1
|
Kageler L, Aquilanti E. Discovery of telomerase inhibitors: existing strategies and emerging innovations. Biochem Soc Trans 2024; 52:1957-1968. [PMID: 39194999 DOI: 10.1042/bst20230264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Telomerase, crucial for maintaining telomere length, is an attractive target for cancer therapy due to its role in cellular immortality. Despite three decades of research efforts, no small-molecule telomerase inhibitors have been clinically approved, highlighting the extensive challenges in developing effective telomerase-based therapeutics. This review examines conventional and emerging methods to measure telomerase activity and discusses existing inhibitors, including oligonucleotides and small molecules. Furthermore, this review highlights recent breakthroughs in structural studies of telomerase using cryo-electron microscopy, which can facilitate improved structure-based drug design. Altogether, advancements in structural methodologies and high-throughput screening offer promising prospects for telomerase-based cancer therapeutic development.
Collapse
Affiliation(s)
- Lauren Kageler
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, U.S.A
| | - Elisa Aquilanti
- Division of Neuro Oncology, Dana Farber Cancer Institute, Boston, MA, U.S.A
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, U.S.A
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
| |
Collapse
|
2
|
Shan L, Li Y, Ma Y, Yang Y, Wang J, Peng L, Wang W, Zhao F, Li W, Chen X. Hairpin DNA-Based Nanomaterials for Tumor Targeting and Synergistic Therapy. Int J Nanomedicine 2024; 19:5781-5792. [PMID: 38882546 PMCID: PMC11180469 DOI: 10.2147/ijn.s461774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Background While nanoplatform-based cancer theranostics have been researched and investigated for many years, enhancing antitumor efficacy and reducing toxic side effects is still an essential problem. Methods We exploited nanoparticle coordination between ferric (Fe2+) ions and telomerase-targeting hairpin DNA structures to encapsulate doxorubicin (DOX) and fabricated Fe2+-DNA@DOX nanoparticles (BDDF NPs). This work studied the NIR fluorescence imaging and pharmacokinetic studies targeting the ability and biodistribution of BDDF NPs. In vitro and vivo studies investigated the nano formula's toxicity, imaging, and synergistic therapeutic effects. Results The enhanced permeability and retention (EPR) effect and tumor targeting resulted in prolonged blood circulation times and high tumor accumulation. Significantly, BDDF NPs could reduce DOX-mediated cardiac toxicity by improving the antioxidation ability of cardiomyocytes based on the different telomerase activities and iron dependency in normal and tumor cells. The synergistic treatment efficacy is enhanced through Fe2+-mediated ferroptosis and the β-catenin/p53 pathway and improved the tumor inhibition rate. Conclusion Harpin DNA-based nanoplatforms demonstrated prolonged blood circulation, tumor drug accumulation via telomerase-targeting, and synergistic therapy to improve antitumor drug efficacy. Our work sheds new light on nanomaterials for future synergistic chemotherapy.
Collapse
Affiliation(s)
- Lingling Shan
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Yudie Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Yifan Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yang Yang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Jing Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Lei Peng
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Weiwei Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Fang Zhao
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Wanrong Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
3
|
Di Nunno V, Aprile M, Bartolini S, Gatto L, Tosoni A, Ranieri L, De Biase D, Asioli S, Franceschi E. The Biological and Clinical Role of the Telomerase Reverse Transcriptase Gene in Glioblastoma: A Potential Therapeutic Target? Cells 2023; 13:44. [PMID: 38201248 PMCID: PMC10778438 DOI: 10.3390/cells13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Glioblastoma IDH-wildtype represents the most lethal and frequent primary tumor of the central nervous system. Thanks to important scientific efforts, we can now investigate its deep genomic assessment, elucidating mutated genes and altered biological mechanisms in addition to its clinical aggressiveness. The telomerase reverse transcriptase gene (TERT) is the most frequently altered gene in solid tumors, including brain tumors and GBM IDH-wildtype. In particular, it can be observed in approximately 80-90% of GBM IDH-wildtype cases. Its clonal distribution on almost all cancer cells makes this gene an optimal target. However, the research of effective TERT inhibitors is complicated by several biological and clinical obstacles which can be only partially surmounted. Very recently, novel immunological approaches leading to TERT inhibition have been investigated, offering the potential to develop an effective target for this altered protein. Here, we perform a narrative review investigating the biological role of TERT alterations on glioblastoma and the principal obstacles associated with TERT inhibitions in this population. Moreover, we discuss possible combination treatment strategies to overcome these limitations.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy (E.F.)
| | - Marta Aprile
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy (E.F.)
| | - Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, 40139 Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy (E.F.)
| | - Lucia Ranieri
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy (E.F.)
| | - Dario De Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126 Bologna, Italy
| | - Sofia Asioli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Surgical Pathology Section, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy (E.F.)
| |
Collapse
|
4
|
Incharoen T, Roytrakul S, Likittrakulwong W. Dietary Germinated Paddy Rice and Stocking Density Affect Egg Performance, Serum Biochemical Properties, and Proteomic and Transcriptomic Response of Laying Hens Exposed to Chronic Heat Stress. Proteomes 2021; 9:48. [PMID: 34941813 PMCID: PMC8708272 DOI: 10.3390/proteomes9040048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Germinated paddy rice (GPR) could be a good alternative feed source for poultry with stocking density and heat stress problems. A total of 72 Hy-line Brown laying hens raised under low (LSD, 0.12 m2/bird) and high stocking densities (HSD, 0.06 m2/bird) were investigated. Three dietary GPR levels (0, 74 and 148 g/kg) were used. It was found that average daily feed intake, hen-day egg production, and egg mass significantly decreased in the HSD group. The levels of serum glucose (GLU), phosphorous (P), corticosterone (CORT), total Ig, lysozyme (LZY), and superoxide dismutase activities (SOD) in the HSD group were higher than those in the LSD group. Dietary GPR significantly affected GLU, P, alternative complement haemolytic 50 (ACH50), total Ig, and LZY. Moreover, CORT level significantly decreased in 74 and 148 g/kg dietary GPR groups, whereas SOD significantly increased only in the 148 g/kg dietary GPR group. Serum samples were analyzed using liquid chromatography-tandem mass spectrometry, and 8607 proteins were identified. Proteome analysis revealed 19 proteins which were enriched in different stocking densities and dietary GPR levels. Quantitative real-time reverse transcription-PCR technique was successfully used to verify the differentiated abundant protein profile changes. The proteins identified in this study could serve as appropriate biomarkers.
Collapse
Affiliation(s)
- Tossaporn Incharoen
- Department of Agricultural Science, Faculty of Agriculture Natural Resource and Environment, Naresuan University, Phitsanulok 65000, Thailand;
| | - Sittiruk Roytrakul
- National Center for Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12100, Thailand;
| | - Wirot Likittrakulwong
- Animal Science Program, Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| |
Collapse
|
5
|
Abstract
Glioblastoma is the most common primary malignant brain tumor in adults and it continues to have a dismal prognosis. The development of targeted therapeutics has been particularly challenging, in part due to a limited number of oncogenic mutations and significant intra-tumoral heterogeneity. TERT promoter mutations were first discovered in melanoma and later found to be present in up to 80% of glioblastoma samples. They are also frequent clonal alterations in this tumor. TERT promoter mutations are one of the mechanisms for telomerase reactivation, providing cancers with cellular immortality. Telomerase is a reverse transcriptase ribonucleoprotein complex that maintains telomere length in cells with high proliferative ability. In this article we present genomic and pre-clinical data that supports telomerase as a potential "Achilles' heel" for glioblastoma. We also summarize prior experience with anti-telomerase agents and potential new approaches to tackle this target.
Collapse
Affiliation(s)
- Elisa Aquilanti
- Division of Neuro Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Lauren Kageler
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Patrick Y Wen
- Division of Neuro Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew Meyerson
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Budiatin AS, Sagitaras IB, Nurhayati IP, Khairah N, Nisak K, Susilo I, Khotib J. Attenuation of hyperplasia in lung parenchymal and colonic epithelial cells in DMBA-induced cancer by administering Andrographis paniculata Nees extract using animal model. J Basic Clin Physiol Pharmacol 2021; 32:497-504. [PMID: 34214295 DOI: 10.1515/jbcpp-2020-0440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2020] [Accepted: 03/07/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES This study was designed to evaluate the potential of Andrographis paniculata ethanolic extract to inhibit the increase in proliferation and induction of abnormal cell death. METHODS The hyperplasia stage as an early stage of cancer development was induced by oral administration of 20 mg/Kg BW DMBA to SD rats twice a week for 5 weeks. There were five groups in this study include negative control, positive control, and treatment groups of DMBA induction followed by administration of A. paniculata ethanolic extract in doses equivalent to 10, 30 or 100 mg/Kg BW andrographolide once per day for 6 consecutive weeks. On the last day, rats were sacrificed, lung and colon tissues were collected. Histological examination by HE staining and immunohistochemistry using p53, telomerase, and caspase-3 antibodies were aimed at observing hyperplasia state in these tissues. RESULTS DMBA induction to SD rats was able to produce hyperplasia in lung parenchymal and colon epithelial tissue. This can be showed by the increasing number of proliferated cells and as indicated by the number of brown-colored nuclei with sharper intensity. As well telomerase appears to be overexpressed strongly, while p53 and caspase-3 show low intensity. The administration of A. paniculata extract for 6 weeks showed a decrease in the number of cells that actively proliferate, a decrease in telomerase activity, and an increase in caspase-3 levels which indicate cellular death activity. CONCLUSIONS A. paniculata ethanolic extract can inhibit the development of cancer at the hyperplasia stage by reducing telomerase activity and increasing apoptosis, marked by an increase of caspase-3 expressions.
