1
|
Edmonds CE, O'Brien SR, McDonald ES, Mankoff DA, Pantel AR. PET Imaging of Breast Cancer: Current Applications and Future Directions. JOURNAL OF BREAST IMAGING 2024; 6:586-600. [PMID: 39401324 DOI: 10.1093/jbi/wbae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 11/07/2024]
Abstract
As molecular imaging use expands for patients with breast cancer, it is important for breast radiologists to have a basic understanding of molecular imaging, including PET. Although breast radiologists may not directly interpret such studies, basic knowledge of molecular imaging will enable the radiologist to better direct diagnostic workup of patients as well as discuss diagnostic imaging with the patient and other treating physicians. Several new tracers are now available to complement imaging glucose metabolism with FDG. Because it provides a noninvasive assessment of disease status across the whole body, PET offers specific advantages over tissue-based assays. Paired with targeted therapy, molecular imaging has the potential to guide personalized treatment of breast cancer, including guiding dosing during drug trials as well as predicting and assessing clinical response. This review discusses the current established applications of FDG, which remains the most widely used PET radiotracer for malignancy, including breast cancer, and highlights potential areas for expanded use based on recent research. It also summarizes research to date on the U.S. Food and Drug Administration (FDA)-approved PET tracer 16α-18F-fluoro-17β-estradiol (FES), which targets ER, including the current guidelines from the Society of Nuclear Medicine and Molecular Imaging on the appropriate use of FES-PET/CT for breast cancer as well as areas of active investigation for other potential applications. Finally, the review highlights several of the most promising novel PET tracers that are poised for clinical translation in the near future.
Collapse
Affiliation(s)
- Christine E Edmonds
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sophia R O'Brien
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth S McDonald
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Mankoff
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Austin R Pantel
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
O'Brien SR, Edmonds CE, Ward RE, Taunk NK, Pantel AR, Mankoff DA. Update on 18F-Fluoroestradiol. Semin Nucl Med 2024; 54:812-826. [PMID: 39368910 DOI: 10.1053/j.semnuclmed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/07/2024]
Abstract
18F-16α-Fluoroestradiol (18F-FES) is a radiolabeled estrogen analogue positron emission tomography (PET) imaging agent that binds to the estrogen receptor (ER) in the nucleus of ER-expressing cells. Proof-of-concept studies of 18F-FES demonstrated expected correlation between tumoral 18F-FES-positivity on PET-imaging and ER+ status assessed on biopsy samples by radioligand binding and immunohistochemistry. After decades of study, 18F-FES PET/CT gained clinical approval in 2016 in France and 2020 in the United States for use in patients with ER+ metastatic or recurrent breast cancer. ER+ as assessed by 18F-FES PET/CT has been shown to serve as a biomarker, identifying metastatic breast cancer patients who may respond to endocrine therapy and those who are unlikely to respond. In 2023, the Society of Nuclear Medicine and Molecular Imaging (SNMMI) published Appropriate Use Criteria for 18F-FES PET/CT, identifying four indications in which use of 18F-FES PET/CT was "appropriate": (1) To assess functional ER status in metastatic lesions unfavorable to biopsy or when biopsy is nondiagnostic, (2) To detect ER status when other imaging tests are equivocal or suspicious, and at (3) initial diagnosis of metastatic disease or (4) progression of metastatic disease, for considering endocrine therapy. This article reviews the foundations of 18F-FES imaging, including normal distribution, false positives, and false negatives, and describes the most up-to-date clinical uses as well as emerging research in breast cancer and other patient populations.
Collapse
Affiliation(s)
- Sophia R O'Brien
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA; Department of Radiology, Division of Breast Imaging, Hospital of the University of Pennsylvania, Philadelphia, PA.
| | - Christine E Edmonds
- Department of Radiology, Division of Breast Imaging, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Rebecca E Ward
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Neil K Taunk
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Austin R Pantel
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - David A Mankoff
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Groheux D, Vaz SC, Poortmans P, Mann RM, Ulaner GA, Cook GJR, Hindié E, Pilkington Woll JP, Jacene H, Rubio IT, Vrancken Peeters MJ, Dibble EH, de Geus-Oei LF, Graff SL, Cardoso F. Role of [ 18F]FDG PET/CT in patients with invasive breast carcinoma of no special type: Literature review and comparison between guidelines. Breast 2024; 78:103806. [PMID: 39303572 PMCID: PMC11440802 DOI: 10.1016/j.breast.2024.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE The recently released EANM/SNMMI guideline, endorsed by several important clinical and imaging societies in the field of breast cancer (BC) care (ACR, ESSO, ESTRO, EUSOBI/ESR, EUSOMA), emphasized the role of [18F]FDG PET/CT in management of patients with no special type (NST) BC. This review identifies and summarizes similarities, discrepancies and novelties of the EANM/SNMMI guideline compared to NCCN, ESMO and ABC recommendations. METHODS The EANM/SNMMI guideline was based on a systematic literature search and the AGREE tool. The level of evidence was determined according to NICE criteria, and 85 % agreement or higher was reached regarding each statement. Comparisons with NCCN, ESMO and ABC guidelines were examined for specific clinical scenarios in patients with early stage through advanced and metastatic BC. RESULTS Regarding initial staging of patients with NST BC, [18F]FDG PET/CT is the preferred modality in the EANM-SNMMI guideline, showing superiority as a single modality to a combination of contrast-enhanced CT of thorax-abdomen-pelvis plus bone scan in head-to-head comparisons and a randomized study. Its use is recommended in patients with clinical stage IIB or higher and may be useful in certain stage IIA cases of NST BC. In NCCN, ESMO, and ABC guidelines, [18F]FDG PET/CT is instead recommended as complementary to conventional imaging to solve inconclusive findings, although ESMO and ABC also suggest [18F]FDG PET/CT can replace conventional imaging for staging patients with high-risk and metastatic NST BC. During follow up, NCCN and ESMO only recommend diagnostic imaging if there is suspicion of recurrence. Similarly, EANM-SNMMI states that [18F]FDG PET/CT is useful to detect the site and extent of recurrence only when there is clinical or laboratory suspicion of recurrence, or when conventional imaging methods are equivocal. The EANM-SNMMI guideline is the first to emphasize a role of [18F]FDG PET/CT for assessing early metabolic response to primary systemic therapy, particularly for HER2+ BC and TNBC. In the metastatic setting, EANM-SNMMI state that [18F]FDG PET/CT may help evaluate bone metastases and determine early response to treatment, in agreement with guidelines from ESMO. CONCLUSIONS The recently released EANM/SNMMI guideline reinforces the role of [18F]FDG PET/CT in the management of patients with NST BC supported by extensive evidence of its utility in several clinical scenarios.
Collapse
Affiliation(s)
- David Groheux
- Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France; University Paris-Diderot, INSERM, U976, Paris, France; Centre d'Imagerie Radio-Isotopique (CIRI), La Rochelle, France.
| | - Sofia C Vaz
- Department of Nuclear Medicine and Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| | - Ritse M Mann
- Department of Radiology, Radboud umc, Nijmegen, the Netherlands
| | - Gary A Ulaner
- Department of Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, United States; Departments of Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, United States
| | - Gary J R Cook
- Department of Cancer Imaging, King's College London, London, UK; King's College London and Guy's & St Thomas' PET Centre, London, UK; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Elif Hindié
- Department of Nuclear Medicine, Bordeaux University Hospital, Bordeaux, France
| | | | - Heather Jacene
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, and Harvard Medical School, United States
| | - Isabel T Rubio
- Department of Breast Surgical Oncology, Clinica Universidad de Navarra, Madrid, Cancer Center Clinica Universidad de Navarra, Spain
| | - Marie-Jeanne Vrancken Peeters
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands; Department of Radiation Science & Technology, Delft University of Technology, Delft, the Netherlands
| | - Stephanie L Graff
- Lifespan Cancer Institute, Providence, RI, United States; Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
4
|
Zhang J, Xiong J, Wang M, Wu B, Zhang C. Comparison of the diagnostic value of 68Ga-FAPI and 18F-FDG PET/CT in breast cancer: a systematic review. Clin Transl Imaging 2024; 12:787-798. [DOI: 10.1007/s40336-024-00656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 01/03/2025]
|
5
|
Vaz SC, Woll JPP, Cardoso F, Groheux D, Cook GJR, Ulaner GA, Jacene H, Rubio IT, Schoones JW, Peeters MJV, Poortmans P, Mann RM, Graff SL, Dibble EH, de Geus-Oei LF. Joint EANM-SNMMI guideline on the role of 2-[ 18F]FDG PET/CT in no special type breast cancer : (endorsed by the ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). Eur J Nucl Med Mol Imaging 2024; 51:2706-2732. [PMID: 38740576 PMCID: PMC11224102 DOI: 10.1007/s00259-024-06696-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION There is much literature about the role of 2-[18F]FDG PET/CT in patients with breast cancer (BC). However, there exists no international guideline with involvement of the nuclear medicine societies about this subject. PURPOSE To provide an organized, international, state-of-the-art, and multidisciplinary guideline, led by experts of two nuclear medicine societies (EANM and SNMMI) and representation of important societies in the field of BC (ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). METHODS Literature review and expert discussion were performed with the aim of collecting updated information regarding the role of 2-[18F]FDG PET/CT in patients with no special type (NST) BC and summarizing its indications according to scientific evidence. Recommendations were scored according to the National Institute for Health and Care Excellence (NICE) criteria. RESULTS Quantitative PET features (SUV, MTV, TLG) are valuable prognostic parameters. In baseline staging, 2-[18F]FDG PET/CT plays a role from stage IIB through stage IV. When assessing response to therapy, 2-[18F]FDG PET/CT should be performed on certified scanners, and reported either according to PERCIST, EORTC PET, or EANM immunotherapy response criteria, as appropriate. 2-[18F]FDG PET/CT may be useful to assess early metabolic response, particularly in non-metastatic triple-negative and HER2+ tumours. 2-[18F]FDG PET/CT is useful to detect the site and extent of recurrence when conventional imaging methods are equivocal and when there is clinical and/or laboratorial suspicion of relapse. Recent developments are promising. CONCLUSION 2-[18F]FDG PET/CT is extremely useful in BC management, as supported by extensive evidence of its utility compared to other imaging modalities in several clinical scenarios.
Collapse
Affiliation(s)
- Sofia C Vaz
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - David Groheux
- Nuclear Medicine Department, Saint-Louis Hospital, Paris, France
- University Paris-Diderot, INSERM U976, Paris, France
- Centre d'Imagerie Radio-Isotopique (CIRI), La Rochelle, France
| | - Gary J R Cook
- Department of Cancer Imaging, King's College London, London, UK
- King's College London and Guy's & St Thomas' PET Centre, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Heather Jacene
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Isabel T Rubio
- Breast Surgical Oncology, Clinica Universidad de Navarra, Madrid, Cancer Center Clinica Universidad de Navarra, Navarra, Spain
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Jeanne Vrancken Peeters
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium
- University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Ritse M Mann
- Radiology Department, RadboudUMC, Nijmegen, The Netherlands
| | - Stephanie L Graff
- Lifespan Cancer Institute, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands.
- Department of Radiation Science & Technology, Technical University of Delft, Delft, The Netherlands.
| |
Collapse
|
6
|
Xiao ST, Zhang HQ, Wang YX. Isolated neural arch tuberculosis with tuberculomas: case report. Skeletal Radiol 2024; 53:1417-1421. [PMID: 37712982 DOI: 10.1007/s00256-023-04450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/12/2023] [Accepted: 08/26/2023] [Indexed: 09/16/2023]
Abstract
We reported a case of atypical spinal tuberculosis on the posterior elements of lumbar spine in a 52-year-old female. It was easy to be misdiagnosed as spinal tumor due to its imaging characteristics. We performed puncture biopsy to initially consider tuberculosis, and then the patient was accepted surgical treatment. The intraoperative removed specimen was sent to pathological examination, microbial culture, Xpert MTB/RIF and metagenomic next-generation sequencing (mNGS) and then the diagnosis of neural arch tuberculosis was confirmed. After operation, the patient obtained stable effect by anti-tuberculosis drug treatment. In a word, the uncommon case had an important reference significance for the diagnosis of atypical spine tuberculosis and differentiation from spinal tumors. It is critical to make right preliminary diagnosis by appropriate examination as it determined the next diagnosis and treatment in special and rare clinical cases.
