1
|
Lopez-Millan B, Rubio-Gayarre A, Vinyoles M, Trincado JL, Fraga MF, Fernandez-Fuentes N, Guerrero-Murillo M, Martinez A, Velasco-Hernandez T, Falgàs A, Panisello C, Valcarcel G, Sardina JL, López-Martí P, Javierre BM, Del Valle-Pérez B, García de Herreros A, Locatelli F, Pieters R, Bardini M, Cazzaniga G, Rodríguez-Manzaneque JC, Hanewald T, Marschalek R, Milne TA, Stam RW, Tejedor JR, Menendez P, Bueno C. NG2 is a target gene of MLL-AF4 and underlies glucocorticoid resistance in MLLr B-ALL by regulating NR3C1 expression. Blood 2024; 144:2002-2017. [PMID: 39093982 DOI: 10.1182/blood.2023022050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
ABSTRACT B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with long-term overall survival rates of ∼85%. However, B-ALL harboring rearrangements of the MLL gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is associated with poor 5-year survival, relapses, and refractoriness to glucocorticoids (GCs). GCs are an essential part of the treatment backbone for B-ALL, and GC resistance is a major clinical predictor of poor outcome. Elucidating the mechanisms of GC resistance in MLLr B-ALL is, therefore, critical to guide therapeutic strategies that deepen the response after induction therapy. Neuron-glial antigen-2 (NG2) expression is a hallmark of MLLr B-ALL and is minimally expressed in healthy hematopoietic cells. We recently reported that NG2 expression is associated with poor prognosis in MLLr B-ALL. Despite its contribution to MLLr B-ALL pathogenesis, the role of NG2 in MLLr-mediated leukemogenesis/chemoresistance remains elusive. Here, we show that NG2 is an epigenetically regulated direct target gene of the leukemic MLL-ALF transcription elongation factor 4 (AF4) fusion protein. NG2 negatively regulates the expression of the GC receptor nuclear receptor subfamily 3 group C member 1 (NR3C1) and confers GC resistance to MLLr B-ALL cells. Mechanistically, NG2 interacts with FLT3 to render ligand-independent activation of FLT3 signaling (a hallmark of MLLr B-ALL) and downregulation of NR3C1 via activating protein-1 (AP-1)-mediated transrepression. Collectively, our study elucidates the role of NG2 in GC resistance in MLLr B-ALL through FLT3/AP-1-mediated downregulation of NR3C1, providing novel therapeutic avenues for MLLr B-ALL.
Collapse
Affiliation(s)
- Belén Lopez-Millan
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Rubio-Gayarre
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Vinyoles
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan L Trincado
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Mario F Fraga
- Fundación para la Investigación Biosanitaria de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología de Asturias, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Oviedo, Spain
- Nanomaterials and Nanotechnology Research Center, Universidad de Oviedo, Oviedo, Spain
| | - Narcís Fernandez-Fuentes
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Guerrero-Murillo
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Martinez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Talia Velasco-Hernandez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Aïda Falgàs
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Carla Panisello
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Valcarcel
- Epigenetic Control of Hematopoiesis Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - José Luis Sardina
- Epigenetic Control of Hematopoiesis Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Paula López-Martí
- 3D Chromatin Organization Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Biola M Javierre
- 3D Chromatin Organization Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Beatriz Del Valle-Pérez
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Unitat Associada al Consejo Superior de Investigaciones Científicas, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Unitat Associada al Consejo Superior de Investigaciones Científicas, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rob Pieters
- Princess Màxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Michela Bardini
- Tettamanti Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| | | | - Thomas Hanewald
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia, Goethe University of Frankfurt, Biocenter, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia, Goethe University of Frankfurt, Biocenter, Frankfurt/Main, Germany
| | - Thomas A Milne
- Medical Research Council, Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, National Institute for Health and Care Research, Oxford Biomedical Research Center Hematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ronald W Stam
- Princess Màxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Juan Ramón Tejedor
- Fundación para la Investigación Biosanitaria de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología de Asturias, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Oviedo, Spain
- Nanomaterials and Nanotechnology Research Center, Universidad de Oviedo, Oviedo, Spain
| | - Pablo Menendez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Clara Bueno
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
2
|
Pourhassan H, Murphy L, Aldoss I. Glucocorticoid Therapy in Acute Lymphoblastic Leukemia: Navigating Short-Term and Long-Term Effects and Optimal Regimen Selection. Curr Hematol Malig Rep 2024; 19:175-185. [PMID: 38867099 DOI: 10.1007/s11899-024-00735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE OF REVIEW Glucocorticoids are a mainstay in acute lymphoblastic leukemia treatment and lack of early response is predictive for overall disease prognosis. Given the vital position of glucocorticoids and well known long and short-term side effects associated with differing glucocorticoids, we aim to highlight the wide breadth of historical and more contemporary data to describe the current landscape of glucocorticoid use in this arena. RECENT FINDINGS Emerging studies aim to overcome issues such as steroid resistance and to optimize the antileukemic effects of glucocorticoids while aiming to mitigate the risks and side effects associated with their exposure. Glucocorticoids have and likely always will be a fundamental component of acute lymphoblastic leukemia treatment and understanding how to navigate short- and long-term effects and how to optimize regimens is at the heart of continued treatment success.
