1
|
Schena A, Quaglia FM, Parisi A, Ferrarini I, Moioli A, Tagliavini E, Bernardelli A, Visco C. Pembrolizumab as salvage treatment for T-cell/histiocyte-rich and Epstein-Barr virus-positive large B-cell lymphoma. Br J Haematol 2024; 205:2523-2526. [PMID: 39535342 DOI: 10.1111/bjh.19883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Affiliation(s)
- A Schena
- Section of Haematology, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - F M Quaglia
- Section of Haematology, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - A Parisi
- Section of Pathology, Department of Diagnostics and Public Health, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - I Ferrarini
- Section of Haematology, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - A Moioli
- Section of Haematology, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - E Tagliavini
- Section of Haematology, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - A Bernardelli
- Section of Haematology, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - C Visco
- Section of Haematology, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Ptashkin RN, Ewalt MD, Jayakumaran G, Kiecka I, Bowman AS, Yao J, Casanova J, Lin YTD, Petrova-Drus K, Mohanty AS, Bacares R, Benhamida J, Rana S, Razumova A, Vanderbilt C, Balakrishnan Rema A, Rijo I, Son-Garcia J, de Bruijn I, Zhu M, Lachhander S, Wang W, Haque MS, Seshan VE, Wang J, Liu Y, Nafa K, Borsu L, Zhang Y, Aypar U, Suehnholz SP, Chakravarty D, Park JH, Abdel-Wahab O, Mato AR, Xiao W, Roshal M, Yabe M, Batlevi CL, Giralt S, Salles G, Rampal R, Tallman M, Stein EM, Younes A, Levine RL, Perales MA, van den Brink MRM, Dogan A, Ladanyi M, Berger MF, Brannon AR, Benayed R, Zehir A, Arcila ME. Enhanced clinical assessment of hematologic malignancies through routine paired tumor and normal sequencing. Nat Commun 2023; 14:6895. [PMID: 37898613 PMCID: PMC10613284 DOI: 10.1038/s41467-023-42585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Genomic profiling of hematologic malignancies has augmented our understanding of variants that contribute to disease pathogenesis and supported development of prognostic models that inform disease management in the clinic. Tumor only sequencing assays are limited in their ability to identify definitive somatic variants, which can lead to ambiguity in clinical reporting and patient management. Here, we describe the MSK-IMPACT Heme cohort, a comprehensive data set of somatic alterations from paired tumor and normal DNA using a hybridization capture-based next generation sequencing platform. We highlight patterns of mutations, copy number alterations, and mutation signatures in a broad set of myeloid and lymphoid neoplasms. We also demonstrate the power of appropriate matching to make definitive somatic calls, including in patients who have undergone allogeneic stem cell transplant. We expect that this resource will further spur research into the pathobiology and clinical utility of clinical sequencing for patients with hematologic neoplasms.
Collapse
Affiliation(s)
- Ryan N Ptashkin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- C2i Genomics, New York, NY, USA
| | - Mark D Ewalt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Gowtham Jayakumaran
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Guardant Health, Palo Alto, CA, USA
| | - Iwona Kiecka
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anita S Bowman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - JinJuan Yao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacklyn Casanova
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yun-Te David Lin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kseniya Petrova-Drus
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abhinita S Mohanty
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruben Bacares
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamal Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Satshil Rana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Razumova
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chad Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anoop Balakrishnan Rema
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivelise Rijo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julie Son-Garcia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ino de Bruijn
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Menglei Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean Lachhander
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Wang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohammad S Haque
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiajing Wang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Liu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Khedoudja Nafa
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laetitia Borsu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umut Aypar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah P Suehnholz
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Debyani Chakravarty
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jae H Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony R Mato
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mikhail Roshal
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariko Yabe
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Connie Lee Batlevi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergio Giralt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gilles Salles
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raajit Rampal
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin Tallman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Eytan M Stein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anas Younes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Oncology R&D, AstraZeneca, New York, NY, USA
| | - Ross L Levine
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marcel R M van den Brink
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Rose Brannon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Oncology R&D, AstraZeneca, New York, NY, USA
| | - Ahmet Zehir
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Oncology R&D, AstraZeneca, New York, NY, USA.