Collapse
Affiliation(s)
- Shun-Tian Xiao
- Department of Spine Surgery and Orthopaedics, Xiangya Spinal Surgery Center, Xiangya Hospital of Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Hong-Qi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Spinal Surgery Center, Xiangya Hospital of Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Yu-Xiang Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Spinal Surgery Center, Xiangya Hospital of Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
7
|
Chaudhari SB, Kumar A, Mankar VH, Banerjee S, Kumar D, Mubarak NM, Dehghani MH. Diverse role, structural trends, and applications of fluorinated sulphonamide compounds in agrochemical and pharmaceutical fields. Heliyon 2024; 10:e32434. [PMID: 38975170 PMCID: PMC11226812 DOI: 10.1016/j.heliyon.2024.e32434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Our knowledge of fluorine's unique and complex properties has significantly increased over the past 20 years. Consequently, more sophisticated and innovative techniques have emerged to incorporate this feature into the design of potential drug candidates. In recent years, researchers have become interested in synthesizing fluoro-sulphonamide compounds to discover new chemical entities with distinct and unexpected physical, chemical, and biological characteristics. The fluorinated sulphonamide molecules have shown significant biomedical importance. Their potential is not limited to biomedical applications but also includes crop protection. The discovery of novel fluorine and Sulfur compounds has highlighted their importance in the chemical sector, particularly in the agrochemical and medicinal fields. Recently, several fluorinated sulphonamide derivatives have been developed and frequently used by agriculturalists to produce food for the growing global population. These molecules have also exhibited their potential in health by inhibiting various human diseases. In today's world, it is crucial to have a steady supply of innovative pharmaceutical and agrochemical molecules that are highly effective, less harmful to the environment, and affordable. This review summarizes the available information on the activity of Fluorine and Sulphonamide compounds, which have proven active in pharmaceuticals and agrochemicals with excellent environmental and human health approaches. Moreover, it focuses on the current literature on the chemical structures, the application of fluorinated sulphonamide compounds against various pathological conditions, and their effectiveness in crop protection.
Collapse
Affiliation(s)
- Shankar B. Chaudhari
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Anupam Kumar
- Department of Biotechnology, School of Bioengineering and Bio Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Viraj H. Mankar
- Department of Chemistry, Queensland University of Technology Brisbane, Australia
| | - Shaibal Banerjee
- Department of Applied Chemistry, Defence Institute of Advanced Technology, (DU), Girinagar, Pune 411025, India
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Pant A, Anjankar AP, Shende S, Dhok A, Jha RK, Manglaram AV. Early detection of breast cancer through the diagnosis of Nipple Aspirate Fluid (NAF). Clin Proteomics 2024; 21:45. [PMID: 38943056 PMCID: PMC11212179 DOI: 10.1186/s12014-024-09495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 06/05/2024] [Indexed: 07/01/2024] Open
Abstract
The development of breast cancer has been mainly reported in women who have reached the post-menopausal stage; therefore, it is the primary factor responsible for death amongst postmenopausal women. However, if treated on time it has shown a survival rate of 20 years in about two-thirds of women. Cases of breast cancer have also been reported in younger women and the leading cause in them is their lifestyle pattern or they may be carriers of high penetrance mutated genes. Premenopausal women who have breast cancer have been diagnosed with aggressive build-up of tumors and are therefore at more risk of loss of life. Mammography is an effective way to test for breast cancer in women after menopause but is not so effective for premenopausal women or younger females. Imaging techniques like contrast-enhanced MRI can up to some extent indicate the presence of a tumor but it cannot adequately differentiate between benign and malignant tumors. Although the 'omics' strategies continuing for the last 20 years have been helpful at the molecular level in enabling the characteristics and proper understanding of such tumors over long-term longitudinal monitoring. Classification, diagnosis, and prediction of the outcomes have been made through tissue and serum biomarkers but these also fail to diagnose the disease at an early stage. Considerably there is no adequate detection technique present globally that can help early detection and provide adequate specificity, safety, sensitivity, and convenience for the younger and premenopausal women, thereby it becomes necessary to take early measures and build efficient tools and techniques for the same. Through biopsies of nipple aspirate fluid (NAF) biomarker profiling can be performed. It is a naturally secreted fluid from the cells of epithelium found in the breast. Nowadays, home-based liquid biopsy collection kits are also available through which a routine check on breast health can be performed with the help of NAF. Herein, we will review the biomarker screening liquid biopsy, and the new emerging technologies for the examination of cancer at an early stage, especially in premenopausal women.
Collapse
Affiliation(s)
- Abhishek Pant
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India.
| | - Ashish P Anjankar
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Sandesh Shende
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Archana Dhok
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Roshan Kumar Jha
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Anjali Vagga Manglaram
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| |
Collapse
|
9
|
Sahin E, Kus T, Aytekin A, Uzun E, Elboga U, Yilmaz L, Cayirli YB, Okuyan M, Cimen V, Cimen U. 68Ga-FAPI PET/CT as an Alternative to 18F-FDG PET/CT in the Imaging of Invasive Lobular Breast Carcinoma. J Nucl Med 2024; 65:512-519. [PMID: 38485276 DOI: 10.2967/jnumed.123.266798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/11/2024] [Indexed: 04/04/2024] Open
Abstract
Accurate staging of invasive lobular carcinoma (ILC), a subtype of breast cancer, is vital for effective clinical management. Although 18F-FDG PET/CT is a commonly used tool, its efficacy varies across different histologic subtypes. To mitigate this challenge, our investigation delves into the potential utility of 68Ga-fibroblast activation protein inhibitor (FAPI) PET/CT as an alternative for staging ILC, aiming to address a significant research gap using a more expansive patient cohort than the smaller samples commonly found in the existing literature. Methods: In this retrospective analysis, women diagnosed with primary ILC of the breast underwent both 18F-FDG PET/CT and 68Ga-FAPI PET/CT. Both modalities were compared across all lesion locations with the used reference standard. The interval between scans was 1 wk, without any intervening treatments. Lesions were categorized visually, and tracer activity was analyzed using SUVmax, tumor-to-background uptake ratio, and uptake ratios. Both modalities were compared across various parameters, and statistical analysis was performed using SPSS 22.0. A P value of less than 0.05 was chosen to determine statistical significance. Results: The study included 23 female ILC patients (mean age, 51 y) with hormone-positive, human epidermal growth factor receptor type 2-negative tumors. Most (65%) had the luminal A subtype. 68Ga-FAPI PET/CT outperformed 18F-FDG PET/CT, with higher tumoral activity and tumor-to-background uptake ratios (P < 0.001). Primary tumors showed significantly increased uptake with 68Ga-FAPI PET/CT (P < 0.001), detecting additional foci, including multicentric cancer. Axillary lymph node metastases were more frequent and had higher uptake values with 68Ga-FAPI PET/CT (P = 0.012). Moreover, 68Ga-FAPI PET/CT identified more lesions, including bone and liver metastases. Pathologic features did not significantly correlate with imaging modalities, but a positive correlation was observed between peritumoral lymphocyte ratio and 68Ga-FAPI PET/CT-to-18F-FDG PET/CT uptake ratios (P = 0.026). Conclusion: This study underscores 68Ga-FAPI PET/CT's superiority over 18F-FDG PET/CT for ILC. 68Ga-FAPI PET/CT excels in detecting primary breast masses, axillary lymph nodes, and distant metastases; can complement 18F-FDG PET/CT in ILC; and holds potential as an alternative imaging method in future studies.
Collapse
Affiliation(s)
- Ertan Sahin
- Department of Nuclear Medicine, Gaziantep University, Gaziantep, Turkey;
| | - Tulay Kus
- Department of Medical Oncology, Gaziantep University, Gaziantep, Turkey
| | - Alper Aytekin
- Department of General Surgery, Gaziantep University, Gaziantep, Turkey; and
| | - Evren Uzun
- Department of Pathology, Gaziantep University, Gaziantep, Turkey
| | - Umut Elboga
- Department of Nuclear Medicine, Gaziantep University, Gaziantep, Turkey
| | - Latif Yilmaz
- Department of General Surgery, Gaziantep University, Gaziantep, Turkey; and
| | - Yusuf B Cayirli
- Department of Nuclear Medicine, Gaziantep University, Gaziantep, Turkey
| | - Merve Okuyan
- Department of Nuclear Medicine, Gaziantep University, Gaziantep, Turkey
| | - Vuslat Cimen
- Department of Nuclear Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ufuk Cimen
- Department of Nuclear Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
10
|
Ulaner GA, Vaz SC, Groheux D. Quarter-Century Transformation of Oncology: Positron Emission Tomography for Patients with Breast Cancer. PET Clin 2024; 19:147-162. [PMID: 38177052 DOI: 10.1016/j.cpet.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
PET radiotracers have become indispensable in the care of patients with breast cancer. 18F-fluorodeoxyglucose has become the preferred method of many oncologists for systemic staging of breast cancer at initial diagnosis, detecting recurrent disease, and for measuring treatment response after therapy. 18F-Sodium Fluoride is valuable for detection of osseous metastases. 18F-fluoroestradiol is now FDA-approved with multiple appropriate clinical uses. There are multiple PET radiotracers in clinical trials, which may add utility of PET imaging for patients with breast cancer in the future. This article will describe the advances during the last quarter century in PET for patients with breast cancer.
Collapse
Affiliation(s)
- Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Irvine, CA, USA; Departments of Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, USA.
| | - Sofia Carrilho Vaz
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - David Groheux
- Nuclear Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France; Centre d'Imagerie Radio-Isotopique (CIRI), La Rochelle, France; University Paris-Diderot, INSERM U976, HIPI, Paris, France
| |
Collapse
|
11
|
Ulaner GA, Vaz SC. Women's Health Update: Growing Role of PET for Patients with Breast Cancer. Semin Nucl Med 2024; 54:247-255. [PMID: 38365547 DOI: 10.1053/j.semnuclmed.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
Positron Emission Tomography (PET) has been growing in usage for patients with breast cancer, due to an increased number of FDA-approved PET radiotracers pertinent to patients with breast cancer as well as increased prospective evidence for the value of these agents. The leading PET radiotracer for patients with breast cancer is 18F-fluorodeoxyglucose (18F-FDG), which measures glucose metabolism. There is prospective evidence for the use of 18F-FDG PET in systemic staging of newly diagnosed locally advanced breast cancer (stages IIB-IIIC), monitoring breast cancer treatment response, and detecting breast cancer recurrence, particularly in no special type (NST) breast cancer. 16α-18F-fluoro-17β-Fluoroestradiol (18F-FES) is a radiolabeled estrogen which evaluates estrogen receptor (ER) accessible for estrogen binding. There is prospective evidence supporting 18F-FES PET as a predictive biomarker for selecting patients with metastatic breast cancer for endocrine therapies. 18F-FES PET has also been shown to be valuable in the evaluation of ER status of lesions which are difficult to biopsy, for evaluation of ER status in lesions that are equivocal on other imaging modalities, and for selecting optimal dosage of novel ER-targeted systemic therapies in early clinical trials. Multiple investigators have suggested 18F-FES PET will have an increasing role for patients with invasive lobular breast cancer (ILC), which is less optimally evaluated by 18F-FDG PET. Sodium 18F-Fluoride (18F-NaF) evaluates bone turnover and has been effective in evaluation of malignancies which commonly metastasize to bone. In patients with metastatic breast cancer, 18F-NaF PET/CT has demonstrated superior sensitivity for osseous metastases than 99mTc-MDP or CT. In addition to these three FDA-approved PET radiotracers, there are multiple novel radiotracers currently in clinical trials with potential to further increase PET usage for patients with breast cancer.