Collapse
Affiliation(s)
- Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Lindsey Murphy
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
3
|
Bhattarai KR, Mobley RJ, Barnett KR, Ferguson DC, Hansen BS, Diedrich JD, Bergeron BP, Yoshimura S, Yang W, Crews KR, Manring CS, Jabbour E, Paietta E, Litzow MR, Kornblau SM, Stock W, Inaba H, Jeha S, Pui CH, Cheng C, Pruett-Miller SM, Relling MV, Yang JJ, Evans WE, Savic D. Investigation of inherited noncoding genetic variation impacting the pharmacogenomics of childhood acute lymphoblastic leukemia treatment. Nat Commun 2024; 15:3681. [PMID: 38693155 PMCID: PMC11063049 DOI: 10.1038/s41467-024-48124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.
Collapse
Affiliation(s)
- Kashi Raj Bhattarai
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Robert J Mobley
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kelly R Barnett
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jonathan D Diedrich
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brennan P Bergeron
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Satoshi Yoshimura
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo, Japan
| | - Wenjian Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kristine R Crews
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher S Manring
- Alliance Hematologic Malignancy Biorepository; Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, 43210, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mark R Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy Stock
- Comprehensive Cancer Center, University of Chicago Medicine, Chicago, IL, USA
| | - Hiroto Inaba
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sima Jeha
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mary V Relling
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun J Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - William E Evans
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Daniel Savic
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
4
|
Li Y, Kazuki Y, Drabison T, Kobayashi K, Fujita KI, Xu Y, Jin Y, Ahmed E, Li J, Eisenmann ED, Baker SD, Cavaletti G, Sparreboom A, Hu S. Vincristine Disposition and Neurotoxicity Are Unchanged in Humanized CYP3A5 Mice. Drug Metab Dispos 2024; 52:80-85. [PMID: 38071551 PMCID: PMC10801630 DOI: 10.1124/dmd.123.001466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Previous studies have suggested that the incidence of vincristine-induced peripheral neuropathy (VIPN) is potentially linked with cytochrome P450 (CYP)3A5, a polymorphic enzyme that metabolizes vincristine in vitro, and with concurrent use of azole antifungals such as ketoconazole. The assumed mechanism for these interactions is through modulation of CYP3A-mediated metabolism, leading to decreased vincristine clearance and increased susceptibility to VIPN. Given the controversy surrounding the contribution of these mechanisms, we directly tested these hypotheses in genetically engineered mouse models with a deficiency of the entire murine Cyp3a locus [Cyp3a(-/-) mice] and in humanized transgenic animals with hepatic expression of functional and nonfunctional human CYP3A5 variants. Compared with wild-type mice, the systemic exposure to vincristine was increased by only 1.15-fold (95% confidence interval, 0.84-1.58) in Cyp3a(-/-) mice, suggesting that the clearance of vincristine in mice is largely independent of hepatic Cyp3a function. In line with these observations, we found that Cyp3a deficiency or pretreatment with the CYP3A inhibitors ketoconazole or nilotinib did not influence the severity and time course of VIPN and that exposure to vincristine was not substantially altered in humanized CYP3A5*3 mice or humanized CYP3A5*1 mice compared with Cyp3a(-/-) mice. Our study suggests that the contribution of CYP3A5-mediated metabolism to vincristine elimination and the associated drug-drug interaction potential is limited and that plasma levels of vincristine are unlikely to be strongly predictive of VIPN. SIGNIFICANCE STATEMENT: The current study suggests that CYP3A5 genotype status does not substantially influence vincristine disposition and neurotoxicity in translationally relevant murine models. These findings raise concerns about the causality of previously reported relationships between variant CYP3A5 genotypes or concomitant azole use with the incidence of vincristine neurotoxicity.
Collapse
Affiliation(s)
- Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Yasuhiro Kazuki
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Kaoru Kobayashi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Ken-Ichi Fujita
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Eman Ahmed
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Eric D Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Guido Cavaletti
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| |
Collapse
|
5
|
Hormann FM, Mooij EJ, van de Mheen M, Beverloo HB, den Boer ML, Boer JM. The impact of an additional copy of chromosome 21 in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2024; 63:e23217. [PMID: 38087879 DOI: 10.1002/gcc.23217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/04/2024] Open
Abstract
A common finding in pediatric B-cell precursor acute lymphoblastic leukemia (BCPALL) is that chromosome 21 is never lost and an extra chromosome 21 is often gained. This implies an important role for chromosome 21 in the pathobiology of BCPALL, emphasized by the increased risk of BCPALL in children with Down syndrome. However, model systems of chromosome 21 gain are lacking. We therefore developed a BCPALL cell line (Nalm-6, DUX4-rearranged) with an additional chromosome 21 by means of microcell-mediated chromosome transfer. FISH, PCR, multiplex ligation-dependent probe amplification, and whole exome sequencing showed that an additional chromosome 21 was successfully transferred to the recipient cells. Transcription of some but not all genes on chromosome 21 was increased, indicating tight transcriptional regulation. Nalm-6 cells with an additional chromosome 21 proliferated slightly slower compared with parental Nalm-6 and sensitivity to induction chemotherapeutics was mildly increased. The extra copy of chromosome 21 did not confer sensitivity to targeted signaling inhibitors. In conclusion, a BCPALL cell line with an additional human chromosome 21 was developed, validated, and subjected to functional studies, which showed a minor but potentially relevant effect in vitro. This cell line offers the possibility to study further the role of chromosome 21 in ALL.