Collapse
Affiliation(s)
- Aniek Setiya Budiatin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, East Java, Indonesia
| | - Ilham Bagus Sagitaras
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, East Java, Indonesia
| | - Ika Putri Nurhayati
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, East Java, Indonesia
| | - Nismatun Khairah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, East Java, Indonesia
| | - Khoirotin Nisak
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, East Java, Indonesia
| | - Imam Susilo
- Department of Pathological Anatomy, Faculty of Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Junaidi Khotib
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, East Java, Indonesia
| |
Collapse
|
7
|
Losi L, Botticelli L, Garagnani L, Fabbiani L, Panini R, Gallo G, Sabbatini R, Maiorana A, Benhattar J. TERT promoter methylation and protein expression as predictive biomarkers for recurrence risk in patients with serous borderline ovarian tumours. Pathology 2020; 53:187-192. [PMID: 33032810 DOI: 10.1016/j.pathol.2020.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Epithelial ovarian neoplasms can be divided into three distinct clinicopathological groups: benign, malignant and borderline tumours. Borderline tumours are less aggressive than epithelial carcinomas, with an indolent clinical course and delayed recurrence. However, a subset of these cases can progress to malignancy and relapse, and death from recurrent disease can occasionally occur. Telomerase activation is a critical element in cellular immortalisation and cancer. The enzyme telomerase comprises a catalytic subunit (TERT) expressed in various types of cancers and regulated by promoter methylation mainly in epithelial tumours. The aim of this study was to investigate the promoter methylation status and the expression of TERT in 50 serous borderline tumours (SBTs) and their correlation with clinicopathological features and outcome. TERT methylation was analysed by bisulfite pyrosequencing and TERT expression by immunohistochemistry. Methylation of TERT promoter was only observed in four SBTs. A good correlation with immunostochemistry was found: nuclear positivity for TERT expression was observed in the methylated cases, whereas no expression was detected in unmethylated tumours. One of these patients had a recurrence after 7 years and another patient died from the disease. SBTs with hypomethylated tumours and absence of TERT expression showed a good clinical behaviour. Our study highlights the low presence of TERT methylation in SBTs, confirming that these tumours have a different biology than serous carcinomas. Furthermore, the concordance between TERT promoter methylation and TERT expression and their association with clinical outcomes leads to consider TERT alteration as a potential predictive biomarker for recurrence risk identifying patients who should undergo a careful and prolonged follow-up.
Collapse
Affiliation(s)
- Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy.
| | - Laura Botticelli
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Lorella Garagnani
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Fabbiani
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Panini
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Graziana Gallo
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Sabbatini
- Division of Medical Oncology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Antonino Maiorana
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Jean Benhattar
- Aurigen, Centre de Génétique et Pathologie, Lausanne, Switzerland
| |
Collapse
|
8
|
Pandith AA, Wani ZA, Qasim I, Afroze D, Manzoor U, Amin I, Baba SM, Koul A, Anwar I, Mohammad F, Bhat AR, Shah P. Association of strong risk of hTERT gene polymorphic variants to malignant glioma and its prognostic implications with respect to different histological types and survival of glioma cases. J Gene Med 2020; 22:e3260. [PMID: 32783258 DOI: 10.1002/jgm.3260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2020] [Revised: 07/03/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Germline genetic variants of human telomerase reverse transcriptase (hTERT) are known to predispose for various malignancies, including glioma. The present study investigated genetic variation of hTERT T/G (rs2736100) and hTERT G/A (rs2736098) with respect to glioma risk. METHODS Confirmed cases (n = 106) were tested against 210 cancer-free healthy controls by the polymerase chain reaction-restriction fragment length polymorphism technique for genotyping. RESULTS Homozygous variant 'GG' genotype of rs2736100 frequency was > 4-fold significantly different in cases versus controls (39.6% 17.2%; p < 0.0001). Furthermore, variant 'G' allele was found to be significantly associated with cases (0.5 versus 0.2 in controls; p < 0.0001). Homozygous variant rs2736098 'AA' genotype (35.8% versus 23.8%) and allele 'A' (0.49 versus 0.34) showed a marked significant difference in cases and controls, respectively (p < 0.05). In hTERT rs2736100, the GG genotype significantly presented more in higher grades and GBM (p < 0.0001). Furthermore, the GG variant of hTERT rs2736100 had a poor probability with respect to the overall survival of patients compared to TG and TT genotypes (log rank p = 0.03). Interestingly, two haplotypes of hTERT rs2736100/rs2736098 were identified as GG and GA that conferred a > 3- and 5-fold risk to glioma patients respectively, where variant G/A haplotype was observed to have the highest impact with respect to glioma risk (p < 0.0001). CONCLUSIONS The results of the present study indicate that hTERT rs2736098 and rs2736100 variants play an important role in conferring a strong risk of developing glioma. Furthermore, hTERT rs2736100 GG variant appears to play a role in the bad prognosis of glioma patients. Haplotypes GG and GA could prove to be vital tools for monitoring risk in glioma patients.
Collapse
Affiliation(s)
- Arshad A Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Zahoor A Wani
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Iqbal Qasim
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Dil Afroze
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Usma Manzoor
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Ina Amin
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Shahid M Baba
- Immunology and Molecular Medicine, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Aabid Koul
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Iqra Anwar
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Fozia Mohammad
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Abdul R Bhat
- Department of Neurosurgery, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Parveen Shah
- Department of Pathology, SKIMS, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
9
|
Anti-cancer Immunotherapies Targeting Telomerase. Cancers (Basel) 2020; 12:cancers12082260. [PMID: 32806719 PMCID: PMC7465444 DOI: 10.3390/cancers12082260] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Telomerase is a reverse transcriptase that maintains telomeres length, compensating for the attrition of chromosomal ends that occurs during each replication cycle. Telomerase is expressed in germ cells and stem cells, whereas it is virtually undetectable in adult somatic cells. On the other hand, telomerase is broadly expressed in the majority of human tumors playing a crucial role in the replicative behavior and immortality of cancer cells. Several studies have demonstrated that telomerase-derived peptides are able to bind to HLA (human leukocyte antigen) class I and class II molecules and effectively activate both CD8+ and CD4+ T cells subsets. Due to its broad and selective expression in cancer cells and its significant immunogenicity, telomerase is considered an ideal universal tumor-associated antigen, and consequently, a very attractive target for anti-cancer immunotherapy. To date, different telomerase targeting immunotherapies have been studied in pre-clinical and clinical settings, these approaches include peptide vaccination and cell-based vaccination. The objective of this review paper is to discuss the role of human telomerase in cancer immunotherapy analyzing recent developments and future perspectives in this field.
Collapse
|
10
|
Rocca MS, Foresta C, Ferlin A. Telomere length: lights and shadows on their role in human reproduction. Biol Reprod 2020; 100:305-317. [PMID: 30277496 DOI: 10.1093/biolre/ioy208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Telomeres are repeated DNA sequences whose main function is to preserve genome stability, protecting chromosomes ends from shortening caused by progressive loss during each cell replication or DNA damage. Telomere length regulation is normally achieved by telomerase enzyme, whose activity is progressively shut off during embryonic differentiation in somatic tissues, whereas it is maintained in germ cells, activated lymphocytes, and certain types of stem cell populations. The maintenance of telomerase activity for a longer time is necessary for germ cells to delay telomere erosion, thus avoiding chromosome segregation defects that could contribute to aneuploid or unbalanced gametes. Over the last few years, telomere biology has become an important topic in the field of human reproduction, encouraging several studies to focus on the relation between telomere length and spermatogenesis and male fertility, embryo development and quality during assisted reproductive treatment, and female pathologies as polycystic ovary, premature ovarian insufficiency, and endometriosis. This review analyzes whether telomere length in germ cells is related to reproduction fitness, whether telomere length is related to pathologies associated with male and female fertility, and whether measurement of telomere length could represent a biomarker of germ cell and embryo quality. Telomere length could be considered a molecular marker of spermatogenesis and sperm quality and is somewhat related to male fertility potential. Fewer evidence, although promising, is available for oocytes, female (in)fertility, and embryo quality. The increasing evidence for a role of telomeres and telomere length in human reproduction, indeed, has expanded the historical view of considering them just a marker of aging. Telomere length might have in the future a prognostic potential in couple infertility, especially useful to select best germ cells with the greatest potential of fertilization.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, Unit of Endocrinology, University of Brescia, Brescia, Italy
| |
Collapse
|
11
|
Nagapoosanam AL, Ganesan N, Umapathy D, Moorthy RK, Arockiam AJV. Knockdown of human telomerase reverse transcriptase induces apoptosis in cervical cancer cell line. Indian J Med Res 2020; 149:345-353. [PMID: 31249199 PMCID: PMC6607821 DOI: 10.4103/ijmr.ijmr_1676_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Background & objectives: Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase enzyme that maintains telomere ends by the addition of telomeric repeats to the ends of chromosomal DNA, and that may generate immortal cancer cells. Hence, the activity of telomerase is raised in cancer cells including cervical cancer. The present study aimed to validate the unique siRNA loaded chitosan coated poly-lactic-co-glycolic acid (PLGA) nanoparticle targeting hTERT mRNA to knock down the expression of hTERT in HeLa cells. Methods: The siRNA loaded chitosan coated polylactic-co-glycolic acid (PLGA) nanoparticles were synthesized by double emulsion solvent diffusion method. The characterization of nano-formulation was done to determine efficient siRNA delivery. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot were performed to evaluate silencing efficiency of nano-formulation. Results: Size, zeta potential and encapsulation efficiency of nanoparticles were 249.2 nm, 12.4 mV and 80.5 per cent, respectively. Sustained release of siRNA from prepared nanoparticle was studied for 72 h by ultraviolet method. Staining assays were performed to confirm senescence and apoptosis. Silencing of hTERT mRNA and protein expression were analyzed in HeLa cells by RT-PCR and Western blot. Interpretation & conclusions: The findings showed that biodegradable chitosan coated PLGA nanoparticles possessed an ability for efficient and successful siRNA delivery. The siRNA-loaded PLGA nanoparticles induced apoptosis in HeLa cells. Further studies need to be done with animal model.