Collapse
Affiliation(s)
- Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA; Radiology, University of Southern California, Los Angeles, CA.
| | - Sofia Carrilho Vaz
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Nguyen DL, Greenwood HI, Rahbar H, Grimm LJ. Evolving Treatment Paradigms for Low-Risk Ductal Carcinoma In Situ: Imaging Needs. AJR Am J Roentgenol 2024; 222:e2330503. [PMID: 38090808 DOI: 10.2214/ajr.23.30503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ductal carcinoma in situ (DCIS) is a nonobligate precursor to invasive cancer that classically presents as asymptomatic calcifications on screening mammography. The increase in DCIS diagnoses with organized screening programs has raised concerns about overdiagnosis, while a patientcentric push for more personalized care has increased awareness about DCIS overtreatment. The standard of care for most new DCIS diagnoses is surgical excision, but nonsurgical management via active monitoring is gaining attention, and multiple clinical trials are ongoing. Imaging, along with demographic and pathologic information, is a critical component of active monitoring efforts. Commonly used imaging modalities including mammography, ultrasound, and MRI, as well as newer modalities such as contrast-enhanced mammography and dedicated breast PET, can provide prognostic information to risk stratify patients for DCIS active monitoring eligibility. Furthermore, radiologists will be responsible for closely surveilling patients on active monitoring and identifying if invasive progression occurs. Active monitoring is a paradigm shift for DCIS care, but the success or failure will rely heavily on the interpretations and guidance of radiologists.
Collapse
Affiliation(s)
- Derek L Nguyen
- Department of Diagnostic Radiology, Duke University School of Medicine, Box 3808, Durham, NC 27710
| | - Heather I Greenwood
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Habib Rahbar
- Department of Radiology, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| | - Lars J Grimm
- Department of Diagnostic Radiology, Duke University School of Medicine, Box 3808, Durham, NC 27710
| |
Collapse
|
13
|
Li X, Johnson JM, Strigel RM, Bancroft LCH, Hurley SA, Estakhraji SIZ, Kumar M, Fowler AM, McMillan AB. Attenuation correction and truncation completion for breast PET/MR imaging using deep learning. Phys Med Biol 2024; 69:045031. [PMID: 38252969 DOI: 10.1088/1361-6560/ad2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Objective. Simultaneous PET/MR scanners combine the high sensitivity of MR imaging with the functional imaging of PET. However, attenuation correction of breast PET/MR imaging is technically challenging. The purpose of this study is to establish a robust attenuation correction algorithm for breast PET/MR images that relies on deep learning (DL) to recreate the missing portions of the patient's anatomy (truncation completion), as well as to provide bone information for attenuation correction from only the PET data.Approach. Data acquired from 23 female subjects with invasive breast cancer scanned with18F-fluorodeoxyglucose PET/CT and PET/MR localized to the breast region were used for this study. Three DL models, U-Net with mean absolute error loss (DLMAE) model, U-Net with mean squared error loss (DLMSE) model, and U-Net with perceptual loss (DLPerceptual) model, were trained to predict synthetic CT images (sCT) for PET attenuation correction (AC) given non-attenuation corrected (NAC) PETPET/MRimages as inputs. The DL and Dixon-based sCT reconstructed PET images were compared against those reconstructed from CT images by calculating the percent error of the standardized uptake value (SUV) and conducting Wilcoxon signed rank statistical tests.Main results. sCT images from the DLMAEmodel, the DLMSEmodel, and the DLPerceptualmodel were similar in mean absolute error (MAE), peak-signal-to-noise ratio, and normalized cross-correlation. No significant difference in SUV was found between the PET images reconstructed using the DLMSEand DLPerceptualsCTs compared to the reference CT for AC in all tissue regions. All DL methods performed better than the Dixon-based method according to SUV analysis.Significance. A 3D U-Net with MSE or perceptual loss model can be implemented into a reconstruction workflow, and the derived sCT images allow successful truncation completion and attenuation correction for breast PET/MR images.
Collapse
Affiliation(s)
- Xue Li
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI, United States of America
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Jacob M Johnson
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States of America
| | - Leah C Henze Bancroft
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - S Iman Zare Estakhraji
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- ICTR Graduate Program in Clinical Investigation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States of America
| | - Alan B McMillan
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI, United States of America
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States of America
| |
Collapse
|
14
|
Kalaba P, Sanchez de la Rosa C, Möller A, Alewood PF, Muttenthaler M. Targeting the Oxytocin Receptor for Breast Cancer Management: A Niche for Peptide Tracers. J Med Chem 2024; 67:1625-1640. [PMID: 38235665 PMCID: PMC10859963 DOI: 10.1021/acs.jmedchem.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Breast cancer is a leading cause of death in women, and its management highly depends on early disease diagnosis and monitoring. This remains challenging due to breast cancer's heterogeneity and a scarcity of specific biomarkers that could predict responses to therapy and enable personalized treatment. This Perspective describes the diagnostic landscape for breast cancer management, molecular strategies targeting receptors overexpressed in tumors, the theranostic potential of the oxytocin receptor (OTR) as an emerging breast cancer target, and the development of OTR-specific optical and nuclear tracers to study, visualize, and treat tumors. A special focus is on the chemistry and pharmacology underpinning OTR tracer development, preclinical in vitro and in vivo studies, challenges, and future directions. The use of peptide-based tracers targeting upregulated receptors in cancer is a highly promising strategy complementing current diagnostics and therapies and providing new opportunities to improve cancer management and patient survival.
Collapse
Affiliation(s)
- Predrag Kalaba
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | | | - Andreas Möller
- QIMR
Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- The
Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul F. Alewood
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
15
|
Abstract
Breast-specific positron imaging systems provide higher sensitivity than whole-body PET for breast cancer detection. The clinical applications for breast-specific positron imaging are similar to breast MRI including preoperative local staging and neoadjuvant therapy response assessment. Breast-specific positron imaging may be an alternative for patients who cannot undergo breast MRI. Further research is needed in expanding the field-of-view for posterior breast lesions, increasing biopsy capability, and reducing radiation dose. Efforts are also necessary for developing appropriate use criteria, increasing availability, and advancing insurance coverage.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin-Madison; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Kanae K Miyake
- Department of Advanced Medical Imaging Research, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Abstract
There is growing interest in application of functional imaging modalities for adjunct breast imaging due to their unique ability to evaluate molecular/pathophysiologic changes, not visible by standard anatomic breast imaging. This has led to increased use of nuclear medicine dedicated breast-specific single photon and coincidence imaging systems for multiple indications, such as supplemental screening, staging of newly diagnosed breast cancer, evaluation of response to neoadjuvant treatment, diagnosis of local disease recurrence in the breast, and problem solving. Studies show that these systems maybe especially useful for specific subsets of patients, not well served by available anatomic breast imaging modalities.
Collapse
Affiliation(s)
- Miral M Patel
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, CPB5.3208, Houston, TX 77030, USA.
| | - Beatriz Elena Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, CPB5.3208, Houston, TX 77030, USA
| | - Amy M Fowler
- Department of Radiology, Section of Breast Imaging and Intervention, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792-3252, USA
| | - Gaiane M Rauch
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1473, Houston, TX 77030, USA; Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1473, Houston, TX 77030, USA
| |
Collapse
|
17
|
Cecil K, Huppert L, Mukhtar R, Dibble EH, O'Brien SR, Ulaner GA, Lawhn-Heath C. Metabolic Positron Emission Tomography in Breast Cancer. PET Clin 2023; 18:473-485. [PMID: 37369614 DOI: 10.1016/j.cpet.2023.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Metabolic PET, most commonly 18F-fluorodeoxyglucose (FDG) PET/computed tomography (CT), has had a major impact on the imaging of breast cancer and can have important clinical applications in appropriate patients. While limited for screening, FDG PET/CT outperforms conventional imaging in locally advanced breast cancer. FDG PET/CT is more sensitive than conventional imaging in assessing treatment response, accurately predicting complete response or nonresponse in early-stage cases. It also aids in determining disease extent and treatment response in the metastatic setting. Further research, including randomized controlled trials with FDG and other metabolic agents such as fluciclovine, is needed for optimal breast cancer imaging.
Collapse
Affiliation(s)
- Katherine Cecil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Laura Huppert
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Rita Mukhtar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - Sophia R O'Brien
- Divisions of Molecular Imaging and Therapy Breast Imaging, Department of Radiology, The Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Irvine, CA, USA; Departments of Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Courtney Lawhn-Heath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
O'Brien SR, Ward R, Wu GG, Bagheri S, Kiani M, Challa A, Ulaner GA, Pantel AR, McDonald ES. Other Novel PET Radiotracers for Breast Cancer. PET Clin 2023; 18:557-566. [PMID: 37369615 DOI: 10.1016/j.cpet.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Many novel PET radiotracers have demonstrated potential use in breast cancer. Although not currently approved for clinical use in the breast cancer population, these innovative imaging agents may one day play a role in the diagnosis, staging, management, and even treatment of breast cancer.
Collapse
Affiliation(s)
- Sophia R O'Brien
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Rebecca Ward
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Grace G Wu
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Sina Bagheri
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA. https://twitter.com/Sina_Bagherii
| | - Mahsa Kiani
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Ashrit Challa
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Irvine, CA 92618, USA; Radiology and Translational Genomics, University of Southern California, Los Angeles, CA 90033, USA
| | - Austin R Pantel
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Elizabeth S McDonald
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Chowdhury NA, Wang L, Gu L, Kaya M. Exploring the Potential of Sensing for Breast Cancer Detection. APPLIED SCIENCES 2023; 13:9982. [DOI: 10.3390/app13179982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Breast cancer is a generalized global problem. Biomarkers are the active substances that have been considered as the signature of the existence and evolution of cancer. Early screening of different biomarkers associated with breast cancer can help doctors to design a treatment plan. However, each screening technique for breast cancer has some limitations. In most cases, a single technique can detect a single biomarker at a specific time. In this study, we address different types of biomarkers associated with breast cancer. This review article presents a detailed picture of different techniques and each technique’s associated mechanism, sensitivity, limit of detection, and linear range for breast cancer detection at early stages. The limitations of existing approaches require researchers to modify and develop new methods to identify cancer biomarkers at early stages.