Collapse
Affiliation(s)
- Femke M Hormann
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Eva J Mooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
6
|
Borin C, Pieters T, Serafin V, Ntziachristos P. Emerging Epigenetic and Posttranslational Mechanisms Controlling Resistance to Glucocorticoids in Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e916. [PMID: 37359189 PMCID: PMC10289758 DOI: 10.1097/hs9.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Glucocorticoids are extensively used for the treatment of acute lymphoblastic leukemia as they pressure cancer cells to undergo apoptosis. Nevertheless, glucocorticoid partners, modifications, and mechanisms of action are hitherto poorly characterized. This hampers our understanding of therapy resistance, frequently occurring in leukemia despite the current therapeutic combinations using glucocorticoids in acute lymphoblastic leukemia. In this review, we initially cover the traditional view of glucocorticoid resistance and ways of targeting this resistance. We discuss recent progress in our understanding of chromatin and posttranslational properties of the glucocorticoid receptor that might be proven beneficial in our efforts to understand and target therapy resistance. We discuss emerging roles of pathways and proteins such as the lymphocyte-specific kinase that antagonizes glucocorticoid receptor activation and nuclear translocation. In addition, we provide an overview of ongoing therapeutic approaches that sensitize cells to glucocorticoids including small molecule inhibitors and proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Cristina Borin
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Valentina Serafin
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Italy
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| |
Collapse
|
7
|
Bhattarai KR, Mobley RJ, Barnett KR, Ferguson DC, Hansen BS, Diedrich JD, Bergeron BP, Yang W, Crews KR, Manring CS, Jabbour E, Paietta E, Litzow MR, Kornblau SM, Stock W, Inaba H, Jeha S, Pui CH, Cheng C, Pruett-Miller SM, Relling MV, Yang JJ, Evans WE, Savic D. Functional investigation of inherited noncoding genetic variation impacting the pharmacogenomics of childhood acute lymphoblastic leukemia treatment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.10.23285762. [PMID: 36798219 PMCID: PMC9934807 DOI: 10.1101/2023.02.10.23285762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Although acute lymphoblastic leukemia (ALL) is the most common childhood cancer, there is limited understanding of the contribution of inherited genetic variation on inter-individual differences in chemotherapy response. Defining genetic factors impacting therapy failure can help better predict response and identify drug resistance mechanisms. We therefore mapped inherited noncoding variants associated with chemotherapeutic drug resistance and/or treatment outcome to ALL cis-regulatory elements and investigated their gene regulatory potential and genomic connectivity using massively parallel reporter assays and promoter capture Hi-C, respectively. We identified 53 variants with reproducible allele-specific effects on transcription and high-confidence gene targets. Subsequent functional interrogation of the top variant (rs1247117) determined that it disrupted a PU.1 consensus motif and PU.1 binding affinity. Importantly, deletion of the genomic interval containing rs1247117 sensitized ALL cells to vincristine. Together, these data demonstrate that noncoding regulatory variation associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to chemotherapeutic agents in ALL.
Collapse
Affiliation(s)
- Kashi Raj Bhattarai
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Robert J. Mobley
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Kelly R. Barnett
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Daniel C. Ferguson
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Baranda S. Hansen
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jonathan D. Diedrich
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Brennan P. Bergeron
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Wenjian Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Kristine R. Crews
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Christopher S. Manring
- Alliance Hematologic Malignancy Biorepository; Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH 43210, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Mark R. Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wendy Stock
- Comprehensive Cancer Center, University of Chicago Medicine, Chicago, IL
| | - Hiroto Inaba
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Sima Jeha
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mary V. Relling
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Jun J. Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN
| | - William E. Evans
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Daniel Savic
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
8
|
Hormann FM, Hoogkamer AQ, Boeree A, Sonneveld E, Escherich G, den Boer ML, Boer JM. Integrating copy number data of 64 iAMP21 BCP-ALL patients narrows the common region of amplification to 1.57 Mb. Front Oncol 2023; 13:1128560. [PMID: 36910655 PMCID: PMC9996016 DOI: 10.3389/fonc.2023.1128560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Background and purpose Intrachromosomal amplification of chromosome 21 (iAMP21) is a rare subtype of B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). It is unknown how iAMP21 contributes to leukaemia. The currently known commonly amplified region is 5.1 Mb. Methods We aimed to narrow down the common region of amplification by using high resolution techniques. Array comparative genomic hybridization (aCGH) was used to determine copy number aberrations, Affymetrix U133 Plus2 expression arrays were used to determine gene expression. Genome-wide expression correlations were evaluated using Globaltest. Results We narrowed down the common region of amplification by combining copy number data from 12 iAMP21 cases with 52 cases from literature. The combined common region of amplification was 1.57 Mb, located from 36.07 to 37.64 Mb (GRCh38). This region is located telomeric from, but not including, RUNX1, which is the locus commonly used to diagnose iAMP21. This narrow region, which falls inside the Down Syndrome critical region, includes 13 genes of which the expression of eight genes was significantly upregulated compared with 143 non-iAMP21 B-other cases. Among these, transcriptional repressor RIPPLY3 (also known as DSCR6) was the highest overexpressed gene (fold change = 4.2, FDR < 0.001) and most strongly correlated (R = 0.58) with iAMP21-related genome-wide expression changes. Discussion The more precise definition of the common region of amplification could be beneficial in the diagnosis of iAMP21 based on copy number analysis from DNA sequencing or arrays as well as stimulate functional research into the role of the included genes in iAMP21 biology.