Collapse
Affiliation(s)
- Anantha Lakshmi Nagapoosanam
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Nithya Ganesan
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Devan Umapathy
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Rajesh Kannan Moorthy
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Antony Joseph Velanganni Arockiam
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
12
|
Yuan T, Zhao W, Niu Y, Fu Y, Lu L, Niu D. Exploration of the temporal-spatial expression pattern and DNA methylation-related regulation of the duck telomerase reverse transcriptase gene. Poult Sci 2019; 98:3257-3267. [PMID: 31064004 DOI: 10.3382/ps/pez240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase that adds TTAGGG repeats to the 3'-overhang of telomeres. In the present study, we detected that the duck TERT (dTERT) gene was highly expressed in small intestine and kidney, followed by heart, leg muscle, spleen, pancreas, gonad, and liver at neonatal stage. From embryonic to neonatal stage, the highest dTERT mRNA in liver appeared at stage E19 (19 days at embryonic stage), while for the leg muscle the maximum expression occurred at E26. We also measured the relative telomerase activity (RTA) and relative telomere length (RTL) in the examined tissues and found that the changed tendency of RTA and RTL was not very consistent with that of TERT. In silico analysis revealed that there were three CpG islands (S1, S2, and S3) within the 5' regulatory region of the dTERT gene. Bisulfite sequencing PCR (BSP) assay showed that liver (D7, 7 days after birth) which expressed significantly lower dTERT mRNA had an obviously higher methylation level of S1 compared with small intestine (D7) or liver (E19). Quantitative real-time PCR analysis revealed that the expression of DNA methyltransferase DNMT1 in liver (D7) was significantly higher than that in small intestine (D7) or in liver (E19). In vitro, dTERT expression was upregulated and the methylation status of S1 decreased in both duck embryonic fibroblasts and small intestinal epithelial cells following treatment with the demethylation reagent, 5-aza-2'-deoxycytidine (5-aza-dC), further suggesting that dTERT is epigenetically regulated by DNA methylation. This work lays a solid foundation for further study of TERT function and regulation in avian species.
Collapse
Affiliation(s)
- Taoyan Yuan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Wanqiu Zhao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Yifan Niu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yan Fu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China.,Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, Zhejiang, China
| | - Dong Niu
- College of Animal Science and Technology, Zhejiang A&F University
| |
Collapse
|
13
|
Crassini K, Stevenson WS, Mulligan SP, Best OG. Molecular pathogenesis of chronic lymphocytic leukaemia. Br J Haematol 2019; 186:668-684. [DOI: 10.1111/bjh.16102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kyle Crassini
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
| | - William S. Stevenson
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
| | - Stephen P. Mulligan
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
- School of Life and Environmental Science University of Sydney Sydney NSW Australia
| | - O. Giles Best
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
- School of Life and Environmental Science University of Sydney Sydney NSW Australia
| |
Collapse
|
14
|
Losi L, Lauriola A, Tazzioli E, Gozzi G, Scurani L, D'Arca D, Benhattar J. Involvement of epigenetic modification of TERT promoter in response to all-trans retinoic acid in ovarian cancer cell lines. J Ovarian Res 2019; 12:62. [PMID: 31291979 PMCID: PMC6617683 DOI: 10.1186/s13048-019-0536-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND All-trans retinoic acid (ATRA) is currently being used to treat hematological malignancies, given the ability to inhibit cell proliferation. This effect seems to be related to epigenetic changes of the TERT (Telomerase Reverse Transcriptase) promoter. When hypomethylated, ATRA-inducible TERT repressors can bind the promoter, repressing transcription of TERT, the rate-limiting component of telomerase. Ovarian carcinomas are heterogeneous tumors characterized by several aberrantly methylated genes among which is TERT. We recently found a hypomethylation of TERT promoter in about one third of serous carcinoma, the most lethal histotype. Our aim was to investigate the potential role of ATRA as an anticancer drug in a sub-group of ovarian carcinoma where the TERT promoter was hypomethylated. METHODS The potential antiproliferative and cytotoxic effect of ATRA was investigated in seven serous ovarian carcinoma and one teratocarcinoma cell lines and the results were compared to the methylation status of their TERT promoter. RESULTS The serous ovarian carcinoma cell line OVCAR3, harboring a hypomethylated TERT promoter, was the best and fastest responder. PA1 and SKOV3, two cell lines with an intermediate methylated promoter, revealed a weaker and delayed response. On the contrary, the other 5 cell lines with a highly methylated promoter did not respond to ATRA, indicative of ATRA-resistant cells. CONCLUSIONS Our results demonstrate an inverse correlation between the methylation level of TERT promoter and ATRA efficacy in ovarian carcinoma cell lines. Although these results are preliminary, ATRA treatment could become a new powerful, personalized therapy in serous ovarian carcinoma patients, but only in those with tumors harboring a hypomethylated TERT promoter.
Collapse
Affiliation(s)
- Lorena Losi
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124, Modena, Italy.
| | - Angela Lauriola
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Erica Tazzioli
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124, Modena, Italy.,Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Gaia Gozzi
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124, Modena, Italy
| | - Letizia Scurani
- Department of Life Sciences, Unit of Pathology, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41124, Modena, Italy
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jean Benhattar
- Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland. .,Aurigen, Centre de Génétique et Pathologie, Avenue de Sévelin 18, 1004, Lausanne, Switzerland.
| |
Collapse
|
15
|
Huang GB, Chen S, Qin QP, Luo JR, Tan MX, Wang ZF, Zou BQ, Liang H. In vitro and in vivo activity of novel platinum(ii) complexes with naphthalene imide derivatives inhibiting human non-small cell lung cancer cells. NEW J CHEM 2019. [DOI: 10.1039/c9nj01076a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
Abstract
3 induced NCI-H460 cell apoptosis via inhibition of the telomerase and dysfunction of mitochondria. Remarkably, 3 obviously inhibited NCI-H460 xenograft tumor growth in vivo.
Collapse
Affiliation(s)
- Guo-Bao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Shan Chen
- College of Physical Science and Technology
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Jin-Rong Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zhen-Feng Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Bi-Qun Zou
- Department of Chemistry
- Guilin Normal College
- 9 Feihu Road
- Gulin 541001
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
16
|
Alibardi L. Ultrastructural immunolocalization of telomerase and hyaluronate in migrating keratinocytes in a case of oro-pharyngeal squamous cancer. Pathol Res Pract 2018; 215:215-221. [PMID: 30409452 DOI: 10.1016/j.prp.2018.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/06/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
The ultrastructural immunolocalization of telomerase and hyaluronate has been studied in a case of oropharyngeal squamous carcinoma. Immunofluorescence shows that telomerase immunolabeling is present in the cytoplasm and in nuclei of some keratinocytes during their migration into the underlying connective tissue. The electron microscope shows that the nuclear localization of telomerase mainly occurs in the large nucleoli and in likely Cajal bodies, the sites of assembling and maturation of proteins forming the telomerase complex. Aside ribosomes, the nucleolus has a role in the biosynthesis of this reverse transcriptase during cell proliferation in normal tissues and in tumors. The cytoplasmic labeling for telomerase is frequently associated with an irregular network of keratin bundles but the significance of this observation is unclear. Hyaluronate, detected through ultrastructural immunolocalization of a hyaluronate binding protein, is abundant mostly along the cell membrane of the detaching basal keratinocytes during epithelial mesenchymal transition. A coat of hyaluronate surrounds the free keratinocytes of the squamous epithelium and is present around the connective cells present underneath. The study supports the hypothesis that hyaluronate forms a pathway along which epithelial cells can migrate during epidermal mesenchymal transition and may also shield cancer cells from immune cells.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology of University of Bologna, Italy
| |
Collapse
|
17
|
Bhattacharyya J, Mihara K, Bhattacharjee D, Mukherjee M. Telomere length as a potential biomarker of coronary artery disease. Indian J Med Res 2018; 145:730-737. [PMID: 29067974 PMCID: PMC5674542 DOI: 10.4103/0971-5916.216974] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/04/2022] Open
Abstract
Coronary artery disease (CAD) is a multifactorial disease whose prevalence remains unabated especially in developing countries. Both lifestyle factors and genetic predisposition contribute to this disorder. Though notable achievements have been made in the medical, interventional and surgical management of CAD, the need for its prevention is more important. Among other modalities, this calls for defining evidence-based new biomarkers, which on their own or in combination with other known biomarkers may predict the risk of CAD to enable institution of appropriate preventive strategies. In the present communication, we have discussed the usefulness of shortening of telomeres as a potential biomarker of CAD. Clinical research evidence in favour of telomere shortening in CAD is well documented in different ethnic populations of the world. Establishing a well-standardized and accurate method of evaluating telomere length is essential before its routine use in preventive cardiology.