Collapse
Affiliation(s)
- Nure Alam Chowdhury
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Lulu Wang
- Biomedical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| | - Linxia Gu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Mehmet Kaya
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
20
|
Covington MF, Hoffman JM, Morton KA, Buckway B, Boucher KM, Rosenthal RE, Porretta JM, Brownson KE, Matsen CB, Vaklavas C, Ward JH, Wei M, Buys SS, Chittoria N, Yakish ED, Archibald ZG, Burrell LD, Butterfield RI, Yap JT. Prospective Pilot Study of 18F-Fluoroestradiol PET/CT in Patients With Invasive Lobular Carcinomas. AJR Am J Roentgenol 2023; 221:228-239. [PMID: 36919879 DOI: 10.2214/ajr.22.28809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND. PET/CT with 18F-fluoroestradiol (FES) (FDA-approved in 2020) depicts tissues expressing estrogen receptor (ER). Invasive lobular carcinoma (ILC) is commonly ER positive. OBJECTIVE. The primary aim of this study was to assess the frequency with which sites of histologically proven ILC have abnormal uptake on FES PET/CT. METHODS. This prospective single-center pilot study, conducted from December 2020 to August 2021, enrolled patients with histologically confirmed ILC to undergo FES PET/CT; patients optionally underwent FDG PET/CT. Two nuclear radiologists assessed FES PET/CT and FDG PET/CT studies for abnormal uptake corresponding to known ILC sites at enrollment and for additional sites of abnormal uptake, resolving differences by consensus. The primary endpoint was percentage of known ILC sites showing abnormal FES uptake. The alternative to the null hypothesis was that more than 60% of sites would have abnormal FES uptake, exceeding the percentage of ILC with abnormal FDG uptake described in prior literature. A sample size of 24 biopsied lesions was preselected to provide 81% power for the alternative hypothesis (one-sided α = .10). Findings on FES PET/CT and FDG PET/CT were summarized for additional secondary endpoints. RESULTS. The final analysis included 17 patients (mean age, 59.1 ± 13.2 years) with 25 sites of histologically confirmed ILC at enrollment (22 breast lesions, two axillary lymph nodes, one distant metastasis). FES PET/CT showed abnormal uptake in 22 of 25 (88%) lesions, sufficient to reject the null hypothesis (p = .002). Thirteen patients underwent FDG PET/CT. Four of 23 (17%) sites of histologically confirmed ILC, including additional sites detected and confirmed after enrollment, were identified with FES PET/CT only, and 1 of 23 (4%) was identified only with FDG PET/CT (p = .18). FES PET/CT depicted additional lesions not detected with standard-of-care evaluation in 4 of 17 (24%) patients (two contralateral breast cancers and two metastatic axillary lymph nodes, all with subsequent histologic confirmation). Use of FES PET/CT resulted in changes in clinical stage with respect to standard-of-care evaluation in 3 of 17 (18%) patients. CONCLUSION. The primary endpoint of the trial was met. The frequency of abnormal FES uptake among sites of histologically known ILC was found to be to be significantly greater than 60%. CLINICAL IMPACT. This pilot study shows a potential role of FES PET/CT in evaluation of patients with ILC. TRIAL REGISTRATION. ClinicalTrials.gov NCT04252859.
Collapse
Affiliation(s)
- Matthew F Covington
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, 2000 Circle of Hope Dr, Salt Lake City, UT 84112
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| | - John M Hoffman
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, 2000 Circle of Hope Dr, Salt Lake City, UT 84112
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| | - Kathryn A Morton
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, 2000 Circle of Hope Dr, Salt Lake City, UT 84112
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
- Present affiliation: Summit Physician Specialists, Murray, UT
| | - Brandon Buckway
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, 2000 Circle of Hope Dr, Salt Lake City, UT 84112
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT
| | | | | | - Jane M Porretta
- Department of Surgery, University of Utah, Salt Lake City, UT
| | | | - Cindy B Matsen
- Department of Surgery, University of Utah, Salt Lake City, UT
| | - Christos Vaklavas
- Department of Internal Medicine, Oncology Division, University of Utah, Salt Lake City, UT
| | - John H Ward
- Department of Internal Medicine, Oncology Division, University of Utah, Salt Lake City, UT
| | - Mei Wei
- Department of Internal Medicine, Oncology Division, University of Utah, Salt Lake City, UT
| | - Saundra S Buys
- Department of Internal Medicine, Oncology Division, University of Utah, Salt Lake City, UT
| | - Namita Chittoria
- Department of Internal Medicine, Oncology Division, University of Utah, Salt Lake City, UT
| | - Ellen D Yakish
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, 2000 Circle of Hope Dr, Salt Lake City, UT 84112
| | - Zane G Archibald
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, 2000 Circle of Hope Dr, Salt Lake City, UT 84112
| | - Lance D Burrell
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, 2000 Circle of Hope Dr, Salt Lake City, UT 84112
- Present affiliation: Society of Nuclear Medicine and Molecular Imaging, Reston, VA
| | - Regan I Butterfield
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, 2000 Circle of Hope Dr, Salt Lake City, UT 84112
| | - Jeffrey T Yap
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, 2000 Circle of Hope Dr, Salt Lake City, UT 84112
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| |
Collapse
|
21
|
Eshet Y, Tau N, Levanon K, Bernstein-Molho R, Globus O, Itay A, Shapira T, Oedegaard C, Eifer M, Davidson T, Nidam M, Gal-Yam E, Domachevsky L. The Role of 68 Ga-FAPI PET/CT in Breast Cancer Response Assessment and Follow-Up. Clin Nucl Med 2023; 48:685-688. [PMID: 37339456 DOI: 10.1097/rlu.0000000000004744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
PURPOSE 68 Ga-fibroblast activation protein inhibitor (FAPI), a new PET/CT radiotracer targeting cancer-associated fibroblasts in tumor microenvironment, can detect many types of cancer. We aimed to assess whether it can also be used for response assessment and follow-up. METHODS We followed up patients with FAPI-avid invasive lobular breast cancer (ILC) before and after treatment changes and correlated qualitative maximal intensity projection images and quantitative tumor volume with CT results and blood tumor biomarkers. RESULTS Six consenting ILC breast cancer patients (53 ± 8 years old) underwent a total of 24 scans (baseline for each patient and 2-4 follow-up scans). We found a strong correlation between 68 Ga-FAPI tumor volume and blood biomarkers ( r = 0.7, P < 0.01), but weak correlation between CT and 68 Ga-FAPI maximal intensity projection-based qualitative response assessment. CONCLUSIONS We found a strong correlation between ILC progression and regression (as assessed by blood biomarkers) and 68 Ga-FAPI tumor volume. 68 Ga-FAPI PET/CT could possibly be used for disease response assessment and follow-up.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Meital Nidam
- From the Department of Nuclear Imaging, Sheba Medical Center, Ramat Gan
| | | | | |
Collapse
|
22
|
Lei P, Wang W, Sheldon M, Sun Y, Yao F, Ma L. Role of Glucose Metabolic Reprogramming in Breast Cancer Progression and Drug Resistance. Cancers (Basel) 2023; 15:3390. [PMID: 37444501 PMCID: PMC10341343 DOI: 10.3390/cancers15133390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The involvement of glucose metabolic reprogramming in breast cancer progression, metastasis, and therapy resistance has been increasingly appreciated. Studies in recent years have revealed molecular mechanisms by which glucose metabolic reprogramming regulates breast cancer. To date, despite a few metabolism-based drugs being tested in or en route to clinical trials, no drugs targeting glucose metabolism pathways have yet been approved to treat breast cancer. Here, we review the roles and mechanisms of action of glucose metabolic reprogramming in breast cancer progression and drug resistance. In addition, we summarize the currently available metabolic inhibitors targeting glucose metabolism and discuss the challenges and opportunities in targeting this pathway for breast cancer treatment.
Collapse
Affiliation(s)
- Pan Lei
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wenzhou Wang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston TX 77030, USA
| |
Collapse
|
23
|
Hayward JH, Linden OE, Lewin AA, Weinstein SP, Bachorik AE, Balija TM, Kuzmiak CM, Paulis LV, Salkowski LR, Sanford MF, Scheel JR, Sharpe RE, Small W, Ulaner GA, Slanetz PJ. ACR Appropriateness Criteria® Monitoring Response to Neoadjuvant Systemic Therapy for Breast Cancer: 2022 Update. J Am Coll Radiol 2023; 20:S125-S145. [PMID: 37236739 DOI: 10.1016/j.jacr.2023.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 05/28/2023]
Abstract
Imaging plays a vital role in managing patients undergoing neoadjuvant chemotherapy, as treatment decisions rely heavily on accurate assessment of response to therapy. This document provides evidence-based guidelines for imaging breast cancer before, during, and after initiation of neoadjuvant chemotherapy. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
| | - Olivia E Linden
- Research Author, University of California, San Francisco, San Francisco, California
| | - Alana A Lewin
- Panel Chair, New York University Grossman School of Medicine, New York, New York
| | - Susan P Weinstein
- Panel Vice-Chair, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Tara M Balija
- Hackensack University Medical Center, Hackensack, New Jersey; American College of Surgeons
| | - Cherie M Kuzmiak
- University of North Carolina Hospital, Chapel Hill, North Carolina
| | | | - Lonie R Salkowski
- University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin
| | | | | | | | - William Small
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Gary A Ulaner
- Hoag Family Cancer Institute, Newport Beach, California, and University of Southern California, Los Angeles, California; Commission on Nuclear Medicine and Molecular Imaging
| | - Priscilla J Slanetz
- Specialty Chair, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
24
|
Eshet Y, Tau N, Apter S, Nissan N, Levanon K, Bernstein-Molho R, Globus O, Itay A, Shapira T, Oedegaard C, Gorfine M, Eifer M, Davidson T, Gal-Yam E, Domachevsky L. The Role of 68 Ga-FAPI PET/CT in Detection of Metastatic Lobular Breast Cancer. Clin Nucl Med 2023; 48:228-232. [PMID: 36638243 DOI: 10.1097/rlu.0000000000004540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Invasive lobular breast cancer (ILC) may be hard to detect using conventional imaging modalities and usually shows less avidity to 18 F-FDG PET/CT. 68 Ga-fibroblast activation protein inhibitor (FAPI) PET/CT has shown promising results in detecting non- 18 F-FDG-avid cancers. We aimed to assess the feasibility of detecting metastatic disease in patients with non- 18 F-FDG-avid ILC. METHODS This prospective study included patients with metastatic ILC, infiltrative to soft tissues, which was not 18 F-FDG avid. The patients underwent 68 Ga-FAPI PET/CT for evaluation, which was correlated with the fully diagnostic CT performed at the same time. RESULTS Seven women (aged 57 ± 10 years) were included. Among the 30 organs and structures found to be involved by tumor, the number of findings observed by FAPI PET/CT was significantly higher than that observed by CT alone ( P = 0.022), especially in infiltrative soft tissue and serosal locations. CONCLUSIONS This small pilot trial suggests a role for 68 Ga-FAPI PET/CT in ILC, which needs to be confirmed by subsequent trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Malka Gorfine
- Department of Statistics and Operations Research, Tel-Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
25
|
Yuge S, Miyake KK, Ishimori T, Kataoka M, Matsumoto Y, Fujimoto K, Sugie T, Toi M, Nakamoto Y. Reproducibility assessment of uptake on dedicated breast PET for noise discrimination. Ann Nucl Med 2023; 37:121-130. [PMID: 36434200 DOI: 10.1007/s12149-022-01809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Dedicated breast PET (dbPET) systems have improved the detection of small breast cancers but have increased false-positive diagnoses due to an increased chance of noise detection. This study examined whether reproducibility assessment using paired images helped to improve noise discrimination and diagnostic performance in dbPET. METHODS This study included 21 patients with newly diagnosed breast cancer who underwent [18F]FDG-dbPET and contrast-enhanced breast MRI. A 10-min dbPET data scan was acquired per breast, and two sets of reconstructed images were generated (named dbPET-1 and dbPET-2, respectively), each of which consisted of randomly allocated 5-min data from the 10-min data. Uptake spots higher than the background were indexed for the study with visual assessment. All indexed uptakes on dbPET-1 were evaluated using dbPET-2 for reproducibility. MRI findings based on the Breast Imaging-Reporting and Data System (BI-RADS) 2013 were used as the gold standard. Uptake spots that corresponded to BI-RADS 1 on MRI were considered noise, while those with BI-RADS 4b-6 were considered malignancies. The diagnostic performance of dbPET for malignancy was evaluated using four different criteria: any uptake on dbPET-1 regarded as positive (criterion A), a subjective visual assessment of dbPET-1 (criterion B), reproducibility assessment between dbPET-1 and dbPET-2 (criterion C), and a combination of B and C (criterion D). RESULTS A total of 213 indexed uptake spots were identified on dbPET-1, including 152, 15, 6, 6, and 34 lesions classified as BI-RADS MRI categories 1, 2, 4b, 4c, and 5, respectively. Overall, 31.9% of the index uptake values were reproducible. All malignant lesions were reproducible, whereas 93.4% of noise was not reproducible. The sensitivities for malignancy for criteria A, B, C, and D were 100%, 91.3%, 100%, and 91.3%, respectively, with positive predictive values (PPVs) of 21.4%, 68.9%, 67.6%, and 82.4%, respectively. CONCLUSIONS Our results demonstrated that reproducibility assessment helped reduce false-positive findings caused by noise on dbPET without lowering the sensitivity for malignancy. While subjective visual assessment was also efficient in increasing PPV, it occasionally missed malignant uptake.