| | - Maria E Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Zhang C, Wang L, Xu C, Xu H, Wu Y. Resistance mechanisms of immune checkpoint inhibition in lymphoma: Focusing on the tumor microenvironment. Front Pharmacol 2023; 14:1079924. [PMID: 36959853 PMCID: PMC10027765 DOI: 10.3389/fphar.2023.1079924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic strategies of multiple types of malignancies including lymphoma. However, efficiency of ICIs varies dramatically among different lymphoma subtypes, and durable response can only be achieved in a minority of patients, thus requiring unveiling the underlying mechanisms of ICI resistance to optimize the individualized regimens and improve the treatment outcomes. Recently, accumulating evidence has identified potential prognostic factors for ICI therapy, including tumor mutation burden and tumor microenvironment (TME). Given the distinction between solid tumors and hematological malignancies in terms of TME, we here review the clinical updates of ICIs for lymphoma, and focus on the underlying mechanisms for resistance induced by TME, which play important roles in lymphoma and remarkably influence its sensitivity to ICIs. Particularly, we highlight the value of multiple cell populations (e.g., tumor infiltrating lymphocytes, M2 tumor-associated macrophages, and myeloid-derived suppressor cells) and metabolites (e.g., indoleamine 2, 3-dioxygenase and adenosine) in the TME as prognostic biomarkers for ICI response, and also underline additional potential targets in immunotherapy, such as EZH2, LAG-3, TIM-3, adenosine, and PI3Kδ/γ.
Collapse
Affiliation(s)
- Chunlan Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Leiming Wang
- Shenzhen Bay Laboratory, Center for transnational medicine, Shenzhen, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Yu Wu,
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Yu Wu,
| |
Collapse
|
4
|
Zeller T, Lutz S, Münnich IA, Windisch R, Hilger P, Herold T, Tahiri N, Banck JC, Weigert O, Moosmann A, von Bergwelt-Baildon M, Flamann C, Bruns H, Wichmann C, Baumann N, Valerius T, Schewe DM, Peipp M, Rösner T, Humpe A, Kellner C. Dual checkpoint blockade of CD47 and LILRB1 enhances CD20 antibody-dependent phagocytosis of lymphoma cells by macrophages. Front Immunol 2022; 13:929339. [PMID: 36389667 PMCID: PMC9647079 DOI: 10.3389/fimmu.2022.929339] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by ‘Don´t Eat Me!’ signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.
Collapse
Affiliation(s)
- Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Lutz
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Ira A. Münnich
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Patricia Hilger
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natyra Tahiri
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Jan C. Banck
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Moosmann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
- Helmholtz Zentrum München, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Flamann
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Denis M. Schewe
- Department of Pediatrics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
- *Correspondence: Christian Kellner,
| |
Collapse
|
5
|
Mazzarella L, Enblad G, Olweus J, Malmberg KJ, Jerkeman M. Advances in immune therapies in hematological malignancies. J Intern Med 2022; 292:205-220. [PMID: 34624160 DOI: 10.1111/joim.13395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immunotherapy in cancer takes advantage of the exquisite specificity, potency, and flexibility of the immune system to eliminate alien tumor cells. It involves strategies to activate the entire immune defense, by unlocking mechanisms developed by tumor cells to escape from surrounding immune cells, as well as engineered antibody and cellular therapies. What is important to note is that these are therapeutics with curative potential. The earliest example of immune therapy is allogeneic stem cell transplantation, introduced in 1957, which is still an important modality in hematology, most notably in myeloid malignancies. In this review, we discuss developmental trends of immunotherapy in hematological malignancies, focusing on some of the strategies that we believe will have the most impact on future clinical practice in this field. In particular, we delineate novel developments for therapies that have already been introduced into the clinic, such as immune checkpoint inhibition and chimeric antigen receptor T-cell therapies. Finally, we discuss the therapeutic potential of emerging strategies based on T-cell receptors and adoptive transfer of allogeneic natural killer cells.
Collapse
Affiliation(s)
- Luca Mazzarella
- Department of Experimental Oncology, European Institute of Oncology, Milano, Italy
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Sweden
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Jerkeman
- Department of Oncology, Skane University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Aureli A, Marziani B, Sconocchia T, Del Principe MI, Buzzatti E, Pasqualone G, Venditti A, Sconocchia G. Immunotherapy as a Turning Point in the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246246. [PMID: 34944865 PMCID: PMC8699368 DOI: 10.3390/cancers13246246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Despite recent progress achieved in the management of acute myeloid leukemia (AML), it remains a life-threatening disease with a poor prognosis, particularly in the elderly, having an average 5-year survival of approximately 28%. However, recent evidence suggests that immunotherapy can provide the background for developing personalized targeted therapy to improve the clinical course of AML patients. Our review aimed to assess the immunotherapy effectiveness in AML by discussing the impact of monoclonal antibodies, immune checkpoint inhibitors, chimeric antigen receptor T cells, and vaccines in AML preclinical and clinical studies. Abstract Acute myeloid leukemia (AML) is a malignant disease of hematopoietic precursors at the earliest stage of maturation, resulting in a clonalproliferation of myoblasts replacing normal hematopoiesis. AML represents one of the most common types of leukemia, mostly affecting elderly patients. To date, standard chemotherapy protocols are only effective in patients at low risk of relapse and therapy-related mortality. The average 5-year overall survival (OS) is approximately 28%. Allogeneic hematopoietic stem cell transplantation (HSCT) improves prognosis but is limited by donor availability, a relatively young age of patients, and absence of significant comorbidities. Moreover, it is associated with significant morbidity and mortality. However, increasing understanding of AML immunobiology is leading to the development of innovative therapeutic strategies. Immunotherapy is considered an attractive strategy for controlling and eliminating the disease. It can be a real breakthrough in the treatment of leukemia, especially in patients who are not eligible forintensive chemotherapy. In this review, we focused on the progress of immunotherapy in the field of AML by discussing monoclonal antibodies (mAbs), immune checkpoint inhibitors, chimeric antigen receptor T cells (CAR-T cells), and vaccine therapeutic choices.