Collapse
Affiliation(s)
- Joyeeta Bhattacharyya
- Department of Cardiac Research, Cumballa Hill Hospital & Heart Institute, Mumbai, India
| | - Keichiro Mihara
- Department of Hematology & Oncology, Research Institute for Radiation Biology & Medicine, Hiroshima University, Hiroshima, Japan
| | | | - Manjarí Mukherjee
- Department of Cardiac Research, Cumballa Hill Hospital & Heart Institute, Mumbai, India
| |
Collapse
|
18
|
Douki T, Corbière C, Preterre D, Martin PJ, Lecureur V, André V, Landkocz Y, Pottier I, Keravec V, Fardel O, Moreira-Rebelo S, Pottier D, Vendeville C, Dionnet F, Gosset P, Billet S, Monteil C, Sichel F. Comparative study of diesel and biodiesel exhausts on lung oxidative stress and genotoxicity in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:514-524. [PMID: 29324381 DOI: 10.1016/j.envpol.2017.12.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/17/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
The contribution of diesel exhaust to atmospheric pollution is a major concern for public health, especially in terms of occurrence of lung cancers. The present study aimed at addressing the toxic effects of a repeated exposure to these emissions in an animal study performed under strictly controlled conditions. Rats were repeatedly exposed to the exhaust of diesel engine. Parameters such as the presence of a particle filter or the use of gasoil containing rapeseed methyl ester were investigated. Various biological parameters were monitored in the lungs to assess the toxic and genotoxic effects of the exposure. First, a transcriptomic analysis showed that some pathways related to DNA repair and cell cycle were affected to a limited extent by diesel but even less by biodiesel. In agreement with occurrence of a limited genotoxic stress in the lungs of diesel-exposed animals, small induction of γ-H2AX and acrolein adducts was observed but not of bulky adducts and 8-oxodGuo. Unexpected results were obtained in the study of the effect of the particle filter. Indeed, exhausts collected downstream of the particle filter led to a slightly higher induction of a series of genes than those collected upstream. This result was in agreement with the formation of acrolein adducts and γH2AX. On the contrary, induction of oxidative stress remained very limited since only SOD was found to be induced and only when rats were exposed to biodiesel exhaust collected upstream of the particle filter. Parameters related to telomeres were identical in all groups. In summary, our results point to a limited accumulation of damage in lungs following repeated exposure to diesel exhausts when modern engines and relevant fuels are used. Yet, a few significant effects are still observed, mostly after the particle filter, suggesting a remaining toxicity associated with the gaseous or nano-particular phases.
Collapse
Affiliation(s)
- Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES/CIBEST, F-38000 Grenoble, France
| | - Cécile Corbière
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - David Preterre
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France; CERTAM, 1 Rue Joseph Fourier, 76800 Saint-Etienne du Rouvray, France
| | - Perrine J Martin
- Unité de Chimie Environnementale et Interactions sur le Vivant, EA4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Valérie Lecureur
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 35043 Rennes, France
| | - Véronique André
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - Yann Landkocz
- Unité de Chimie Environnementale et Interactions sur le Vivant, EA4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Ivannah Pottier
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - Veronika Keravec
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France; CERTAM, 1 Rue Joseph Fourier, 76800 Saint-Etienne du Rouvray, France
| | - Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| | | | - Didier Pottier
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - Cathy Vendeville
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - Frédéric Dionnet
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France; CERTAM, 1 Rue Joseph Fourier, 76800 Saint-Etienne du Rouvray, France
| | - Pierre Gosset
- Unité de Chimie Environnementale et Interactions sur le Vivant, EA4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- Unité de Chimie Environnementale et Interactions sur le Vivant, EA4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Christelle Monteil
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - François Sichel
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France; Centre François Baclesse, Caen, France.
| |
Collapse
|
19
|
MiR-21-5p, miR-34a, and human telomerase RNA component as surrogate markers for cervical cancer progression. Pathol Res Pract 2018; 214:374-379. [DOI: 10.1016/j.prp.2018.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
|
20
|
Waghorn PA, Jackson MR, Gouverneur V, Vallis KA. Targeting telomerase with radiolabeled inhibitors. Eur J Med Chem 2017; 125:117-129. [PMID: 27657809 PMCID: PMC5154340 DOI: 10.1016/j.ejmech.2016.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
The expression of telomerase in approximately 85% of cancers and its absence in the majority of normal cells makes it an attractive target for cancer therapy. However the lag period between initiation of telomerase inhibition and growth arrest makes direct inhibition alone an insufficient method of treatment. However, telomerase inhibition has been shown to enhance cancer cell radiosensitivity. To investigate the strategy of simultaneously inhibiting telomerase while delivering targeted radionuclide therapy to cancer cells, 123I-radiolabeled inhibitors of telomerase were synthesized and their effects on cancer cell survival studied. An 123I-labeled analogue of the telomerase inhibitor MST-312 inhibited telomerase with an IC50 of 1.58 μM (MST-312 IC50: 0.23 μM). Clonogenic assays showed a dose dependant effect of 123I-MST-312 on cell survival in a telomerase positive cell line, MDA-MB-435.
Collapse
Affiliation(s)
- Philip A Waghorn
- CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Mark R Jackson
- CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Veronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Katherine A Vallis
- CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
21
|
Rai A, Naikmasur VG, Sattur A. Quantification of telomerase activity in normal oral mucosal tissue and oral squamous cell carcinoma. Indian J Med Paediatr Oncol 2016; 37:183-8. [PMID: 27688612 PMCID: PMC5027791 DOI: 10.4103/0971-5851.190350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The role of telomeres and telomerase in oral cancer is an area of much recent interest. The understanding of the role of telomere biology, the end replication problem leading to genomic instability and the reactivation of telomerase, is absolutely critical to our understanding of oral cancer, and more so, to our ability of early diagnosis and developing novel therapies and cancer prevention approaches. The aim of the present study was to quantify telomerase activity (TA) in oral squamous cell carcinoma (OSCC) and normal oral mucosa and assess the role of telomerase as diagnostic and prognostic marker of oral malignancy. MATERIALS AND METHODS We quantified TA in 45 patients with OSCC and 20 normal oral mucosal specimens using polymerase chain reaction-based telomeric repeat amplification protocol assay and compared it with the clinical status and grade of malignancy. RESULTS TA was detected in 89% of malignant and 5% of normal oral mucosal tissue. The TA levels ranged from 0.28 to 6.91 (mean 2.05, standard deviation [SD] 1.33) in OSCC and 0.21 to 1.09 (mean 0.54, SD 0.27) in normal oral mucosa. There was no relationship between TA levels and clinical stages, site of the lesion, history of adverse habits, or sex of the patient. However, under the WHO classification, there were significant differences (P < 0.00) between Grades I, II, and III. Furthermore, increasing age of the patient significantly correlated with TA. INTERPRETATION AND CONCLUSION The results of the present study indicate that activation of TA is frequent in OSCC. Statistically significant difference in quantified telomerase levels of OSCC and normal oral mucosa (P < 0.00) demonstrates the significant clinical usefulness of telomerase activation as a valuable marker for diagnosis while significant correlation of TA with grades of malignancy indicates its effectiveness as marker for prognosis of OSCC.
Collapse
Affiliation(s)
- Arpita Rai
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Venkatesh G Naikmasur
- Department of Oral Medicine and Radiology, S.D.M. College of Dental Sciences and Hospital, Dharwad, Karnataka, India
| | - Atul Sattur
- Department of Oral Medicine and Radiology, SDM College of Dental Sciences, Dharwad, Karnataka, India
| |
Collapse
|
22
|
Recent advances in targeting the telomeric G-quadruplex DNA sequence with small molecules as a strategy for anticancer therapies. Future Med Chem 2016; 8:1259-90. [PMID: 27442231 DOI: 10.4155/fmc-2015-0017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
Human telomeric DNA (hTelo), present at the ends of chromosomes to protect their integrity during cell division, comprises tandem repeats of the sequence d(TTAGGG) which is known to form a G-quadruplex secondary structure. This unique structural formation of DNA is distinct from the well-known helical structure that most genomic DNA is thought to adopt, and has recently gained prominence as a molecular target for new types of anticancer agents. In particular, compounds that can stabilize the intramolecular G-quadruplex formed within the human telomeric DNA sequence can inhibit the activity of the enzyme telomerase which is known to be upregulated in tumor cells and is a major contributor to their immortality. This provides the basis for the discovery and development of small molecules with the potential for selective toxicity toward tumor cells. This review summarizes the various families of small molecules reported in the literature that have telomeric quadruplex stabilizing properties, and assesses the potential for compounds of this type to be developed as novel anticancer therapies. A future perspective is also presented, emphasizing the need for researchers to adopt approaches that will allow the discovery of molecules with more drug-like properties in order to improve the chances of lead molecules reaching the clinic in the next decade.