Collapse
Affiliation(s)
- Shunsuke Yuge
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| | - Kanae K Miyake
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, Japan, 606-8507.
| | - Takayoshi Ishimori
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| | - Yoshiaki Matsumoto
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, Japan
| | - Tomoharu Sugie
- Department of Breast Surgery, Kansai Medical University Hospital, Hirakata City, Osaka, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| |
Collapse
|
26
|
Zhang C, Liang Z, Liu W, Zeng X, Mo Y. Comparison of whole-body 18F-FDG PET/CT and PET/MRI for distant metastases in patients with malignant tumors: a meta-analysis. BMC Cancer 2023; 23:37. [PMID: 36624425 PMCID: PMC9830828 DOI: 10.1186/s12885-022-10493-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND As a first-line imaging modality, whole-body fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) and 18F-FDG PET/magnetic resonance imaging (MRI) had been widely applied in clinical practice. However, 18F-FDG PET/MRI may be superior to PET/CT for the diagnosis of distant metastases in patients with advanced-stage. Therefore, it is timely and important to systematically determine the diagnostic accuracy of 18F-FDG PET/MRI compared with that of 18F-FDG PET/CT for the diagnosis of distant metastases. METHODS This study aimed to compare the diagnostic accuracy of 18F-FDG PET/CT and PET/MRI for the diagnosis of distant metastases in patients with malignant tumors. Relevant studies using both 18F-FDG PET/CT and PET/MRI for assessment of distant metastases in patients with malignant tumors were searched in PubMed, Embase, The Cochrane Library, and Scopus from January 2010 to November 2023. Two reviewers independently selected studies according to the inclusion and exclusion criteria. A reviewer extracted relevant data and assessed the quality of the eligible studies. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and area under the summary receiver operating characteristic curve (AUC) for 18F-FDG PET/CT and PET/MRI were analyzed. Subgroup analysis was performed. RESULTS Across 14 studies (1042 patients), 18F-FDG PET/MRI had a higher sensitivity (0.87 versus 0.81), AUC value (0.98 versus 0.95), and similar specificity (0.97 versus 0.97), than PET/CT for detecting distant metastases. In 3 studies of breast cancer (182 patients), 18F-FDG PET/MRI had a higher sensitivity (0.95 versus 0.87) and specificity (0.96 versus 0.94) than PET/CT. In 5 studies of lung cancer (429 patients), 18F-FDG PET/CT had a higher sensitivity (0.87 versus 0.84) and a lower specificity (0.95 versus 0.96) to PET/MRI. CONCLUSIONS 18F-FDG PET/MRI and PET/CT both performed well as detectors of distant metastases in patients with malignant tumors, and the former has higher sensitivity. The subgroup analysis highlights that 18F-FDG PET/MRI and PET/CT hold different advantages for distant metastases staging in different tumors, PET/MRI has a higher accuracy in patients with breast cancer patients, while PET/CT has a higher accuracy in patients with lung cancer.
Collapse
Affiliation(s)
- Cici Zhang
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Zhishan Liang
- grid.410652.40000 0004 6003 7358Department of Cardiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Liu
- Department of Breast, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Xuwen Zeng
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Yuzhen Mo
- Department of Radiotherapy, Guangzhou Red Cross Hospital, No.396, TongFu Road, HaiZhu District, Guangzhou, 510220 Guangdong China
| |
Collapse
|
27
|
Sabatino V, Pignata A, Valentini M, Fantò C, Leonardi I, Campora M. Assessment and Response to Neoadjuvant Treatments in Breast Cancer: Current Practice, Response Monitoring, Future Approaches and Perspectives. Cancer Treat Res 2023; 188:105-147. [PMID: 38175344 DOI: 10.1007/978-3-031-33602-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neoadjuvant treatments (NAT) for breast cancer (BC) consist in the administration of chemotherapy-more rarely endocrine therapy-before surgery. Firstly, it was introduced 50 years ago to downsize locally advanced (inoperable) BCs. NAT are now widespread and so effective to be used also at the early stage of the disease. NAT are heterogeneous in terms of therapeutic patterns, class of used drugs, dosage, and duration. The poly-chemotherapy regimen and administration schedule are established by a multi-disciplinary team, according to the stage of disease, the tumor subtype and the age, the physical status, and the drug sensitivity of BC patients. Consequently, an accurate monitoring of treatment response can provide significant clinical advantages, such as the treatment de-escalation in case of early recognition of complete response or, on the contrary, the switch to an alternative treatment path in case of early detection of resistance to the ongoing therapy. Future is going toward increasingly personalized therapies and the prediction of individual response to treatment is the key to practice customized care pathways, preserving oncological safety and effectiveness. To gain such goal, the development of an accurate monitoring system, reproducible and reliable alone or as part of more complex diagnostic algorithms, will be promising.
Collapse
Affiliation(s)
- Vincenzo Sabatino
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy.
| | - Alma Pignata
- Breast Center, Spedali Civili Hospital, ASST, Brescia, Italy
| | - Marvi Valentini
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy
| | - Carmen Fantò
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy
| | - Irene Leonardi
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy
| | - Michela Campora
- Pathology Department, Santa Chiara Hospital, APSS, Trento, Italy
| |
Collapse
|
28
|
Ghezzo S, Bezzi C, Neri I, Mapelli P, Presotto L, Gajate AMS, Bettinardi V, Garibotto V, De Cobelli F, Scifo P, Picchio M. Radiomics and artificial intelligence. CLINICAL PET/MRI 2023:365-401. [DOI: 10.1016/b978-0-323-88537-9.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Covington MF, Koppula BR, Fine GC, Salem AE, Wiggins RH, Hoffman JM, Morton KA. PET-CT in Clinical Adult Oncology: II. Primary Thoracic and Breast Malignancies. Cancers (Basel) 2022; 14:cancers14112689. [PMID: 35681669 PMCID: PMC9179296 DOI: 10.3390/cancers14112689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Positron emission tomography (PET), typically combined with computed tomography (CT), has become a critical advanced imaging technique in oncology. With PET-CT, a radioactive molecule (radiotracer) is injected in the bloodstream and localizes to sites of tumor because of specific cellular features of the tumor that accumulate the targeting radiotracer. The CT scan, performed at the same time, provides information to facilitate assessment of the amount of radioactivity from deep or dense structures, and to provide detailed anatomic information. PET-CT has a variety of applications in oncology, including staging, therapeutic response assessment, restaging, and surveillance. This series of six review articles provides an overview of the value, applications, and imaging and interpretive strategies of PET-CT in the more common adult malignancies. The second article in this series addresses the use of PET-CT in breast cancer and other primary thoracic malignancies. Abstract Positron emission tomography combined with x-ray computed tomography (PET-CT) is an advanced imaging modality with oncologic applications that include staging, therapy assessment, restaging, and surveillance. This six-part series of review articles provides practical information to providers and imaging professionals regarding the best use of PET-CT for the more common adult malignancies. The second article of this series addresses primary thoracic malignancy and breast cancer. For primary thoracic malignancy, the focus will be on lung cancer, malignant pleural mesothelioma, thymoma, and thymic carcinoma, with an emphasis on the use of FDG PET-CT. For breast cancer, the various histologic subtypes will be addressed, and will include 18F fluorodeoxyglucose (FDG), recently Food and Drug Administration (FDA)-approved 18F-fluoroestradiol (FES), and 18F sodium fluoride (NaF). The pitfalls and nuances of PET-CT in breast and primary thoracic malignancies and the imaging features that distinguish between subcategories of these tumors are addressed. This review will serve as a resource for the appropriate roles and limitations of PET-CT in the clinical management of patients with breast and primary thoracic malignancies for healthcare professionals caring for adult patients with these cancers. It also serves as a practical guide for imaging providers, including radiologists, nuclear medicine physicians, and their trainees.
Collapse
Affiliation(s)
- Matthew F. Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Bhasker R. Koppula
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Ahmed Ebada Salem
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
- Department of Radiodiagnosis and Intervention, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Richard H. Wiggins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - John M. Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Kathryn A. Morton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
- Intermountain Healthcare Hospitals, Summit Physician Specialists, Murray, UT 84123, USA
- Correspondence: ; Tel.: +1-801-581-7553
| |
Collapse
|
30
|
Bhaludin BN, Tunariu N, Koh DM, Messiou C, Okines AF, McGrath SE, Ring AE, Parton MM, Sharma B, Gagliardi T, Allen SD, Pope R, Johnston SRD, Downey K. A review on the added value of whole-body MRI in metastatic lobular breast cancer. Eur Radiol 2022; 32:6514-6525. [PMID: 35384456 DOI: 10.1007/s00330-022-08714-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022]
Abstract
Invasive lobular breast carcinomas (ILC) account for approximately 15% of breast cancer diagnoses. They can be difficult to diagnose both clinically and radiologically, due to their infiltrative growth pattern. The pattern of metastasis of ILC is unusual, with spread to the serosal surfaces (pleura and peritoneum), retroperitoneum and gastrointestinal (GI)/genitourinary (GU) tracts and a higher rate of leptomeningeal spread than IDC. Routine staging and response assessment with computed tomography (CT) can be undertaken quickly and measurements can be reproduced easily, but this is challenging with metastatic ILC as bone-only/bone-predominant patterns are frequently seen and assessment of the disease status is limited in these scenarios. Functional imaging such as whole-body MRI (WBMRI) allows the assessment of bone and soft tissue disease by providing functional information related to differences in cellular density between malignant and benign tissues. A number of recent studies have shown that WBMRI can detect additional sites of disease in metastatic breast cancer (MBC), resulting in a change in systemic anti-cancer therapy. Although WBMRI and fluorodeoxyglucose-positron-emission tomography-computed tomography (FDG-PET/CT) have a comparable performance in the assessment of MBC, WBMRI can be particularly valuable as a proportion of ILC are non-FDG-avid, resulting in the underestimation of the disease extent. In this review, we explore the added value of WBMRI in the evaluation of metastatic ILC and compare it with other imaging modalities such as CT and FDG-PET/CT. We also discuss the spectrum of WBMRI findings of the different metastatic sites of ILC with CT and FDG-PET/CT correlation. KEY POINTS: • ILC has an unusual pattern of spread compared to IDC, with metastases to the peritoneum, retroperitoneum and GI and GU tracts, but the bones and liver are the commonest sites. • WBMRI allows functional assessment of metastatic disease, particularly in bone-only and bone-predominant metastatic cancers such as ILC where evaluation with CT can be challenging and limited. • WBMRI can detect more sites of disease compared with CT, can reveal disease progression earlier and provides the opportunity to change ineffective systemic treatment sooner.