Collapse
Affiliation(s)
- Femke M Hormann
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands.,Erasmus Medical Center (MC) - Sophia Children's Hospital, Department of Pediatric Oncology and Hematology, Rotterdam, Netherlands
| | - Alex Q Hoogkamer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Aurélie Boeree
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Dutch Childhood Oncology Group, Utrecht, Netherlands
| | - Gabriele Escherich
- Cooperative study group for childhood acute lymphoblastic leukaemia (COALL) - German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, Hamburg, Germany.,Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands.,Erasmus Medical Center (MC) - Sophia Children's Hospital, Department of Pediatric Oncology and Hematology, Rotterdam, Netherlands.,Dutch Childhood Oncology Group, Utrecht, Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
9
|
Lee SHR, Yang W, Gocho Y, John A, Rowland L, Smart B, Williams H, Maxwell D, Hunt J, Yang W, Crews KR, Roberts KG, Jeha S, Cheng C, Karol SE, Relling MV, Rosner GL, Inaba H, Mullighan CG, Pui CH, Evans WE, Yang JJ. Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response. Nat Med 2023; 29:170-179. [PMID: 36604538 PMCID: PMC9873558 DOI: 10.1038/s41591-022-02112-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/28/2022] [Indexed: 01/07/2023]
Abstract
Contemporary chemotherapy for childhood acute lymphoblastic leukemia (ALL) is risk-adapted based on clinical features, leukemia genomics and minimal residual disease (MRD); however, the pharmacological basis of these prognostic variables remains unclear. Analyzing samples from 805 children with newly diagnosed ALL from three consecutive clinical trials, we determined the ex vivo sensitivity of primary leukemia cells to 18 therapeutic agents across 23 molecular subtypes defined by leukemia genomics. There was wide variability in drug response, with favorable ALL subtypes exhibiting the greatest sensitivity to L-asparaginase and glucocorticoids. Leukemia sensitivity to these two agents was highly associated with MRD although with distinct patterns and only in B cell ALL. We identified six patient clusters based on ALL pharmacotypes, which were associated with event-free survival, even after adjusting for MRD. Pharmacotyping identified a T cell ALL subset with a poor prognosis that was sensitive to targeted agents, pointing to alternative therapeutic strategies. Our study comprehensively described the pharmacological heterogeneity of ALL, highlighting opportunities for further individualizing therapy for this most common childhood cancer.
Collapse
Affiliation(s)
- Shawn H. R. Lee
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA ,grid.412106.00000 0004 0621 9599Khoo Teck Puat–National University Children’s Medical Institute, National University Hospital, National University Health System, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wenjian Yang
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Yoshihiro Gocho
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - August John
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Lauren Rowland
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Brandon Smart
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Hannah Williams
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Dylan Maxwell
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jeremy Hunt
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Wentao Yang
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Kristine R. Crews
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Kathryn G. Roberts
- grid.240871.80000 0001 0224 711XDepartment of Pathology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Sima Jeha
- grid.240871.80000 0001 0224 711XDepartment of Oncology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Cheng Cheng
- grid.240871.80000 0001 0224 711XDepartment of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Seth E. Karol
- grid.240871.80000 0001 0224 711XDepartment of Oncology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Mary V. Relling
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Gary L. Rosner
- grid.280502.d0000 0000 8741 3625Quantitative Sciences, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
| | - Hiroto Inaba
- grid.240871.80000 0001 0224 711XDepartment of Oncology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Charles G. Mullighan
- grid.240871.80000 0001 0224 711XDepartment of Pathology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Ching-Hon Pui
- grid.240871.80000 0001 0224 711XDepartment of Oncology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - William E. Evans
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jun J. Yang
- grid.240871.80000 0001 0224 711XDepartment of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN USA ,grid.240871.80000 0001 0224 711XDepartment of Oncology, St. Jude Children’s Research Hospital, Memphis, TN USA
| |
Collapse
|
10
|
Lee AQ, Konishi H, Duong C, Yoshida S, Davis RR, Van Dyke JE, Ijiri M, McLaughlin B, Kim K, Li Y, Beckett L, Nitin N, McPherson JD, Tepper CG, Satake N. A distinct subpopulation of leukemia initiating cells in acute precursor B lymphoblastic leukemia: quiescent phenotype and unique transcriptomic profile. Front Oncol 2022; 12:972323. [PMID: 36212452 PMCID: PMC9533407 DOI: 10.3389/fonc.2022.972323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/24/2022] [Indexed: 02/01/2023] Open
Abstract
In leukemia, a distinct subpopulation of cancer-initiating cells called leukemia stem cells (LSCs) is believed to drive population expansion and tumor growth. Failing to eliminate LSCs may result in disease relapse regardless of the amount of non-LSCs destroyed. The first step in targeting and eliminating LSCs is to identify and characterize them. Acute precursor B lymphoblastic leukemia (B-ALL) cells derived from patients were incubated with fluorescent glucose analog 2-(N-(7-Nitrobenz-2-oxa-1, 3-diazol-4-yl) Amino)-2-Deoxyglucose (NBDG) and sorted based on NBDG uptake. Cell subpopulations defined by glucose uptake were then serially transplanted into mice and evaluated for leukemia initiating capacity. Gene expression profiles of these cells were characterized using RNA-Sequencing (RNA-Seq). A distinct population of NBDG-low cells was identified in patient B-ALL samples. These cells are a small population (1.92% of the entire leukemia population), have lower HLA expression, and are smaller in size (4.0 to 7.0 μm) than the rest of the leukemia population. All mice transplanted with NBDG-low cells developed leukemia between 5 and 14 weeks, while those transplanted with NBDG-high cells did not develop leukemia (p ≤ 0.0001-0.002). Serial transplantation of the NBDG-low mouse model resulted in successful leukemia development. NBDG-medium (NBDG-med) populations also developed leukemia. Interestingly, comprehensive molecular characterization of NBDG-low and NBDG-med cells from patient-derived xenograft (PDX) models using RNA-Seq revealed a distinct profile of 2,162 differentially-expressed transcripts (DETs) (p<0.05) with 70.6% down-regulated in NBDG-low cells. Hierarchical clustering of DETs showed distinct segregation of NBDG-low from NBDG-med and NBDG-high groups with marked transcription expression alterations in the NBDG-low group consistent with cancer survival. In conclusion, A unique subpopulation of cells with low glucose uptake (NBDG-low) in B-ALL was discovered. These cells, despite their quiescence characteristics, once transplanted in mice, showed potent leukemia initiating capacity. Although NBDG-med cells also initiated leukemia, gene expression profiling revealed a distinct signature that clearly distinguishes NBDG-low cells from NBDG-med and the rest of the leukemia populations. These results suggest that NBDG-low cells may represent quiescent LSCs. These cells can be activated in the appropriate environment in vivo, showing leukemia initiating capacity. Our study provides insight into the biologic mechanisms of B-ALL initiation and survival.