Collapse
|
23
|
Liu Q, Thompson BA, Ward RL, Hesson LB, Sloane MA. Understanding the Pathogenicity of Noncoding Mismatch Repair Gene Promoter Variants in Lynch Syndrome. Hum Mutat 2016; 37:417-26. [DOI: 10.1002/humu.22971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2015] [Accepted: 02/05/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Qing Liu
- Adult Cancer Program; Lowy Cancer Research Centre and Prince of Wales Clinical School; UNSW Australia; Sydney New South Wales Australia
| | - Bryony A. Thompson
- Huntsman Cancer Institute; University of Utah; Salt Lake City Utah
- Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; University of Melbourne; Melbourne Victoria Australia
| | - Robyn L. Ward
- Adult Cancer Program; Lowy Cancer Research Centre and Prince of Wales Clinical School; UNSW Australia; Sydney New South Wales Australia
- Level 3 Brian Wilson Chancellery; The University of Queensland; Brisbane Queensland Australia
| | - Luke B. Hesson
- Adult Cancer Program; Lowy Cancer Research Centre and Prince of Wales Clinical School; UNSW Australia; Sydney New South Wales Australia
| | - Mathew A. Sloane
- Adult Cancer Program; Lowy Cancer Research Centre and Prince of Wales Clinical School; UNSW Australia; Sydney New South Wales Australia
| |
Collapse
|
24
|
A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biol 2015; 16:231. [PMID: 26553065 PMCID: PMC4640169 DOI: 10.1186/s13059-015-0791-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2015] [Accepted: 09/25/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND To facilitate indefinite proliferation, stem cells and most cancer cells require the activity of telomerase, which counteracts the successive shortening of telomeres caused by incomplete DNA replication at the very end of each chromosome. Human telomerase activity is often determined by the expression level of telomerase reverse transcriptase (TERT), the catalytic subunit of the ribonucleoprotein complex. The low expression level of TERT and the lack of adequate antibodies have made it difficult to study telomerase-related processes in human cells. RESULTS To overcome the low CRISPR-Cas9 editing efficiency at the TERT locus, we develop a two-step "pop-in/pop-out" strategy to enrich cells that underwent homologous recombination (HR). Using this technique, we fuse an N-terminal FLAG-SNAP-tag to TERT, which allows us to reliably detect TERT in western blots, immunopurify it for biochemical analysis, and determine its subcellular localization by fluorescence microscopy. TERT co-localizes detectably with only 5-7 % of the telomeres at a time in S-phase HeLa cells; no nucleolar localization is detected. Furthermore, we extend this approach to perform single base-pair modifications in the TERT promoter; reverting a recurrent cancer-associated TERT promoter mutation in a urothelial cancer cell line results in decreased telomerase activity, indicating the mutation is causal for telomerase reactivation. CONCLUSIONS We develop a two-step CRISPR-Cas9 genome editing strategy to introduce precise modifications at the endogenous TERT locus in human cell lines. This method provides a useful tool for studying telomerase biology, and suggests a general approach to edit loci with low targeting efficiency and to purify and visualize low abundance proteins.
Collapse
|
25
|
Xi L, Cech TR. Protein-RNA interaction restricts telomerase from running through the stop sign. Nat Struct Mol Biol 2015; 22:835-6. [DOI: 10.1038/nsmb.3118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
|
26
|
Abstract
Histone deacetylase inhibitors (HDACis) have fascinated researchers in almost all fields of oncology for many years owing to their pleiotropic effects on nearly every aspect of cancer biology. Since the approval of the first HDACi vorinostat for the treatment of cutaneous T-cell leukemia in 2006, more than a hundred clinical trials have been initiated with a HDACi as a single agent or in combination therapy. Although a number of epigenetic and nonepigenetic molecular mechanisms of action have been proposed, biomarkers for response prediction and patient selection are still lacking. One of the inherent problems in the field of HDACis is their 'reverse' history of drug development: these compounds reached clinical application at an early stage, before the biology of their targets, HDAC1-11, was sufficiently understood. This review summarizes the current knowledge on the human family of HDACs as drug targets in pediatric and adult brain tumors, the efficacy and molecular action of HDACis in preclinical models, as well as the current status of the clinical development of these compounds in the field of neuro-oncology.
Collapse
Affiliation(s)
- Jonas Ecker
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
27
|
Alibardi L. Immunolocalization of the telomerase‐1 component in cells of the regenerating tail, testis, and intestine of lizards. J Morphol 2015; 276:748-58. [DOI: 10.1002/jmor.20375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2014] [Revised: 12/27/2014] [Accepted: 01/24/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento of BigeaUniversity of Bologna Bologna Italy
| |
Collapse
|
28
|
Abstract
We develop a single quantum dot-based biosensor for the sensitive detection of telomerase in tumor cells and screening of anticancer drugs.
Collapse
Affiliation(s)
- Guichi Zhu
- Single-Molecule Detection and Imaging Laboratory
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Kun Yang
- Single-Molecule Detection and Imaging Laboratory
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Chun-yang Zhang
- Single-Molecule Detection and Imaging Laboratory
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| |
Collapse
|
29
|
Hashemi M, Amininia S, Ebrahimi M, Hashemi SM, Taheri M, Ghavami S. Association between hTERT polymorphisms and the risk of breast cancer in a sample of Southeast Iranian population. BMC Res Notes 2014; 7:895. [PMID: 25491902 PMCID: PMC4295305 DOI: 10.1186/1756-0500-7-895] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is considered to be one of the most important causes of death worldwide, and it affects the Iranian female population a decade earlier than female in other parts of the world. Human telomerase reverse transcriptase (hTERT) is a main subunit of the telomerase complex. MNS16A is located downstream of the hTERT gene and is recognized as the regulator of hTERT promoter activity. The aim of the present study was to access the possible impact of hTERT variants on BC risk in an Iranian population in southeast Iran. METHODS A total of 491 subjects including 266 BC patients and 225 healthy women participated in the study. Polymerase chain reaction (PCR) was used to genotype the MNS16A variable number of tandem repeats and 177 bp ins/del polymorphisms in the hTERT gene. PCR-RFLP and ARMS-PCR were used to genotype hTERT rs2736098 and 2735940, respectively. The association between genotypes and BC was assessed by computing the odds ratio (OR) and 95% confidence intervals (95% CI) from logistic regression analyses. A p-value of <0.05 was considered statistically significant. RESULTS The MNS16A genotype frequency distribution in BC patients was: LL, 43.2%; LS, 51.1%; and SS, 5.7%, and in controls: LL, 29.5%; LS, 68.3%; and SS, 2.2%. The LS genotype decreased the risk of BC compared with LL (OR=0.51, 95% CI=0.35-0.75, p<0.001). The hTERT 177 bp ins/del polymorphism was not polymorphic in our population. All subjects had the ins/ins genotype. Our findings indicate that the MNS16A genotype and hTERT rs2736098 variant were associated with BC risk in the study. We also showed that the rs2736098 A/G polymorphism increased the risk of BC (OR=1.80, 95% CI=1.12-2.88, p=0.017, AG vs AA; OR=1.80, 95% CI=1.06-3.06, p=0.033, GG vs AA; OR=1.87, 95% CI=1.19-2.94, p=0.006, AG+GG vs AA). No significant association was found between the rs2735940 C/T variant and BC. CONCLUSION Our findings indicate that the MNS16A genotype and the hTERT rs2736098 variant influence the risk of BC in an Iranian population in southeast Iran.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | | | | | | | | | | |
Collapse
|
30
|
Kalathiya U, Padariya M, Baginski M. Molecular Modeling and Evaluation of Novel Dibenzopyrrole Derivatives as Telomerase Inhibitors and Potential Drug for Cancer Therapy. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:1196-1207. [PMID: 26357055 DOI: 10.1109/tcbb.2014.2326860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/05/2023]
Abstract
During previous years, many studies on synthesis, as well as on anti-tumor, anti-inflammatory and anti-bacterial activities of the pyrazole derivatives have been described. Certain pyrazole derivatives exhibit important pharmacological activities and have proved to be useful template in drug research. Considering importance of pyrazole template, in current work the series of novel inhibitors were designed by replacing central ring of acridine with pyrazole ring. These heterocyclic compounds were proposed as a new potential base for telomerase inhibitors. Obtained dibenzopyrrole structure was used as a novel scaffold structure and extension of inhibitors was done by different functional groups. Docking of newly designed compounds in the telomerase active site (telomerase catalytic subunit TERT) was carried out. All dibenzopyrrole derivatives were evaluated by three docking programs: CDOCKER, Ligandfit docking (Scoring Functions) and AutoDock. Compound C_9g, C_9k and C_9l performed best in comparison to all designed inhibitors during the docking in all methods and in interaction analysis. Introduction of pyrazole and extension of dibenzopyrrole in compounds confirm that such compound may act as potential telomerase inhibitors.