Collapse
Affiliation(s)
- Basrull N Bhaludin
- Department of Radiology, The Royal Marsden Hospital, 203 Fulham Rd, London, England, SW3 6JJ, UK.
| | - Nina Tunariu
- Department of Radiology, The Royal Marsden Hospital, Downs Rd, Sutton, England, SM2 5PT, UK.,Institute of Cancer Research, London, UK
| | - Dow-Mu Koh
- Department of Radiology, The Royal Marsden Hospital, Downs Rd, Sutton, England, SM2 5PT, UK.,Institute of Cancer Research, London, UK
| | - Christina Messiou
- Department of Radiology, The Royal Marsden Hospital, Downs Rd, Sutton, England, SM2 5PT, UK.,Institute of Cancer Research, London, UK
| | - Alicia F Okines
- Breast Unit, The Royal Marsden Hospital, 203 Fulham Rd, London, England, SW3 6JJ, UK
| | - Sophie E McGrath
- Breast Unit, The Royal Marsden Hospital, Downs Rd, Sutton, England, SM2 5PT, UK
| | - Alistair E Ring
- Breast Unit, The Royal Marsden Hospital, Downs Rd, Sutton, England, SM2 5PT, UK
| | - Marina M Parton
- Breast Unit, The Royal Marsden Hospital, 203 Fulham Rd, London, England, SW3 6JJ, UK
| | - Bhupinder Sharma
- Department of Radiology, The Royal Marsden Hospital, 203 Fulham Rd, London, England, SW3 6JJ, UK
| | - Tanja Gagliardi
- Department of Radiology, The Royal Marsden Hospital, 203 Fulham Rd, London, England, SW3 6JJ, UK
| | - Steven D Allen
- Department of Radiology, The Royal Marsden Hospital, 203 Fulham Rd, London, England, SW3 6JJ, UK
| | - Romney Pope
- Department of Radiology, The Royal Marsden Hospital, 203 Fulham Rd, London, England, SW3 6JJ, UK
| | - Stephen R D Johnston
- Breast Unit, The Royal Marsden Hospital, 203 Fulham Rd, London, England, SW3 6JJ, UK
| | - Kate Downey
- Department of Radiology, The Royal Marsden Hospital, 203 Fulham Rd, London, England, SW3 6JJ, UK
| |
Collapse
|
31
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
32
|
Kim KT, Baek SH, Lee SU, Kim JB, Kim JS. Clinical Reasoning: A 48-Year-Old Woman Presenting With Vertigo, Ptosis and Red Eyes. Neurology 2022; 98:678-683. [PMID: 35228336 DOI: 10.1212/wnl.0000000000200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We describe acute vestibular syndrome in a 48-year-old woman with breast cancer who was finally found to have anti-Ma2-associated encephalitis. Even though the initial diagnosis was vestibular neuritis elsewhere, progression of symptoms and additional findings of bilateral ptosis and circumlimbal injections, vertical saccadic slowing, and impaired convergence led to a suspicion of a rostral midbrain lesion and final diagnosis. The patient's symptoms and ocular motor signs improved markedly after administration of intravenous methylprednisolone and oral tacrolimus. Our patient again stresses the importance of scrutinized ocular motor evaluation for detection of central lesions even in patients with the clinical features of unilateral peripheral vestibulopathy.
Collapse
Affiliation(s)
- Keun-Tae Kim
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea
| | - Seol-Hee Baek
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea
| | - Sun-Uk Lee
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea.,Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Dizziness Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
33
|
Fowler AM, Strigel RM. Clinical advances in PET-MRI for breast cancer. Lancet Oncol 2022; 23:e32-e43. [PMID: 34973230 PMCID: PMC9673821 DOI: 10.1016/s1470-2045(21)00577-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Imaging is paramount for the early detection and clinical staging of breast cancer, as well as to inform management decisions and direct therapy. PET-MRI is a quantitative hybrid imaging technology that combines metabolic and functional PET data with anatomical detail and functional perfusion information from MRI. The clinical applicability of PET-MRI for breast cancer is an active area of research. In this Review, we discuss the rationale and summarise the clinical evidence for the use of PET-MRI in the diagnosis, staging, prognosis, tumour phenotyping, and assessment of treatment response in breast cancer. The continued development and approval of targeted radiopharmaceuticals, together with radiomics and automated analysis tools, will further expand the opportunity for PET-MRI to provide added value for breast cancer imaging and patient care.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
34
|
Parvizi M, Farzanefar S, Khalaj A, Tafakhori A, Daha FJ, Saffar H, Sadeghzadeh M, Naseri M, Ahmadzadehfar H, Abbasi M. 99m Technetium-HMPAO-labeled platelet scan in practice: Preparation, quality control, and biodistribution studies. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e18860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Ali Khalaj
- Tehran University of Medical Sciences, Iran
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Parihar AS, Bhattacharya A. Role of Nuclear Medicine in Breast Cancer. Breast Cancer 2022. [DOI: 10.1007/978-981-16-4546-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Wong YM, Jagmohan P, Goh YG, Putti TC, Ow SGW, Thian YL, Pillay P. Infiltrative pattern of metastatic invasive lobular breast carcinoma in the abdomen: a pictorial review. Insights Imaging 2021; 12:181. [PMID: 34894297 PMCID: PMC8665916 DOI: 10.1186/s13244-021-01120-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022] Open
Abstract
Invasive lobular carcinoma (ILC) has a greater tendency to metastasize to the peritoneum, retroperitoneum, and gastrointestinal (GI) tract as compared to invasive carcinoma of no special type (NST). Like primary ILC in the breast, ILC metastases are frequently infiltrative and hypometabolic, rather than mass forming and hypermetabolic in nature. This renders them difficult to detect on conventional and metabolic imaging studies. As a result, intra-abdominal ILC metastases are often detected late,
with patients presenting with clinical complications such as liver failure, hydronephrosis, or bowel obstruction. In patients with known history of ILC, certain imaging features are very suggestive of infiltrative metastatic ILC. These include retroperitoneal or peritoneal nodularity and linitis plastica appearance of the bowel. Recognition of linitis plastica on imaging should prompt deep or repeat biopsies. In this pictorial review, the authors aim to familiarize readers with imaging features and pitfalls for evaluation of intra-abdominal metastatic ILC. Awareness of these will allow the radiologist to assess these patients with a high index of suspicion and aid detection of metastatic disease. Also, this can direct histopathology and immunohistochemical staining to obtain the correct diagnosis in suspected metastatic disease.
Collapse
Affiliation(s)
- Ying Mei Wong
- Department of Diagnostic Imaging, National University Hospital, Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 12, Singapore, 119228, Singapore.
| | - Pooja Jagmohan
- Department of Diagnostic Imaging, National University Hospital, Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 12, Singapore, 119228, Singapore
| | - Yong Geng Goh
- Department of Diagnostic Imaging, National University Hospital, Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 12, Singapore, 119228, Singapore
| | - Thomas Choudary Putti
- Department of Pathology, National University of Singapore, National University Hospital, Kent Ridge Road, Singapore, 119074, Singapore
| | - Samuel Guan Wei Ow
- Department of Hematology-Oncology, National University Cancer Institute and Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Yee Liang Thian
- Department of Diagnostic Imaging, National University Hospital, Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 12, Singapore, 119228, Singapore
| | - Premilla Pillay
- Department of Diagnostic Imaging, National University Hospital, Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 12, Singapore, 119228, Singapore
| |
Collapse
|
37
|
Elboga U, Sahin E, Kus T, Cayirli YB, Aktas G, Uzun E, Cinkir HY, Teker F, Sever ON, Aytekin A, Yilmaz L, Aytekin A, Cimen U, Mumcu V, Kilbas B, Çelen YZ. Superiority of 68Ga-FAPI PET/CT scan in detecting additional lesions compared to 18FDG PET/CT scan in breast cancer. Ann Nucl Med 2021; 35:1321-1331. [PMID: 34436740 DOI: 10.1007/s12149-021-01672-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE We compared the ability of 68Ga-FAPI PET//CT with 18FDG PET/CT imaging techniques to detect additional lesions in breast cancer patients that may affect further chemotherapy options. METHODS A total of 48 patients with breast cancer underwent concurrent 68Ga-FAPI-04 and 18FDG PET/CT regardless of whether they had received chemotherapy or not in the last month before imaging. Both modalities were compared according to various parameters: clinical/pathological features, number of lesions detected, activity uptake (SUVmax), and the effect on the evaluation of response to treatment in the post-chemotherapy group. RESULTS This retrospective study included 48 patients with breast cancer (mean age 53.3 ± 11.7 years; IDC 89.6%; ILC 10.4%). In the comparison of both modalities, no statistical significance was obtained in terms of the pathological characteristics of the patients. More lesions were demonstrated in all categorized regions in 68Ga-FAPI PET/CT imaging with higher uptake values compared to 18FDG PET/CT in this study. In the treatment response evaluation of the post-chemotherapy group, 12 cases (12/24) who were evaluated as PMR, CMR, or SD according to 18FDG PET/CT results were later accepted as PD due to newly detected lesions in complementary 68Ga-FAPI PET/CT imaging and treatment of patients was managed accordingly by clinicians. CONCLUSION It was determined that 68Ga-FAPI PET/CT was superior to 18FDG PET/CT in terms of accuracy and it was thought that 68Ga-FAPI PET/CT could be utilized as an additional complementary imaging to 18FDG PET/CT. Moreover, 68Ga-FAPI PET/CT, with its significant theranostic potential, could become a key element in predicting the pathological response of breast cancer patients in further researches.
Collapse
Affiliation(s)
- Umut Elboga
- Department of Nuclear Medicine, Gaziantep University, 27310, Sahinbey, Gaziantep, Turkey.
| | - Ertan Sahin
- Department of Nuclear Medicine, Gaziantep University, 27310, Sahinbey, Gaziantep, Turkey
| | - Tulay Kus
- Department of Oncology, Gaziantep University, Gaziantep, Turkey
| | - Yusuf Burak Cayirli
- Department of Nuclear Medicine, Gaziantep University, 27310, Sahinbey, Gaziantep, Turkey
| | - Gokmen Aktas
- Department of Oncology, Medical Park Private Hospital, Gaziantep, Turkey
| | - Evren Uzun
- Department of Pathology, Gaziantep University, Gaziantep, Turkey
| | | | - Fatih Teker
- Department of Oncology, Gaziantep University, Gaziantep, Turkey
| | | | - Alper Aytekin
- Department of General Surgery, Gaziantep University, Gaziantep, Turkey
| | - Latif Yilmaz
- Department of General Surgery, Gaziantep University, Gaziantep, Turkey
| | - Aydin Aytekin
- Department of Oncology, Gaziantep University, Gaziantep, Turkey
| | - Ufuk Cimen
- Department of Nuclear Medicine, Gaziantep University, 27310, Sahinbey, Gaziantep, Turkey
| | - Vuslat Mumcu
- Department of Nuclear Medicine, Gaziantep University, 27310, Sahinbey, Gaziantep, Turkey
| | - Benan Kilbas
- Department of Chemistry, Moltek Inc., İstanbul, Turkey
| | - Y Zeki Çelen
- Department of Nuclear Medicine, Gaziantep University, 27310, Sahinbey, Gaziantep, Turkey
| |
Collapse
|
38
|
Fujimoto A, Kosaka Y, Hasebe T, Saeki T. Hidden breast cancer after breast augmentation, not presenting as a hypoechoic mass lesion, diagnosed using colour Doppler ultrasound. BMJ Case Rep 2021; 14:14/9/e242742. [PMID: 34548294 PMCID: PMC8458326 DOI: 10.1136/bcr-2021-242742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The main concern after breast augmentation with silicone injection is that silicone granulomas make it difficult to detect breast cancer. A case of breast cancer was diagnosed using colour Doppler ultrasound (CD) to detect an non-palpable mass not presenting as a hypoechoic mass lesion. An 83-year-old woman was incidentally found to have a lesion in her right breast, which was injected with silicone, showing 18F-fluorodeoxyglucose (FDG) uptake; the lesion was suspected to be breast cancer or silicone granuloma. A mass at the FDG uptake site was not detected on ultrasonography (US); however, observation using CD revealed a slightly hypoechoic area with hypervascularity. Core needle biopsy showed invasive ductal carcinoma. Patients in whom US does not reveal lesions after breast augmentation with silicone injection should undergo CD to detect hypervascularised tissue. To prevent false-negative biopsy results, CD is essential to detect cancer at suspected sites.