Collapse
Affiliation(s)
- Alex Q. Lee
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Hiroaki Konishi
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Connie Duong
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Sakiko Yoshida
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Ryan R. Davis
- Genomics Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Jonathan E. Van Dyke
- Flow Cytometry Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Masami Ijiri
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Bridget McLaughlin
- Flow Cytometry Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Kyoungmi Kim
- Department of Public Health Sciences, Division of Biostatistics, University of California (UC) Davis, Davis, CA, United States
| | - Yueju Li
- Department of Public Health Sciences, Division of Biostatistics, University of California (UC) Davis, Davis, CA, United States
| | - Laurel Beckett
- Department of Public Health Sciences, Division of Biostatistics, University of California (UC) Davis, Davis, CA, United States
| | - Nitin Nitin
- Departments of Food Science & Technology and Biological & Agricultural Engineering, University of California (UC) Davis, Davis, CA, United States
| | - John D. McPherson
- Genomics Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States,Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Clifford G. Tepper
- Genomics Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States,Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, CA, United States,*Correspondence: Noriko Satake, ; Clifford G. Tepper,
| | - Noriko Satake
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States,*Correspondence: Noriko Satake, ; Clifford G. Tepper,
| |
Collapse
|
11
|
Bergeron BP, Diedrich JD, Zhang Y, Barnett KR, Dong Q, Ferguson DC, Autry RJ, Yang W, Hansen BS, Smith C, Crews KR, Fan Y, Pui CH, Pruett-Miller SM, Relling MV, Yang JJ, Li C, Evans WE, Savic D. Epigenomic profiling of glucocorticoid responses identifies cis-regulatory disruptions impacting steroid resistance in childhood acute lymphoblastic leukemia. Leukemia 2022; 36:2374-2383. [PMID: 36028659 PMCID: PMC9522591 DOI: 10.1038/s41375-022-01685-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022]
Abstract
Glucocorticoids (GCs) are a mainstay of contemporary, multidrug chemotherapy in the treatment of childhood acute lymphoblastic leukemia (ALL), and resistance to GCs remains a major clinical concern. Resistance to GCs is predictive of ALL relapse and poor clinical outcome, and therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes implicated in GC resistance, there remains an insufficient understanding of the impact of cis-regulatory disruptions in resistance. To address this, we mapped the gene regulatory response to GCs in two ALL cell lines using functional genomics and high-throughput reporter assays and identified thousands of GC-responsive changes to chromatin state, including the formation of over 250 GC-responsive super-enhancers and a depletion of AP-1 bound cis-regulatory elements implicated in cell proliferation and anti-apoptotic processes. By integrating our GC response maps with genetic and epigenetic datasets in primary ALL cells from patients, we further uncovered cis-regulatory disruptions at GC-responsive genes that impact GC resistance in childhood ALL. Overall, these data indicate that GCs initiate pervasive effects on the leukemia epigenome, and that alterations to the GC gene regulatory network contribute to GC resistance.
Collapse
Affiliation(s)
- Brennan P Bergeron
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan D Diedrich
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kelly R Barnett
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qian Dong
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Autry
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wenjian Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baranda S Hansen
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colton Smith
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chunliang Li
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Savic
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
12
|
Identification and characterization of relapse-initiating cells in MLL-rearranged infant ALL by single-cell transcriptomics. Leukemia 2021; 36:58-67. [PMID: 34304246 PMCID: PMC8727302 DOI: 10.1038/s41375-021-01341-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Infants with MLL-rearranged infant acute lymphoblastic leukemia (MLL-r iALL) undergo intense therapy to counter a highly aggressive malignancy with survival rates of only 30–40%. The majority of patients initially show therapy response, but in two-thirds of cases the leukemia returns, typically during treatment. The glucocorticoid drug prednisone is established as a major player in the treatment of leukemia and the in vivo response to prednisone monotreatment is currently the best indicator of risk for MLL-r iALL. We used two different single-cell RNA sequencing technologies to analyze the expression of a prednisone-dependent signature, derived from an independent study, in diagnostic bone marrow and peripheral blood biopsies. This allowed us to classify individual leukemic cells as either resistant or sensitive to treatment and show that quantification of these two groups can be used to better predict the occurrence of future relapse in individual patients. This work also sheds light on the nature of the therapy-resistant subpopulation of relapse-initiating cells. Leukemic cells associated with high relapse risk are characterized by basal activation of glucocorticoid response, smaller size, and a quiescent gene expression program with cell stemness properties. These results improve current risk stratification and elucidate leukemic therapy-resistant subpopulations at diagnosis.