Collapse
|
31
|
Baig UI, Bhadbhade BJ, Watve MG. Evolution of aging and death: what insights bacteria can provide. QUARTERLY REVIEW OF BIOLOGY 2014; 89:209-23. [PMID: 25195317 DOI: 10.1086/677572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
Abstract
Several unresolved issues, paradoxes, and information voids characterize the field of evolution of aging. The recent discovery of aging-like phenomenon in Escherichia coli, marked by asymmetric segregation of damaged components, particularly protein aggregates, has created a number of new possibilities that remain underexplored. Bacterial systems can potentially throw light on issues such as: whether evolution of aging and evolution of death are different phenomena; whether aging is inevitable for life or is an evolved strategy; whether there could be selection for aging or aging is a pleiotropic effect of some other selection; what are the possible mechanisms of antagonistic pleiotropy, if any; and whether there are mechanisms of aging that are conserved throughout the hierarchy of life. Bacterial aging itself is underexplored and least understood as of now, but even scratching the surface appears to reveal things that may compel us to revise some of the classical concepts about evolution of aging. This warrants more focused and innovative inquiry into aging-like processes in bacteria.
Collapse
|
32
|
Azhibek D, Zvereva M, Zatsepin T, Rubtsova M, Dontsova O. Chimeric bifunctional oligonucleotides as a novel tool to invade telomerase assembly. Nucleic Acids Res 2014; 42:9531-42. [PMID: 25081209 PMCID: PMC4150790 DOI: 10.1093/nar/gku688] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022] Open
Abstract
Telomerase is a key participant in the telomere length maintaining system in eukaryotic cells. Telomerase RNA and protein reverse transcriptase subunits are essential for the appearance of active telomerase in vitro. Telomerase is active in many cancer types and is a potential target for anticancer drug development. Here we report a new approach for impairing telomerase function at the stage of human telomerase assembly. The approach is based on the application of chimeric bifunctional oligonucleotides that contain two oligonucleotide parts complementary to the functional domains of telomerase RNA connected with non-nucleotide linkers in different orientations (5'-3', 5'-5' or 3'-3'). Such chimeras inhibited telomerase in vitro in the nM range, but were effective in vivo in sub-nM concentrations, predominantly due to their effect on telomerase assembly and dimerization.
Collapse
Affiliation(s)
- Dulat Azhibek
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russian Federation Skolkovo Institute of Science and Technology, Novaya Street, 100, Skolkovo, Odintsovsky District, Moscow Region, 143025, Russian Federation
| | - Maria Zvereva
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russian Federation
| | - Timofei Zatsepin
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russian Federation Skolkovo Institute of Science and Technology, Novaya Street, 100, Skolkovo, Odintsovsky District, Moscow Region, 143025, Russian Federation
| | - Maria Rubtsova
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russian Federation
| | - Olga Dontsova
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russian Federation
| |
Collapse
|
33
|
Qian R, Ding L, Yan L, Lin M, Ju H. Smart Vesicle Kit for In Situ Monitoring of Intracellular Telomerase Activity Using a Telomerase-Responsive Probe. Anal Chem 2014; 86:8642-8. [DOI: 10.1021/ac502538w] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ruocan Qian
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Lin Ding
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Liwen Yan
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Manfei Lin
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
34
|
Rao Y, Xiong W, Liu H, Jia C, Zhang H, Cui Z, Zhang Y, Cui J. Inhibition of telomerase activity by dominant-negative hTERT retards the growth of breast cancer cells. Breast Cancer 2014; 23:216-23. [PMID: 25098685 DOI: 10.1007/s12282-014-0553-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2014] [Accepted: 06/30/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Telomerase, a ribonucleoprotein enzyme mainly consisted of a catalytic protein subunit human telomerase reverse transcriptase (hTERT) and a human telomerase RNA component, is responsible for maintaining telomeres. Telomerase over-expression correlates significantly with tumors and is a prognostic marker. However, telomerase over-expression in breast cancers and the effect of telomerase inhibition as a candidate cancer therapy are unknown. METHODS We used the dominant-negative mutant of hTERT (DN-hTERT) to inhibit telomerase activity on human breast adenocarcinoma cell line MCF-7 by transfection. Telomeric repeat amplification protocol assays and real-time quantitative RT-PCR were performed to investigate telomerase activity as well as expression of hTERT. Telomere length was measured by the flow-fluorescence in situ hybridization assay. Cell proliferation was assessed by the WST-8 assay, and apoptosis was evaluated by flow cytometry. The tumor formation ability of MCF-7 cells was investigated by transplanting cells subcutaneously into BALB/c nude mice. RESULTS Ectopic expression of DN-hTERT caused dramatically inhibition of telomerase activity and reduction of telomere length. Telomerase inhibition induced growth arrest and apoptosis of MCF7 cells in vitro and loss of tumorigenic properties in vivo. CONCLUSION This study shows that telomerase inhibition by DN-hTERT can effectively inhibit the cell viability and tumorigenicity of MCF7 cells and is an attractive approach for breast cancer therapy.
Collapse
Affiliation(s)
- Yaojian Rao
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, 471000, Henan, China.
| | - Wei Xiong
- The orthopedic department of tongji hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Liu
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, 471000, Henan, China
| | - Chunxia Jia
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, 471000, Henan, China
| | - Hongxing Zhang
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, 471000, Henan, China
| | - Zesheng Cui
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, 471000, Henan, China
| | - Ya Zhang
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, 471000, Henan, China
| | - Jiawei Cui
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, 471000, Henan, China
| |
Collapse
|
35
|
Xi L, Cech TR. Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT. Nucleic Acids Res 2014; 42:8565-77. [PMID: 24990373 PMCID: PMC4117779 DOI: 10.1093/nar/gku560] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023] Open
Abstract
Telomerase is the ribonucleoprotein (RNP) enzyme that elongates telomeric DNA to compensate for the attrition occurring during each cycle of DNA replication. Knowing the levels of telomerase in continuously dividing cells is important for understanding how much telomerase is required for cell immortality. In this study, we measured the endogenous levels of the human telomerase RNP and its two key components, human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT). We estimate ∼240 telomerase monomers per cell for HEK 293T and HeLa, a number similar to that of telomeres in late S phase. The subunits were in excess of RNPs (e.g. ∼1150 hTR and ∼500 hTERT molecules per HeLa cell), suggesting the existence of unassembled components. This hypothesis was tested by overexpressing individual subunits, which increased total telomerase activity as measured by the direct enzyme assay. Thus, there are subpopulations of both hTR and hTERT not assembled into telomerase but capable of being recruited. We also determined the specific activity of endogenous telomerase and of overexpressed super-telomerase both to be ∼60 nt incorporated per telomerase per minute, with Km(dGTP) ∼17 μM, indicating super-telomerase is as catalytically active as endogenous telomerase and is thus a good model for biochemical studies.
Collapse
Affiliation(s)
- Linghe Xi
- University of Colorado BioFrontiers Institute, Boulder, CO 80303, USA Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Thomas R Cech
- University of Colorado BioFrontiers Institute, Boulder, CO 80303, USA Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
36
|
Yu L, Liu S, Guo W, Zhang C, Zhang B, Yan H, Wu Z. hTERT promoter activity identifies osteosarcoma cells with increased EMT characteristics. Oncol Lett 2013; 7:239-244. [PMID: 24348856 PMCID: PMC3861599 DOI: 10.3892/ol.2013.1692] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2013] [Accepted: 11/14/2013] [Indexed: 01/03/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical step in order for epithelial-derived malignancies to metastasize, however, its role in mesenchymal-derived tumors, i.e., osteosarcoma, remains unclear. Cancer stem cells (CSCs) are enriched with cells that undergo EMT. The activity of telomerase is maintained in normal stem cells and a number of malignant tumors. The current study observed the heterogeneity of telomerase activity among individual osteosarcoma cells. We hypothesized that telomerase-positive (TELpos) cells are enriched for stem cell-like and EMT properties. A human telomerase reverse transcriptase (hTERT) promoter-reporter was applied to assess the telomerase activity of individual MG63 osteosarcoma cells and sort them into TELpos and telomerase-negative (TELneg) subpopulations. It was found that the TELpos cells exhibited an enhanced ability to form sarcospheres in vitro. In addition, TELpos cells exhibited a higher expression of vimentin, accompanied by an increased long/short axis ratio. A panel of EMT-related genes was evaluated by quantitative PCR and western blot analysis, and were found to be significantly upregulated in TELpos cells. Next, the in vitro migration capacity was examined by Transwell assay, which confirmed that TELpos cells are more prone to migration (2.6 fold). The results of the present study support the concept that EMT also applies to mesenchymal-derived osteosarcoma and draws a connection between telomerase and EMT characteristics.