Collapse
Affiliation(s)
- Akihiro Fujimoto
- Breast Oncology Service, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Yoshimasa Kosaka
- Breast Oncology Service, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Takahiro Hasebe
- Breast Oncology Service, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Toshiaki Saeki
- Breast Oncology Service, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| |
Collapse
|
39
|
Abstract
Imaging plays an integral role in the clinical care of patients with breast cancer. This review article focuses on the use of PET imaging for breast cancer, highlighting the clinical indications and limitations of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) PET/CT, the potential use of PET/MRI, and 16α-[18F]fluoroestradiol (FES), a newly approved radiopharmaceutical for estrogen receptor imaging.
Collapse
Affiliation(s)
- Amy M Fowler
- Breast Imaging and Intervention Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA.
| | - Steve Y Cho
- University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA; Nuclear Medicine and Molecular Imaging Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA
| |
Collapse
|
40
|
van Loevezijn AA, Stokkel MPM, Donswijk ML, van Werkhoven ED, van der Noordaa MEM, van Duijnhoven FH, Vrancken Peeters MJTFD. [ 18F]FDG-PET/CT in prone compared to supine position for optimal axillary staging and treatment in clinically node-positive breast cancer patients with neoadjuvant systemic therapy. EJNMMI Res 2021; 11:78. [PMID: 34417932 PMCID: PMC8380204 DOI: 10.1186/s13550-021-00824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Axillary staging before neoadjuvant systemic therapy in clinically node-positive breast cancer patients with tailored axillary treatment according to the Marking Axillary lymph nodes with radioactive iodine seeds (MARI)-protocol, a protocol developed at the Netherlands Cancer Institute, is performed with [18F] fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT). We aimed to assess the value of FDG-PET/CT in prone compared to standard supine position for axillary staging. METHODS We selected patients with FDG-PET/CT in supine and prone position who underwent the MARI-protocol. One hour after administration of 3.5 MBq/kg, [18F]FDG-PET was performed with a low-dose prone position CT-thorax followed by a supine whole-body scan. Scans were separately reviewed by two nuclear medicine physicians and categorized by number of FDG-positive axillary lymph nodes (ALNs; cALN<4 or cALN≥4). Main outcome was axillary up- or downstaging. RESULTS Of 153 patients included, 24 (16%) patients were up- or downstaged at evaluation of prone images: One observer upstaged 14 patients, downstaged 3 patients and reported a higher number of ALNs (3.6 vs. 3.2, p < 0.001), while staging (4 up- and 5 downstaged) and number of ALNs (2.8 vs. 2.8) did not differ for the other. Observers agreed on up- or downstaging in only 1 (1%) patient. Irrespective of supine or prone position scanning, observers agreed on axillary staging in 124 (81%) patients and disagreed in 5 (3%). Interobserver agreement was lower with prone assessments (86%, K = 0.67) than supine (92%, K = 0.80). CONCLUSIONS Axillary staging with FDG-PET/CT in prone compared to supine position did not result in concordant up- or downstaging. Therefore, FDG-PET/CT in supine position only can be considered sufficient for axillary staging.
Collapse
Affiliation(s)
- Ariane A van Loevezijn
- Department of Surgical Oncology, Netherlands Cancer Institute - Antoni Van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marcel P M Stokkel
- Department of Nuclear Medicine, Netherlands Cancer Institute - Antoni Van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Maarten L Donswijk
- Department of Nuclear Medicine, Netherlands Cancer Institute - Antoni Van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Erik D van Werkhoven
- Department of Biometrics, Netherlands Cancer Institute - Antoni Van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marieke E M van der Noordaa
- Department of Surgical Oncology, Netherlands Cancer Institute - Antoni Van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Frederieke H van Duijnhoven
- Department of Surgical Oncology, Netherlands Cancer Institute - Antoni Van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marie-Jeanne T F D Vrancken Peeters
- Department of Surgical Oncology, Netherlands Cancer Institute - Antoni Van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Department of Surgery, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Ulaner GA, Jacene HA, Parihar AS, Groheux D. Evidence-Based Best Practices: 18F-FDG PET Staging of Newly Diagnosed Breast Cancer. Clin Nucl Med 2021; 46:569-570. [PMID: 34028402 DOI: 10.1097/rlu.0000000000003690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Gary A Ulaner
- From the Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA
| | - Heather A Jacene
- Departments of Imaging and Radiology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA
| | - Ashwin Singh Parihar
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - David Groheux
- Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France
| |
Collapse
|
42
|
Pirasteh A, Lovrec P, Pedrosa I. Imaging and its Impact on Defining the Oligometastatic State. Semin Radiat Oncol 2021; 31:186-199. [PMID: 34090645 DOI: 10.1016/j.semradonc.2021.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Successful treatment of oligometastatic disease (OMD) is facilitated through timely detection and localization of disease, both at the time of initial diagnosis (synchronous OMD) and following the initial therapy (metachronous OMD). Hence, imaging plays an indispensable role in management of patients with OMD. However, the challenges and complexities of OMD management are also reflected in the imaging of this entity. While innovations and advances in imaging technology have made a tremendous impact in disease detection and management, there remain substantial and unaddressed challenges for earlier and more accurate establishment of OMD state. This review will provide an overview of the available imaging modalities and their inherent strengths and weaknesses, with a focus on their role and potential in detection and evaluation of OMD in different organ systems. Furthermore, we will review the role of imaging in evaluation of OMD for malignancies of various primary organs, such as the lung, prostate, colon/rectum, breast, kidney, as well as neuroendocrine tumors and gynecologic malignancies. We aim to provide a practical overview about the utilization of imaging for clinicians who play a role in the care of those with, or at risk for OMD.
Collapse
Affiliation(s)
- Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI
| | - Petra Lovrec
- Department of Radiology, University of Wisconsin-Madison, Madison, WI
| | - Ivan Pedrosa
- Departments of Radiology, Urology, and Advanced Imaging Research Center. University of Texas Southwestern, Dallas, TX.
| |
Collapse
|
43
|
Kikano EG, Avril S, Marshall H, Jones RS, Montero AJ, Avril N. PET/CT Variants and Pitfalls in Breast Cancers. Semin Nucl Med 2021; 51:474-484. [PMID: 34088473 DOI: 10.1053/j.semnuclmed.2021.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are a number of normal variants and pitfalls which are important to consider when evaluating F-18 Fluorodeoxyglucose (FDG) with Positron Emission Tomography (PET) in breast cancer patients. Although FDG-PET is not indicated for the initial diagnosis of breast cancer, focally increased glucose metabolism within breast tissue represents a high likelihood for a neoplastic process and requires further evaluation. Focally increased glucose metabolism is not unique to breast cancer. Other malignancies such as lymphoma, metastases from solid tumors as well as inflammatory changes also may demonstrate increased glucose metabolism either within the breast or at other sites throughout the body. Importantly, benign breast disease may also exhibit increased glucose metabolism, limiting the specificity of FDG-PET. Breast cancer has a wide range of metabolic activity attributed to tumor heterogeneity and breast cancer subtype. Intracellular signaling pathways regulating tumor glucose utilization contribute to these pitfalls of PET/CT in breast cancer. The evaluation of axillary lymph nodes by FDG-PET is less accurate than sentinel lymph node procedure, however is very accurate in identifying level II and III axillary lymph node metastases or retropectoral metastases. It is important to note that non-malignant inflammation in lymph nodes are often detected by modern PET/CT technology. Therefore, particular consideration should be given to recent vaccinations, particularly to COVID-19, which can commonly result in increased metabolic activity of axillary nodes. Whole body FDG-PET for staging of breast cancer requires specific attention to physiologic variants of FDG distribution and a careful comparison with co-registered anatomical imaging. The most important pitfalls are related to inflammatory changes including sarcoidosis, sarcoid like reactions, and other granulomatous diseases as well as secondary neoplastic processes.
Collapse
Affiliation(s)
- Elias George Kikano
- Department of Radiology, Division of Nuclear Medicine, Cleveland, Ohio; University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, Ohio
| | - Stefanie Avril
- Department of Pathology, Cleveland, Ohio; University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, Ohio
| | - Holly Marshall
- Department of Radiology, Division of Breast Imaging, Cleveland, Ohio; University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, Ohio
| | - Robert Stanley Jones
- Department of Radiology, Division of Nuclear Medicine, Cleveland, Ohio; University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, Ohio
| | - Alberto J Montero
- Department of Medicine, Solid Tumor Oncology, Cleveland, Ohio; University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, Ohio
| | - Norbert Avril
- Department of Radiology, Division of Nuclear Medicine, Cleveland, Ohio; University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
44
|
Mohamadien NRA, Sayed MHM. Correlation between semiquantitative and volumetric 18F-FDG PET/computed tomography parameters and Ki-67 expression in breast cancer. Nucl Med Commun 2021; 42:656-664. [PMID: 33560720 DOI: 10.1097/mnm.0000000000001376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To evaluate the relationship between semiquantitative and volumetric parameters on 18F-FDG PET/computed tomography (CT), including maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), total lesion glycolysis (TLG), tumor to liver ratio (TLR) and tumor to mediastinum ratio (TMR) with the level of Ki-67 expression in breast cancer. PATIENT AND METHODS We retrospectively reviewed 105 female patients with newly diagnosed breast cancer who underwent baseline 18F-FDG PET/CT and had immunohistochemical staining to determine the level of Ki-67 expression. The following PET parameters were measured (SUVmax, SUVmean, MTV, TLG, TLR and TMR) and correlated with level of Ki-67 expression. RESULTS Significant moderate positive correlations were found between the PET parameters (primary SUVmax, SUVmean, TLG, TLR and TMR) and level of Ki-67 expression. The primary SUVmax had the highest correlation coefficient (r = 0.461) followed by TMR (r = 0.455) and P value of <0.001 for both. In ROC analysis, primary SUVmax had the largest area under the curve (0.806, P = 0.0001), with sensitivity of 76.5 % and specificity of 75% for prediction of high Ki-67 level. In univariate analysis, all PET parameters, patient age, tumor grade, molecular subtype, estrogen receptor and progesterone receptor status were significantly associated with Ki-67 level. In multivariate regression analysis, only tumor grade [odds ratio (OR) = 20.460, 95% confidence interval (CI): 11.360-29.559, P = <0.0001], molecular subtype (OR = -21.894, 95% CI: -37.921 to -5.866, P = 0.008), SUVmax (OR = 2.299, 95% CI: 0.703-3.895, P = 0.005) and TLR (OR = -4.908, 95% CI: -9.476 to -0.340, P = 0.035) were found to be the strongest independent predictor factors for the level of Ki-67 expression and hence proliferative activity of malignant cells in breast cancer. CONCLUSION The semiquantitative parameters and volumetric 18F-FDG PET/CT parameter, that is, TLG correlated well with proliferation marker Ki-67 in breast cancer. 18F-FDG PET/CT imaging can be used as a useful noninvasive diagnostic tool in imaging cellular proliferation and hence may substitute for in vitro testing of molecular markers in the diagnoses and staging of breast cancer.