Collapse
|
13
|
Rapid quantification of vincristine in mouse plasma using ESI-LC-MS/MS: Application to pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1168:122591. [PMID: 33684722 DOI: 10.1016/j.jchromb.2021.122591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 11/20/2022]
Abstract
A simple, rapid, and sensitive LC-MS/MS method for determining concentrations of the anticancer alkaloid vincristine in micro volumes of mouse plasma was developed and validated in positive ion mode. Separation of vincristine and the internal standard [2H3]-vincristine was achieved on an Accucore aQ column with a gradient mobile phase delivered at a flow rate of 0.4 mL/min and a run time of 2.2 min. Calibration curves were linear (r2 > 0.99, n = 8) up to 250 ng/mL, with a lower limit of quantitation of 2.5 ng/mL. The matrix effect and extraction recovery for vincristine were ranging 108-110% and 88.4-107%, respectively. The intra-day and inter-day precision of quality controls tested at 3 different concentrations were always less than 15%, and accuracy ranged from 91.7 to 107%. The method was successfully applied to evaluate the pharmacokinetic profile of vincristine in wild-type and CYP3A-deficient mice in support of a project to provide mechanistic insight into drug-drug interactions and to identify sources of inter-individual pharmacokinetic variability associated with vincristine-induced peripheral neuropathy.
Collapse
|
14
|
Lambrou GI, Adamaki M, Hatziagapiou K, Vlahopoulos S. Gene Expression and Resistance to Glucocorticoid-Induced Apoptosis in Acute Lymphoblastic Leukemia: A Brief Review and Update. Curr Drug Res Rev 2021; 12:131-149. [PMID: 32077838 DOI: 10.2174/2589977512666200220122650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/29/2019] [Accepted: 01/23/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Resistance to glucocorticoid (GC)-induced apoptosis in Acute Lymphoblastic Leukemia (ALL), is considered one of the major prognostic factors for the disease. Prednisolone is a corticosteroid and one of the most important agents in the treatment of acute lymphoblastic leukemia. The mechanics of GC resistance are largely unknown and intense ongoing research focuses on this topic. AIM The aim of the present study is to review some aspects of GC resistance in ALL, and in particular of Prednisolone, with emphasis on previous and present knowledge on gene expression and signaling pathways playing a role in the phenomenon. METHODS An electronic literature search was conducted by the authors from 1994 to June 2019. Original articles and systematic reviews selected, and the titles and abstracts of papers screened to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. RESULTS Identification of gene targets responsible for glucocorticoid resistance may allow discovery of drugs, which in combination with glucocorticoids may increase the effectiveness of anti-leukemia therapies. The inherent plasticity of clinically evolving cancer justifies approaches to characterize and prevent undesirable activation of early oncogenic pathways. CONCLUSION Study of the pattern of intracellular signal pathway activation by anticancer drugs can lead to development of efficient treatment strategies by reducing detrimental secondary effects.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Maria Adamaki
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| |
Collapse
|
15
|
Gu M, Jia Y, Xu M, Feng J, Tian Z, Ma X, Wang M, Wang J, Xu Y, Rao Q, Hao L, Mi Y, Yang W. Effects of different aberrations in the CRLF2 gene on the biological characteristics and drug sensitivities of Nalm6 cells. Int J Lab Hematol 2020; 43:441-449. [PMID: 33615710 DOI: 10.1111/ijlh.13419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION To investigate the effects and mechanism of action of upregulated CRLF2 expression resulting from different aberrations in the CRLF2 gene (CRLF2, CRLF2 + IK6, P2RY8-CRLF2 and CRLF2 F232C) in the B cell ALL cell line Nalm6. METHODS Cell proliferation was measured using cell counting kit-8. Transcriptome sequencing technology (RNA-seq) was used to compare changes in gene expression resulting from different aberrations in CRLF2. High-throughput drug sensitivity testing was used to determine the drug sensitivity of cells. RESULTS All four aberrations in CRLF2 upregulated CRLF2 expression and promoted the proliferation of Nalm6 cells. The RNA-seq results showed the upregulation of genes in the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and the downregulation of genes in the cell cycle pathway in the CRLF2 F232C-overexpressing cells. Western blotting showed that the expression of p-STAT5 protein was significantly higher in the CRLF2 F232C-overexpressing cells. Cells with aberrations in CRLF2 were more resistant to cyclophosphamide and drugs commonly used during treatment than cells in the vector group. The half-maximal inhibitory concentration (IC50 or GI50 ) of dexamethasone was significantly higher in the CRLF2 F232C-overexpressing cell line. CONCLUSIONS The overexpression of CRLF2, CRLF2 + IK6, P2RY8-CRLF2 and CRLF2 F232C promotes the proliferation of Nalm6 cells, activates the JAK/STAT signalling pathway and leads to a reduction in sensitivity towards various chemotherapeutic drugs.
