seven percent of evaluated autocontours were scored by both clinicians as requiring no or minor edits. Conclusions Our autocontouring model was shown to produce clinically usable disease outlines, based on CT alone, for approximately two-thirds of patients undergoing lung radiotherapy. Further work is necessary to improve this before clinical implementation.
Collapse
Affiliation(s)
- Stephen Skett
- Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Tina Patel
- Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Didier Duprez
- Stellenbosch University Faculty of Medicine and Health Sciences, Tygerberg Hospital, Cape Town, South Africa
| | - Sunnia Gupta
- Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Tucker Netherton
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christoph Trauernicht
- Stellenbosch University Faculty of Medicine and Health Sciences, Tygerberg Hospital, Cape Town, South Africa
| | - Sarah Aldridge
- Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - David Eaton
- Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Carlos Cardenas
- University of Alabama at Birmingham Hazelrig-Salter Radiation Oncology Center, Birmingham, AL, United States
| | - Laurence E Court
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Daniel Smith
- Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ajay Aggarwal
- Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
4
|
Maroongroge S, Mohamed ASR, Nguyen C, Guma De la Vega J, Frank SJ, Garden AS, Gunn BG, Lee A, Mayo L, Moreno A, Morrison WH, Phan J, Spiotto MT, Court LE, Fuller CD, Rosenthal DI, Netherton TJ. Clinical acceptability of automatically generated lymph node levels and structures of deglutition and mastication for head and neck radiation therapy. Phys Imaging Radiat Oncol 2024; 29:100540. [PMID: 38356692 PMCID: PMC10864833 DOI: 10.1016/j.phro.2024.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Background and Purpose Auto-contouring of complex anatomy in computed tomography (CT) scans is a highly anticipated solution to many problems in radiotherapy. In this study, artificial intelligence (AI)-based auto-contouring models were clinically validated for lymph node levels and structures of swallowing and chewing in the head and neck. Materials and Methods CT scans of 145 head and neck radiotherapy patients were retrospectively curated. One cohort (n = 47) was used to analyze seven lymph node levels and the other (n = 98) used to analyze 17 swallowing and chewing structures. Separate nnUnet models were trained and validated using the separate cohorts. For the lymph node levels, preference and clinical acceptability of AI vs human contours were scored. For the swallowing and chewing structures, clinical acceptability was scored. Quantitative analyses of the test sets were performed for AI vs human contours for all structures using overlap and distance metrics. Results Median Dice Similarity Coefficient ranged from 0.77 to 0.89 for lymph node levels and 0.86 to 0.96 for chewing and swallowing structures. The AI contours were superior to or equally preferred to the manual contours at rates ranging from 75% to 91%; there was not a significant difference in clinical acceptability for nodal levels I-V for manual versus AI contours. Across all AI-generated lymph node level contours, 92% were rated as usable with stylistic to no edits. Of the 340 contours in the chewing and swallowing cohort, 4% required minor edits. Conclusions An accurate approach was developed to auto-contour lymph node levels and chewing and swallowing structures on CT images for patients with intact nodal anatomy. Only a small portion of test set auto-contours required minor edits.
Collapse
Affiliation(s)
- Sean Maroongroge
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Abdallah SR. Mohamed
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Callistus Nguyen
- Department of Radiation Physics, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Jean Guma De la Vega
- Department of Radiation Physics, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Steven J. Frank
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Adam S. Garden
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Brandon G. Gunn
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Anna Lee
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Lauren Mayo
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Amy Moreno
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - William H. Morrison
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Jack Phan
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Michael T. Spiotto
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Laurence E. Court
- Department of Radiation Physics, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Clifton D. Fuller
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - David I. Rosenthal
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| | - Tucker J. Netherton
- Department of Radiation Physics, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, United States
| |
Collapse
|
5
|
Hernandez S, Burger H, Nguyen C, Paulino AC, Lucas JT, Faught AM, Duryea J, Netherton T, Rhee DJ, Cardenas C, Howell R, Fuentes D, Pollard-Larkin J, Court L, Parkes J. Validation of an automated contouring and treatment planning tool for pediatric craniospinal radiation therapy. Front Oncol 2023; 13:1221792. [PMID: 37810961 PMCID: PMC10556471 DOI: 10.3389/fonc.2023.1221792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Treatment planning for craniospinal irradiation (CSI) is complex and time-consuming, especially for resource-constrained centers. To alleviate demanding workflows, we successfully automated the pediatric CSI planning pipeline in previous work. In this work, we validated our CSI autosegmentation and autoplanning tool on a large dataset from St. Jude Children's Research Hospital. Methods Sixty-three CSI patient CT scans were involved in the study. Pre-planning scripts were used to automatically verify anatomical compatibility with the autoplanning tool. The autoplanning pipeline generated 15 contours and a composite CSI treatment plan for each of the compatible test patients (n=51). Plan quality was evaluated quantitatively with target coverage and dose to normal tissue metrics and qualitatively with physician review, using a 5-point Likert scale. Three pediatric radiation oncologists from 3 institutions reviewed and scored 15 contours and a corresponding composite CSI plan for the final 51 test patients. One patient was scored by 3 physicians, resulting in 53 plans scored total. Results The algorithm automatically detected 12 incompatible patients due to insufficient junction spacing or head tilt and removed them from the study. Of the 795 autosegmented contours reviewed, 97% were scored as clinically acceptable, with 92% requiring no edits. Of the 53 plans scored, all 51 brain dose distributions were scored as clinically acceptable. For the spine dose distributions, 92%, 100%, and 68% of single, extended, and multiple-field cases, respectively, were scored as clinically acceptable. In all cases (major or minor edits), the physicians noted that they would rather edit the autoplan than create a new plan. Conclusions We successfully validated an autoplanning pipeline on 51 patients from another institution, indicating that our algorithm is robust in its adjustment to differing patient populations. We automatically generated 15 contours and a comprehensive CSI treatment plan for each patient without physician intervention, indicating the potential for increased treatment planning efficiency and global access to high-quality radiation therapy.
Collapse
Affiliation(s)
- Soleil Hernandez
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hester Burger
- Department Medical Physics, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Callistus Nguyen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arnold C. Paulino
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John T. Lucas
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Austin M. Faught
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Jack Duryea
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tucker Netherton
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dong Joo Rhee
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carlos Cardenas
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rebecca Howell
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Julianne Pollard-Larkin
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Laurence Court
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeannette Parkes
- Department of Radiation Oncology, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| |
Collapse
|