Collapse
Affiliation(s)
- Nsreen R A Mohamadien
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine. Assiut University, Assiut, Egypt
| | | |
Collapse
|
45
|
Kömek H, Can C, Güzel Y, Oruç Z, Gündoğan C, Yildirim ÖA, Kaplan İ, Erdur E, Yıldırım MS, Çakabay B. 68Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: a comparative pilot study with the 18F-FDG PET/CT. Ann Nucl Med 2021; 35:744-752. [PMID: 33934311 DOI: 10.1007/s12149-021-01616-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022]
Abstract
AIM We aimed to compare the roles of 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT in the evaluation of primary tumor and metastases in primary and recurrent breast cancer. MATERIALS AND METHOD Twenty female patients with histopathologically confirmed primary and recurrent breast cancer were included in the prospective study. All patients underwent FDG and FAPI PET/CT imaging in the same week. The number of primary and metastatic lesions, SUVmax values, and tumor-to-background ratios (TBR) were recorded from both scans. Data obtained were statistically compared. RESULTS FAPI PET/CT was superior to FDG in detecting breast lesions, as well as hepatic, bone, lymph node, and cerebral metastases in terms of patient- and lesion-based assessments. The sensitivity and specificity of FAPI in detecting primary breast lesions were 100% and 95.6%, respectively, while the sensitivity and specificity of FDG were 78.2% and 100%, respectively. The SUVmax values of primary breast tumors, lymph nodes, lung metastases, and bone metastases were significantly higher on FAPI imaging than FDG imaging (p < 0.05). However, SUVmax values of hepatic metastases did not exhibit a statistically significant difference between two imaging techniques (p > 0.05). Also, FAPI imaging yielded significantly higher TBR in breast lesions as well as hepatic, bone, brain and lung metastases compared to FDG (p < 0.05). CONCLUSION 68 Ga-FAPI-04 PET/CT is superior to 18F-FDG PET/CT in detecting the primary tumor in patients with breast cancer with its high sensitivity, high SUVmax, and high TBR. 68 Ga-FAPI-04 PET/CT is also superior to 18F-FDG PET/CT in detecting lymph node, hepatic, bone, and cerebral metastases because it has lower background activity and higher uptake in subcentimetric lesions.
Collapse
Affiliation(s)
- Halil Kömek
- Department of Nuclear Medicine, Gazi Yasargil Training and Research Hospital, 21070, Kayapınar, Diyarbakir, Turkey.
| | - Canan Can
- Department of Nuclear Medicine, Gazi Yasargil Training and Research Hospital, 21070, Kayapınar, Diyarbakir, Turkey
| | - Yunus Güzel
- Department of Nuclear Medicine, Gazi Yasargil Training and Research Hospital, 21070, Kayapınar, Diyarbakir, Turkey
| | - Zeynep Oruç
- Department of Medical Oncology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Cihan Gündoğan
- Department of Nuclear Medicine, Gazi Yasargil Training and Research Hospital, 21070, Kayapınar, Diyarbakir, Turkey
| | - Özgen Ahmet Yildirim
- Department of Internal Medicine, Division of Medical Oncology, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - İhsan Kaplan
- Department of Nuclear Medicine, Gazi Yasargil Training and Research Hospital, 21070, Kayapınar, Diyarbakir, Turkey
| | - Erkan Erdur
- Department of Internal Medicine, Division of Medical Oncology, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Mehmet Serdar Yıldırım
- Department of Internal Medicine, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Bahri Çakabay
- Department of Surgical Oncology, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| |
Collapse
|
46
|
Groheux D, Hindie E. Breast cancer: initial workup and staging with FDG PET/CT. Clin Transl Imaging 2021; 9:221-231. [PMID: 33937141 PMCID: PMC8075837 DOI: 10.1007/s40336-021-00426-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
Purpose Precise staging is needed to plan optimal management in breast cancer. 18F-fluorodeoxyglucose positron emission tomography coupled with computed tomography (FDG-PET/CT) offers high sensitivity in detecting extra axillary lymph nodes and distant metastases. This review aims to clarify in which groups of patients staging with FDG-PET/CT would be beneficial and should be offered. We also discuss how tumor biology and breast cancer subtypes should be taken into account when interpreting FDG-PET/CT scans. Methods We performed a comprehensive literature review and rigorous appraisal of research studies assessing indications for FDG-PET/CT in breast cancer. This assessment regarding breast cancer served as a basis for the recommendations set by a working group of the French Society of Nuclear Medicine, in collaboration with oncological societies, for developing good clinical practice recommendations on the use of FDG-PET/CT in oncology. Results FDG-PET/CT is useful for initial staging of breast cancer, independently of tumor phenotype (triple negative, luminal or HER2 +) and regardless of tumor grade. Considering histological subtype, FDG-PET/CT performs better for staging invasive ductal carcinoma, although it is also helpful for staging invasive lobular carcinomas. Based on the available data, FDG-PET/CT becomes useful for staging starting from clinical stage IIB. FDG-PET/CT is possibly useful in patients with clinical stage IIA (T1N1 or T2N0), but there is not enough strong data to recommend routine use in this subgroup. For clinical stage I (T1N0) patients, staging with FDG-PET/CT offers no added value. Conclusion FDG-PET/CT is useful for staging patients with breast cancer, starting from clinical stage IIB.
Collapse
Affiliation(s)
- David Groheux
- Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France
- University Paris-Diderot, INSERM U976, HIPI, Paris, France
| | - Elif Hindie
- Department of Nuclear Medicine, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
47
|
PET/CT in breast cancer staging is useful for evaluation of axillary lymph node and distant metastases. Surg Oncol 2021; 38:101567. [PMID: 33866190 DOI: 10.1016/j.suronc.2021.101567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/11/2020] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Breast cancer outcome is dependent on disease stage. The aim of the study was to assess the role of PET/CT in the evaluation of axillary lymph node and distant metastases in women with newly diagnosed primary breast cancer. MATERIALS AND METHODS We assessed, among patients with newly diagnosed primary breast cancer, associations of [18F] fluorodeoxyglucose (FDG) uptake (maximum standardized uptake value [SUVmax]) with clinical variables of the primary tumor, including regional nodal status and the presence of distant metastases. RESULTS Of 324 patients, 265 (81.8%) had focal uptake of FDG that corresponded with the cancerous lesion, and 21 (6.5%) had no FDG-avid findings. The remaining 38 patients had diffuse or nonspecific uptake of FDG. Among patients with a focal uptake of FDG (n = 265), the mean tumor size was 2.6 ± 1.9 (range 0.5-13.5), and the mean SUVmax was 5.3 ± 4.9 (range 1.2-25.0). In 83 patients (25.6%), PET/CT demonstrated additional suspected foci in the same breast. FDG-avid lymphadenopathy was observed in 156 patients (48.1%). Further assessment of lymph node involvement was available for 55/156 patients (axillary lymph node dissection [n = 21]; core needle biopsy [n = 34]) and confirmed axillary lymph node metastases in 47 (85.5%)). Thirteen patients (4.0%) had FDG-avid supraclavicular lymph nodes and six (1.9%) had FDG-avid internal mammary lymph nodes. Distant FDG-avid lesions were detected in 33 patients (10.2%). CONCLUSION PET/CT is a useful diagnostic tool for staging breast cancer patients, but its use should be limited to specific clinical situations; further evaluation is needed.
Collapse
|
48
|
Park CKS, Bax JS, Gardi L, Knull E, Fenster A. Development of a mechatronic guidance system for targeted ultrasound-guided biopsy under high-resolution positron emission mammography localization. Med Phys 2021; 48:1859-1873. [PMID: 33577113 DOI: 10.1002/mp.14768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Image-guided needle biopsy of small, detectable lesions is crucial for early-stage diagnosis, treatment planning, and management of breast cancer. High-resolution positron emission mammography (PEM) is a dedicated functional imaging modality that can detect breast cancer independent of breast tissue density, but anatomical context and real-time needle visualization are not yet available to guide biopsy. We propose a mechatronic guidance system integrating an ultrasound (US)-guided core-needle biopsy (CNB) with high-resolution PEM localization to improve the spatial sampling of breast lesions. This paper presents the benchtop testing and phantom studies to evaluate the accuracy of the system and its constituent components for targeted PEM-US-guided biopsy under simulated high-resolution PEM localization. METHODS A mechatronic guidance system was developed to operate with the Radialis PEM system and a conventional US system. The system includes a user-operated guidance arm and end-effector biopsy device, integrating a US transducer and CNB gun, with its needle focused on a remote center of motion (RCM). Custom software modules were developed to track, display, and guide the end-effector biopsy device. Registration of the mechatronic guidance system to a simulated PEM detector plate was performed using a landmark-based method. Testing was performed with fiducials positioned in the peripheral and central regions of the simulated detector plate and registration error was quantified. Breast phantom experiments were performed under ideal detection and localization to evaluate for bias in the end-effector biopsy device. The accuracy of the complete mechatronic guidance system to perform targeted breast biopsy was assessed using breast phantoms with simulated lesions. Three-dimensional positioning error was quantified, and principal component analysis assessed for directional trends in 3D space within 95% prediction intervals. Targeted breast biopsies with test phantoms were performed and an overall in-plane needle targeting error was quantified. RESULTS The mean registration errors were 0.63 mm (N = 44) and 0.73 mm (N = 72) in the peripheral and central regions of the simulated PEM detector plate, respectively. A 3D 95% prediction ellipsoid shows an error volume <2.0 mm in diameter, centered on the mean registration error. Under ideal detection and localization, targets <1.0 mm in diameter can be sampled with 95% confidence. The complete mechatronic guidance system was able to successfully spatially sample simulated breast lesions, 4 mm and 6 mm in diameter and height (N = 20) in known 3D positions in the PEM image coordinate space. The 3D positioning error was 0.85 mm (N = 20) with 0.64 mm in-plane and 0.44 mm cross-plane component errors. Targeted breast biopsies resulted in a mean in-plane needle targeting error of 1.08 mm (N = 15) allowing for targets 1.32 mm in radius to be sampled with 95% confidence. CONCLUSIONS We demonstrated the utility of our mechatronic guidance system for targeted breast biopsy under high-resolution PEM localization. Breast phantom studies showed the ability to accurately guide, position, and target breast lesions with the accuracy to spatially sample targets <3.0 mm in diameter with 95% confidence. Future work will integrate the developed system with the Radialis PEM system toward combined PEM-US-guided breast biopsy.
Collapse
Affiliation(s)
- Claire Keun Sun Park
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada
| | - Jeffrey Scott Bax
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada
| | - Lori Gardi
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada
| | - Eric Knull
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada.,School of Biomedical Engineering, Faculty of Engineering, Western University, London, Ontario, N6A 3K7, Canada
| | - Aaron Fenster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada.,School of Biomedical Engineering, Faculty of Engineering, Western University, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
49
|
Petrov GI, Arora R, Yakovlev VV. Coherent anti-Stokes Raman scattering imaging of microcalcifications associated with breast cancer. Analyst 2021; 146:1253-1259. [PMID: 33332488 PMCID: PMC8019521 DOI: 10.1039/d0an01962c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical imaging of calcifications was demonstrated in the depth of a tissue. Using long wavelength excitation, broadband coherent anti-Stokes Raman scattering and hierarchical cluster analysis, imaging and chemical analysis were performed 2 mm below the skin level in a model system. Applications to breast cancer diagnostics and imaging are discussed together with the methods to further extend the depth and improve the spatial resolution of chemical imaging.
Collapse
Affiliation(s)
- Georgi I Petrov
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
50
|
Chae RP, Tsao SCH, Baker CB, Lippey J. Progressive silicone lymphadenopathy post mastectomy and implant reconstruction for breast cancer. BMJ Case Rep 2021; 14:14/2/e237711. [PMID: 33563690 PMCID: PMC7875285 DOI: 10.1136/bcr-2020-237711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 56-year-old woman with a 12-year history of recurrent triple-negative invasive carcinoma of the breast presented with progressive enlargement of lymph nodes in the setting of established rupture of the ipsilateral silicone breast implant. Although this was proven to be benign on cytology, its progressive nature led to repeated core biopsies for histology, which were necessary given the high-risk nature of triple-negative breast cancer and the multiple proven previous recurrences. The histology demonstrated features of silicone deposits without evidence of malignancy. This case demonstrates the dilemma in surveillance of high-risk patients with breast cancer who have had previous silicone lymphadenopathy.
Collapse
Affiliation(s)
- Raphael Park Chae
- Breast Surgery, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | | | | | - Jocelyn Lippey
- Breast Surgery, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|