Collapse
Affiliation(s)
- Ling Yu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shiqing Liu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chun Zhang
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Zhang
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huichao Yan
- Opening Laboratory for Oversea Scientists, Wuhan University School of Basic Medical Science, Wuhan, Hubei 430072, P.R. China
| | - Zheng Wu
- Department of Radiation Oncology, Tumor Hospital Xiangya School of Medicine of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
37
|
Sahin F, Avci CB, Gunduz C, Sezgin C, Simsir IY, Saydam G. Gossypol exerts its cytotoxic effect on HL-60 leukemic cell line via decreasing activity of protein phosphatase 2A and interacting with human telomerase reverse transcriptase activity. Hematology 2013; 15:144-50. [DOI: 10.1179/102453309x12583347113771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Fahri Sahin
- Department of HematologyEge University School of Medicine, Bornova, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical BiologyEge University School of Medicine, Bornova, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical BiologyEge University School of Medicine, Bornova, Izmir, Turkey
| | - Canfeza Sezgin
- Department of Medical OncologyEge University School of Medicine, Bornova, Izmir, Turkey
| | - Ilgin Yildirim Simsir
- Department of Internal MedicineEge University School of Medicine, Bornova, Izmir, Turkey
| | - Guray Saydam
- Department of HematologyEge University School of Medicine, Bornova, Izmir, Turkey
| |
Collapse
|
38
|
Das M, Chaudhuri S, Law S. Unveiling the paradoxical nature of myelodysplastic syndromes (MDS): why hypercellular marrow strongly favors accelerated apoptosis. Biochem Cell Biol 2013; 91:303-8. [PMID: 24032679 DOI: 10.1139/bcb-2012-0109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The pathogenesis of bone marrow failure in myelodysplastic syndromes (MDS) is an unresolved mystery. MDS causes peripheral blood cytopenias and increased bone marrow cellularity. This apparent paradox has been interpreted as a sign of intramedullary destruction of a substantial portion of the developing hematopoietic cells by apoptosis. The present study aimed to delineate the exact mechanistic relationship between the bone marrow hypercellularity and the accelerated apoptosis in an N-ethyl-N-nitrosourea (ENU)-induced experimental MDS mouse model. The observations made so far clarify the quantitative and qualitative changes that occur in the bone marrow microenvironment through cell cycle analysis, especially involving the telomerase reverse transcriptase (TERT) and p53 expression patterns. The survival fate of the bone marrow cells were observed by measuring the expression level of some intracellular protein molecules like apoptosis signal-regulating kinase 1 (ASK-1), c-Jun N-terminal kinase (JNK), and cleaved caspase-3 of the extrinsic pathway toward apoptosis. We found myelodysplasia damage occurs within one or more multipotent progenitor populations resulting in uncontrolled cellular proliferation within the MDS bone marrow. Then, due to homeostatic balance, this high cellular burden is minimized by activating the apoptosis pathway. As a result, the peripheral blood suffers cellular deprivation. This study can throw some light on the mechanism of disease progression and also help to reveal the paradoxical nature of the disease.
Collapse
Affiliation(s)
- Madhurima Das
- a Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108 C R Avenue, Kolkata, West Bengal, India, 700073
| | | | | |
Collapse
|
39
|
Obermann EC, Savic Prince S, Barascud A, Grilli B, Herzog M, Kaup D, Cathomas G, Frey Tirri B, Zlobec I, Wight E, Bubendorf L. Prediction of outcome in patients with low-grade squamous intraepithelial lesions by fluorescence in situ hybridization analysis of human papillomavirus, TERC, and MYC. Cancer Cytopathol 2013; 121:423-31. [PMID: 23408758 DOI: 10.1002/cncy.21280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cytology is an excellent method with which to diagnose preinvasive lesions of the uterine cervix, but it suffers from limited specificity for clinically significant lesions. Supplementary methods might predict the natural course of the detected lesions. The objective of the current study was to test whether a multicolor fluorescence in situ hybridization (FISH) assay might help to stratify abnormal results of Papanicolaou tests. METHODS A total of 219 liquid-based cytology specimens of low-grade squamous intraepithelial lesions (LSIL), 49 atypical squamous cells of undetermined significance (ASCUS) specimens, 52 high-grade squamous intraepithelial lesion (HSIL) specimens, and 50 normal samples were assessed by FISH with probes for the human papillomavirus (HPV), MYC, and telomerase RNA component (TERC). Subtyping of HPV by polymerase chain reaction (PCR) was performed in a subset of cases (n=206). RESULTS There was a significant correlation found between HPV detection by FISH and PCR (P<.0001). In patients with LSILs, the presence of HPV detected by FISH was significantly associated with disease progression (P<.0001). An increased MYC and/or TERC gene copy number (>2 signals in>10% of cells) prevailed in 43% of ASCUS specimens and was more frequent in HSIL (85%) than in LSIL (33%) (HSIL vs LSIL: P<.0001). Increased TERC gene copy number was significantly correlated with progression of LSIL (P<.01; odds ratio, 7.44; area under the receiver operating characteristic curve, 0.73; positive predictive value, 0.30; negative predictive value, 0.94) CONCLUSIONS: The detection of HPV by FISH analysis is feasible in liquid-based cytology and is significantly correlated with HPV analysis by PCR. The analysis of TERC gene copy number may be useful for risk stratification in patients with LSIL.
Collapse
Affiliation(s)
- Ellen C Obermann
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The Intersection of Genetics and Epigenetics: Reactivation of Mammalian LINE-1 Retrotransposons by Environmental Injury. ENVIRONMENTAL EPIGENOMICS IN HEALTH AND DISEASE 2013. [DOI: 10.1007/978-3-642-23380-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
|
41
|
Garrels W, Kues WB, Herrmann D, Holler S, Baulain U, Niemann H. Ectopic expression of human telomerase RNA component results in increased telomerase activity and elongated telomeres in bovine blastocysts. Biol Reprod 2012; 87:95. [PMID: 22855562 DOI: 10.1095/biolreprod.112.100198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Telomeres play an important role in aging, and are critical for the regenerative capacity of mammalian cells. The holoenzyme telomerase rebuilds telomeres and is composed of two components, the catalytic protein telomerase reverse transcriptase (TERT) and the telomerase RNA (TERC). TERC is ubiquitously expressed in somatic cells and is thought to have no regulatory effects on telomerase activity. Transgenic expression of human TERT (hTERT) in bovine somatic and embryonic cells extends telomere length and enhances telomerase activity. To obtain further insight into the regulatory capacity of the two telomerase components, we have studied the ability of hTERC and hTERT to increase telomerase activity and telomere length in bovine embryos. Expression plasmids for the human RNA component (hTERC) and/or the catalytic subunit of human telomerase (hTERT), respectively, were injected into the cytoplasm of in vitro-produced bovine zygotes. Ectopic expression of hTERC increased telomerase activity and telomere length in bovine blastocysts. Coexpression of hTERT and hTERC did not result in further telomere elongation when compared to the hTERC group. These data indicate that TERC is one of the limiting factors of telomerase activity in bovine blastocysts, and further establish bovine preimplantation embryos as a useful model to modulate telomere length with impact for basic embryology and derivation of pluripotent cells.
Collapse
Affiliation(s)
- Wiebke Garrels
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Giovinazzo F, Turri G, Zanini S, Butturini G, Scarpa A, Bassi C. Clinical implications of biological markers in Pancreatic Ductal Adenocarcinoma. Surg Oncol 2012; 21:e171-82. [PMID: 22981281 DOI: 10.1016/j.suronc.2012.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2012] [Revised: 07/17/2012] [Accepted: 07/26/2012] [Indexed: 12/29/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a malignant neoplasm and is the fourth leading cause of cancer-related deaths in US with a 5-year survival rate less than 5%. Surgery is the only potentially curative treatment even though the result is a palliation in the majority of cases and the majority of lesions are lately diagnosed. Progression from normal pancreatic epithelium to metastatic disease is now a well-characterized sequence of events. Research has shown that pancreatic cancer is fundamentally a genetic disease with several biological pathway implied in apoptosis, cell proliferation and self-sufficiency in growth signaling, but how those findings could be applied in daily clinical practice remain unknown. Several studies tried to characterize diagnostic and prognostic biomarkers in PDAC to make it possible an earlier diagnosis, guarantee a more effective treatment and reach a better prognosis even though the results remain contrasting. The main limit of the published researches is the small number of patients studied, but even the heterogeneity of the used methods of analysis. Examining critically the research of the last years future trials may be addressed toward a translational models integrating "the bench and the bed" with the clinical experience and drive the basic research toward the clinical applications.