Collapse
Affiliation(s)
- Min Gu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yannan Jia
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Meizhen Xu
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Juan Feng
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zheng Tian
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaotong Ma
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases, Tianjin, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases, Tianjin, China
| | - Jianxiang Wang
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases, Tianjin, China
| | - Yingxi Xu
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases, Tianjin, China
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingchang Mi
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases, Tianjin, China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Chen G, Huang R, Huang Z, Chen Z, Liu H, Wu J, Chen Z, Gao T, Xu H, Lan H. Comparative effectiveness of different consolidation chemotherapy regimens for pediatric acute lymphoblastic leukemia: A protocol for systematic review and network meta analysis. Medicine (Baltimore) 2020; 99:e22208. [PMID: 32957354 PMCID: PMC7505343 DOI: 10.1097/md.0000000000022208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is one of the most commonly seen cancers in children, which mainly relates with inherited genetic variations. Consolidation chemotherapy is usually given to the pediatric ALL patients, however there is no meta-analysis and network analysis conducting the efficacy of the chemotherapy. Therefore, we perform a protocol to assess the efficacy of chemotherapeutics for pediatric ALL. METHODS A literature search for randomized controlled trials about some specific chemotherapy regimens for pediatric ALL will be carried out in 7 electronic databases from their establishment to June 2019: the Cochrane Library, Embase, MEDLINE, the Chinese National Knowledge Infrastructure (CNKI), the Sino Med, the Chinese Scientific Journal Database (VIP) and the Wanfang Database. Complete continuous remission will be measured as primary outcome. Stata 14.0 will be utilized to perform a standard pairwise meta-analysis and the NMA, as well as draw Network Plots of Network Meta. RESULTS This network meta-analysis will evaluate the efficacy of different consolidation chemotherapy regimens. CONCLUSION This study will furnish decision-making reference on optimum proposal of chemotherapy regimens for pediatric ALL. PROSPERO REGISTRATION NUMBER PROSPERO CRD42019134518.
Collapse
Affiliation(s)
| | | | | | - Ziyin Chen
- Guangzhou University of Chinese Medicine
| | | | - Jinfeng Wu
- Guangzhou University of Chinese Medicine
| | | | - Tianqi Gao
- Guangzhou University of Chinese Medicine
| | - Hua Xu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou
| | - Hai Lan
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| |
Collapse
|
17
|
Results of CoALL 07-03 study childhood ALL based on combined risk assessment by in vivo and in vitro pharmacosensitivity. Blood Adv 2020; 3:3688-3699. [PMID: 31765480 DOI: 10.1182/bloodadvances.2019000576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/09/2019] [Indexed: 11/20/2022] Open
Abstract
We conducted a clinical trial and report the long-term outcome of 773 children with acute lymphoblastic leukemia upon risk-adapted therapy accrued in trial CoALL 07-03 (from the Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia). In a 2-step stratification, patients were allocated to receive either low- or high-risk treatment, based on initial white blood cell count, age, and immunophenotype. A second stratification was performed according to the results of in vitro pharmacosensitivity toward prednisolone, vincristine, and asparaginase (PVA score) and in vivo response after induction therapy (minimal residual disease [MRD]). Therapy was reduced for both risk groups in patients with a low PVA score or negative MRD result, and intensified in patients with a high PVA score. Overall outcome improved significantly compared with the predecessor CoALL 06-97 trial, with identical therapy backbone despite treatment reduction in 15.8% of patients (10-year probability of event-free survival, 83.5% vs 73.9%; overall survival, 90.7% vs 83.8%). Outcome for patients in the reduced treatment arms was superior to that of patients in the standard arms, associated with a profound reduction in frequency and severity of infectious complications. Importantly, we observed a lack of correlation between in vitro and in vivo drug response, as well as a lower predictive value of in vitro drug testing, reflecting an intrinsic limitation of this methodology that prevents its use for treatment stratification in future trials. In conclusion, it might be possible to reduce chemotherapy in children with acute lymphoblastic leukemia selected by stringent in vivo measurement of MRD without jeopardizing overall outcome.
Collapse
|
18
|
Karol SE, Pui CH. Personalized therapy in pediatric high-risk B-cell acute lymphoblastic leukemia. Ther Adv Hematol 2020; 11:2040620720927575. [PMID: 32537116 PMCID: PMC7268159 DOI: 10.1177/2040620720927575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Although cure rates for pediatric acute lymphoblastic leukemia (ALL) have now risen to more than 90%, subsets of patients with high-risk features continue to experience high rates of treatment failure and relapse. Recent work in minimal residual disease stratification and leukemia genomics have increased the ability to identify and classify these high-risk patients. In this review, we discuss this work to identify and classify patients with high-risk ALL. Novel therapeutics, which may have the potential to improve outcomes for these patients, are also discussed.