Collapse
Affiliation(s)
- Anna Aureli
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| | - Beatrice Marziani
- Emergency and Urgent Department, University Hospital Sant’Anna of Ferrara, 44124 Ferrara, Italy;
| | | | - Maria Ilaria Del Principe
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Gianmario Pasqualone
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Giuseppe Sconocchia
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| |
Collapse
|
7
|
Refractory DLBCL: Challenges and Treatment. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:140-148. [PMID: 34666950 DOI: 10.1016/j.clml.2021.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Despite a greater understanding of pathologic factors that increase the chance for treatment failure, initial therapy of diffuse large B cell lymphoma (DLBCL) has not evolved from R/CHOP. Although it was anticipated that the genetic underpinnings of the cell or origin would dramatically change treatment, thus far, this has not been realized. Similarly, contrary to the situation with Hodgkin lymphoma, meaningful early treatment response assessment with PET-CT has yet to be established in DLBCL. Nevertheless, there is tremendous enthusiasm that circulating tumor DNA, possibly in combination with PET- T may facilitate earlier recognition of treatment failure or relapse. And, in contrast to the situation with front-line treatment, therapy for recurrent disease appears to be on the cusp of dramatically improving. Thus, in addition to high dose therapy with autologous transplant, a treatment that is not feasible for many older patients, CAR-T cells, bispecific T-cell engagers (BiTEs), antibody-drug conjugates and new monoclonal antibodies are all offering the possibility of long-term disease control and possible cure. The success of the cell and immunotherapies even offer hope for a chemotherapy-free strategy, initially for recurrent disease. Herein, we review the landscape of the novel agents in resistant DLBCL and speculate about their appropriate sequencing and possible migration to earlier use.
Collapse
|
8
|
Mussetti A, Bosch Vilaseca A, Parody R, Paviglianiti A, Domingo-Domenech E, Sureda AM. Synchronizing the use of allogeneic hematopoietic cell transplantation in checkpoint blockade therapy for Hodgkin lymphoma. Expert Rev Hematol 2021; 14:809-818. [PMID: 34369849 DOI: 10.1080/17474086.2021.1965874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The use of checkpoint blockade therapy (CBT) has shown impressive results for the treatment of relapsed/refractory Hodgkin lymphoma (cHL). The impact of CBT depends on the reversal of an exhausted T-cell immune phenotype and a consequential increase in the immunological, anti-tumor effect derived from a patient's adaptive immunity. As most patients with classical Hodgkin lymphoma will relapse during or after this treatment, clinicians often provide consolidation with allogeneic hematopoietic cell transplantation (alloHCT) in fit patients. However, the mechanisms responsible for CBT efficacy can also be those that increase the risk of immunological complications after alloHCT. AREAS COVERED We carried out in-depth research on the current medical literature to report and discuss the mechanism of action of CBT within a cHL setting; clinical results of CBT in cHL setting pre-alloHCT and post-alloHCT; interactions between CBT and alloHCT; and further clinical considerations. EXPERT OPINION Checkpoint blockade therapy is an effective strategy for relapsed/refractory cHL. Its use is associated with higher immunological toxicities when administered before or after alloHCT. Whenever alloHCT is planned, clinicians should follow international recommendations such as using post-transplant cyclophosphamide GVHD prophylaxis.
Collapse
Affiliation(s)
- Alberto Mussetti
- Clinical Hematology Department, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Anna Bosch Vilaseca
- Clinical Hematology Department, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Rocío Parody
- Clinical Hematology Department, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Annalisa Paviglianiti
- Clinical Hematology Department, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Eva Domingo-Domenech
- Clinical Hematology Department, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Ana Maria Sureda
- Clinical Hematology Department, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
9
|
Affiliation(s)
- Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital Edgbaston, Birmingham, United Kingdom.,CRCTU Clinical Trial Unit, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|