Collapse
Affiliation(s)
- Francesco Giovinazzo
- Laboratory of Translational Surgery, University Laboratories of Medical Research (LURM), G.B. Rossi Hospital, University of Verona, Piazzale L.A. Scuro 10, Verona 37134, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Thilagavathi J, Venkatesh S, Dada R. Telomere length in reproduction. Andrologia 2012; 45:289-304. [DOI: 10.1111/and.12008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/04/2012] [Indexed: 01/22/2023] Open
Affiliation(s)
- J. Thilagavathi
- Laboratory for Molecular Reproduction and Genetics; Department of Anatomy; All India Institute of Medical Sciences; New Delhi; India
| | - S. Venkatesh
- Laboratory for Molecular Reproduction and Genetics; Department of Anatomy; All India Institute of Medical Sciences; New Delhi; India
| | - R. Dada
- Laboratory for Molecular Reproduction and Genetics; Department of Anatomy; All India Institute of Medical Sciences; New Delhi; India
| |
Collapse
|
44
|
Zhang Y, Toh L, Lau P, Wang X. Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer. J Biol Chem 2012; 287:32494-511. [PMID: 22854964 DOI: 10.1074/jbc.m112.368282] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023] Open
Abstract
Telomerase activation plays a critical role in human carcinogenesis through the maintenance of telomeres, but the activation mechanism during carcinogenesis remains unclear. The human telomerase reverse transcriptase (hTERT) promoter has been shown to promote hTERT gene expression selectively in tumor cells but not in normal cells. Deregulation of the Wnt/β-catenin signaling pathway is reported to be associated with human carcinogenesis. However, little is known about whether the Wnt/β-catenin pathway is involved in activating hTERT transcription and inducing telomerase activity (TA). In this study, we report that hTERT is a novel target of the Wnt/β-catenin pathway. Transient activation of the Wnt/β-catenin pathway either by transfection of a constitutively active form of β-catenin or by LiCl or Wnt-3a conditioned medium treatment induced hTERT mRNA expression and elevated TA in different cell lines. Furthermore, we found that silencing endogenous β-catenin expression by β-catenin gene-specific shRNA effectively decreased hTERT expression, suppressed TA, and accelerated telomere shortening. Of the four members of the lymphoid-enhancing factor (LEF)/T-cell factor (TCF) family, only TCF4 showed more effective stimulation on the hTERT promoter. Ectopic expression of a dominant negative form of TCF4 inhibited hTERT expression in cancer cells. Through promoter mapping, electrophoretic mobility shift assay, and chromatin immunoprecipitation assay, we found that hTERT is a direct target of β-catenin·TCF4-mediated transcription and that the TCF4 binding site at the hTERT promoter is critical for β-catenin·TCF4-dependent expression regulation. Given the pivotal role of telomerase in carcinogenesis, these results may offer insight into the regulation of telomerase in human cancer.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Biochemistry, Yong Loo Lin School of Medicine, 8 Medical Drive, National University of Singapore, 117597 Singapore
| | | | | | | |
Collapse
|
45
|
Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 2012; 39:444-56. [PMID: 22841437 DOI: 10.1016/j.ctrv.2012.06.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 12/12/2022]
Abstract
Telomeres are protective caps at the ends of human chromosomes. Telomeres shorten with each successive cell division in normal human cells whereas, in tumors, they are continuously elongated by human telomerase reverse transcriptase (hTERT). Telomerase is overexpressed in 80-95% of cancers and is present in very low levels or is almost undetectable in normal cells. Because telomerase plays a pivotal role in cancer cell growth it may serve as an ideal target for anticancer therapeutics. Inhibition of telomerase may lead to a decrease of telomere length resulting in cell senescence and apoptosis in telomerase positive tumors. Several strategies of telomerase inhibition are reviewed, including small molecule inhibitors, antisense oligonucleotides, immunotherapies and gene therapies, targeting the hTERT or the ribonucleoprotein subunit hTER. G-quadruplex stabilizers, tankyrase and HSP90 inhibitors targeting telomere and telomerase assembly, and T-oligo approach are also covered. Based on this review, the most promising current telomerase targeting therapeutics are the antisense oligonucleotide inhibitor GRN163L and immunotherapies that use dendritic cells (GRVAC1), hTERT peptide (GV1001) or cryptic peptides (Vx-001). Most of these agents have entered phase I and II clinical trials in patients with various tumors, and have shown good response rates as evidenced by a reduction in tumor cell growth, increased overall disease survival, disease stabilization in advanced staged tumors and complete/partial responses. Most therapeutics have shown to be more effective when used in combination with standard therapies, resulting in concomitant telomere shortening and tumor mass shrinkage, as well as preventing tumor relapse and resistance to single agent therapy.
Collapse
Affiliation(s)
- Maria Ruden
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107-1822, USA
| | | |
Collapse
|
46
|
Liu Y, Dong XL, Tian C, Liu HG. Human telomerase RNA component (hTERC) gene amplification detected by FISH in precancerous lesions and carcinoma of the larynx. Diagn Pathol 2012; 7:34. [PMID: 22463766 PMCID: PMC3359179 DOI: 10.1186/1746-1596-7-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2012] [Accepted: 03/30/2012] [Indexed: 11/30/2022] Open
Abstract
Background Gain of 3q26 is frequently observed in squamous cell carcinomas of mucosal origin, including those originating in the head and neck region. The human telomerase RNA component (hTERC) gene, which is located on chromosome 3q26, encodes for an RNA subunit of telomerase that maintains the length of telomeres through cellular divisions, and is activated in malignant diseases. The present study was designed to detect hTERC amplification in laryngeal lesions and evaluate whether this might serve as a supportive biomarker in histopathological analysis for in the diagnosis of laryngeal lesions. Methods Fluorescent in situ hybridization (FISH) was applied on formalin-fixed paraffin-embedded blocks of 93 laryngeal specimens, including 14 normal epithelium (NE), 15 mild dysplasia (Md), 18 moderate dysplasia (MD), 16 severe dysplasia (SD), 9 carcinoma in situ (CIS), and 21 invasive carcinoma (IC)). Results By histopathologic examination, hTERC amplification rates in NE, Md, MD, SD, CIS and IC cases were 0% (0/14), 13.33% (2/15), 72.22% (13/18), 81.25% (13/16), 100% (9/9) and 100% (21/21), respectively. Amplification of hTERC was significantly associated with histopathologic diagnosis (P < 0.0001). The percentage of hTERC amplification in patients with MD, SD, CIS, and IC was significantly higher than those with NE or Md (P < 0.0001). The number of cells with abnormal signals increased and the abnormal signal patterns were diversified with increasing severity of laryngeal dysplasia (P < 0.0001). Conclusions The hTERC amplification is important in the development of laryngeal squamous cell carcinoma (LSCC). FISH detection of hTERC amplification may provide an effective approach in conjunction with histopathologic evaluation for differential diagnosis of laryngeal lesions. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2226606266791985
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | | | | | | |
Collapse
|
47
|
Avci CB, Yilmaz S, Dogan ZO, Saydam G, Dodurga Y, Ekiz HA, Kartal M, Sahin F, Baran Y, Gunduz C. Quercetin-induced apoptosis involves increased hTERT enzyme activity of leukemic cells. ACTA ACUST UNITED AC 2012; 16:303-7. [PMID: 21902895 DOI: 10.1179/102453311x13085644680104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
We aimed to examine the growth suppressive effects of quercetin on acute promyelocytic and lymphoblastic leukemia and chronic myeloid leukemia, and to find out whether the growth suppression is related to the blocking of telomerase enzyme activity. Cytotoxic effects of quercetin were shown by trypan blue analyses. Apoptotic effects of quercetin were examined by acridine orange and ethidium bromide staining by fluorescence microscopy. The effects of quercetin on telomerase enzyme activity were shown by hTERT Quantification Kit. Our results demonstrated that quercetin has antiproliferative and apoptotic effects on T-cell acute lymphoblastic leukemia (ALL), acute promyelocytic leukemia, and chronic myeloid leukemia (CML) cells. We also showed for the first time by this study that quercetin suppresses the activity of telomerase in ALL and CML cells. The results of this study show the importance of quercetin for its therapeutic potential in treatment of leukemias.
Collapse
|
48
|
Xia G, Han X, Qi J, Liu W, Song J, Qin J, Liu L. The effects of <i>astragalus</i> polysaccharide on zebrafish cell apoptosis and senescence. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajmb.2012.22011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
|
49
|
Zhang Z, Wang J, Li J, Xu S. Telomerase-mediated apoptosis of chicken lymphoblastoid tumor cell line by lanthanum chloride. Biol Trace Elem Res 2011; 144:657-67. [PMID: 21448564 DOI: 10.1007/s12011-011-9027-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/13/2010] [Accepted: 03/08/2011] [Indexed: 11/25/2022]
Abstract
To investigate the biological effects of lanthanum on chicken lymphoid tumors, cultures of the MDCC-MSB1 chicken lymphoblastoid cell line were treated with 2.5 mM lanthanum chloride for 2 days at 12-h intervals. The apoptotic cells were detected using the TdT-mediated dUTP nick end labeling assay and flow cytometer analysis. The telomerase activity and the chTERT mRNA expression levels of the MDCC-MSB1 cells were examined. The results showed that MDCC-MSB1 cell apoptosis occurred after incubation for 12 to 48 h induced by 2.5 mM LaCl(3). Consistent with the apoptosis results, telomerase activities in LaCl(3)-treated cells significantly decreased (P < 0.05) compared with 0 h group. Furthermore, the transcription of chTERT gene in MDCC-MSB1 cell was significantly inhibited in LaCl(3) treatment group (P < 0.05). These results suggest that the decrease of the chTERT transcription and telomerase activity play an important role in the La-induced apoptosis in chicken lymphoid tumor.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | | | | | | |
Collapse
|
50
|
Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro. Exp Cell Res 2011; 317:2950-7. [PMID: 21963525 DOI: 10.1016/j.yexcr.2011.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2011] [Revised: 08/31/2011] [Accepted: 09/16/2011] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy.
Collapse
|