Collapse
Affiliation(s)
- Seth E Karol
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl., Mail Stop 260, Memphis, TN 38105, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
19
|
Keenan B, Finol-Urdaneta RK, Hope A, Bremner JB, Kavallaris M, Lucena-Agell D, Oliva MÁ, Díaz JF, Vine KL. N-alkylisatin-based microtubule destabilizers bind to the colchicine site on tubulin and retain efficacy in drug resistant acute lymphoblastic leukemia cell lines with less in vitro neurotoxicity. Cancer Cell Int 2020; 20:170. [PMID: 32467666 PMCID: PMC7229617 DOI: 10.1186/s12935-020-01251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Drug resistance and chemotherapy-induced peripheral neuropathy continue to be significant problems in the successful treatment of acute lymphoblastic leukemia (ALL). 5,7-Dibromo-N-alkylisatins, a class of potent microtubule destabilizers, are a promising alternative to traditionally used antimitotics with previous demonstrated efficacy against solid tumours in vivo and ability to overcome P-glycoprotein (P-gp) mediated drug resistance in lymphoma and sarcoma cell lines in vitro. In this study, three di-brominated N-alkylisatins were assessed for their ability to retain potency in vincristine (VCR) and 2-methoxyestradiol (2ME2) resistant ALL cell lines. For the first time, in vitro neurotoxicity was also investigated in order to establish their suitability as candidate drugs for future use in ALL treatment. METHODS Vincristine resistant (CEM-VCR R) and 2-methoxyestradiol resistant (CEM/2ME2-28.8R) ALL cell lines were used to investigate the ability of N-alkylisatins to overcome chemoresistance. Interaction of N-alkylisatins with tubulin at the the colchicine-binding site was studied by competitive assay using the fluorescent colchicine analogue MTC. Human neuroblastoma SH-SY5Y cells differentiated into a morphological and functional dopaminergic-like neurotransmitter phenotype were used for neurotoxicity and neurofunctional assays. Two-way ANOVA followed by a Tukey's post hoc test or a two-tailed paired t test was used to determine statistical significance. RESULTS CEM-VCR R and CEM/2ME2-28.8R cells displayed resistance indices of > 100 to VCR and 2-ME2, respectively. CEM-VCR R cells additionally displayed a multi-drug resistant phenotype with significant cross resistance to vinblastine, 2ME2, colchicine and paclitaxel consistent with P-gp overexpression. Despite differences in resistance mechanisms observed between the two cell lines, the N-alkylisatins displayed bioequivalent dose-dependent cytotoxicity to that of the parental control cell line. The N-alkylisatins proved to be significantly less neurotoxic towards differentiated SH-SY5Y cells than VCR and vinblastine, evidenced by increased neurite length and number of neurite branch points. Neuronal cells treated with 5,7-dibromo-N-(p-hydroxymethylbenzyl)isatin showed significantly higher voltage-gated sodium channel function than those treated with Vinca alkaloids, strongly supportive of continued action potential firing. CONCLUSIONS The N-alkylisatins are able to retain cytotoxicity towards ALL cell lines with functionally distinct drug resistance mechanisms and show potential for reduced neurotoxicity. As such they pose as promising candidates for future implementation into anticancer regimes for ALL. Further in vivo studies are therefore warranted.
Collapse
Affiliation(s)
- Bryce Keenan
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, NSW 2522 Australia
| | - Rocio K. Finol-Urdaneta
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, NSW 2522 Australia
- Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, NSW Australia
| | - Ashleigh Hope
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW Australia
| | - John B. Bremner
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, NSW 2522 Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW, Sydney, NSW Australia
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW Australia
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Ángela Oliva
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jose Fernando Díaz
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Kara L. Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, NSW 2522 Australia
- Centre for Oncology Education and Research Translation (CONCERT), Cancer Institute NSW Translational Cancer Research Centre, NSW, Sydney, Australia
| |
Collapse
|
20
|
Autry RJ, Paugh SW, Carter R, Shi L, Liu J, Ferguson DC, Lau CE, Bonten EJ, Yang W, McCorkle JR, Beard JA, Panetta JC, Diedrich JD, Crews KR, Pei D, Coke CJ, Natarajan S, Khatamian A, Karol SE, Lopez-Lopez E, Diouf B, Smith C, Gocho Y, Hagiwara K, Roberts KG, Pounds S, Kornblau SM, Stock W, Paietta EM, Litzow MR, Inaba H, Mullighan CG, Jeha S, Pui CH, Cheng C, Savic D, Yu J, Gawad C, Relling MV, Yang JJ, Evans WE. Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. NATURE CANCER 2020; 1:329-344. [PMID: 32885175 PMCID: PMC7467080 DOI: 10.1038/s43018-020-0037-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/29/2020] [Indexed: 12/31/2022]
Abstract
Identification of genomic and epigenomic determinants of drug resistance provides important insights for improving cancer treatment. Using agnostic genome-wide interrogation of mRNA and miRNA expression, DNA methylation, SNPs, CNAs and SNVs/Indels in primary human acute lymphoblastic leukemia cells, we identified 463 genomic features associated with glucocorticoid resistance. Gene-level aggregation identified 118 overlapping genes, 15 of which were confirmed by genome-wide CRISPR screen. Collectively, this identified 30 of 38 (79%) known glucocorticoid-resistance genes/miRNAs and all 38 known resistance pathways, while revealing 14 genes not previously associated with glucocorticoid-resistance. Single cell RNAseq and network-based transcriptomic modelling corroborated the top previously undiscovered gene, CELSR2. Manipulation of CELSR2 recapitulated glucocorticoid resistance in human leukemia cell lines and revealed a synergistic drug combination (prednisolone and venetoclax) that mitigated resistance in mouse xenograft models. These findings illustrate the power of an integrative genomic strategy for elucidating genes and pathways conferring drug resistance in cancer cells.
Collapse
Affiliation(s)
- Robert J Autry
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven W Paugh
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert Carter
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Calvin E Lau
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Pediatric Oncology Education Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Erik J Bonten
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Robert McCorkle
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jordan A Beard
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan D Diedrich
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher J Coke
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alireza Khatamian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seth E Karol
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elixabet Lopez-Lopez
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barthelemy Diouf
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colton Smith
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yoshihiro Gocho
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steven M Kornblau
- Department of Leukemia, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy Stock
- Hematopoiesis and Hematological Malignancies Program, University of Chicago, Chicago, IL, USA
| | - Elisabeth M Paietta
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, North Division, Bronx, NY, USA
| | - Mark R Litzow
- Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hiroto Inaba
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Savic
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles Gawad
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun J Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
21
|
Steeghs EMP, Boer JM, Hoogkamer AQ, Boeree A, de Haas V, de Groot-Kruseman HA, Horstmann MA, Escherich G, Pieters R, den Boer ML. Copy number alterations in B-cell development genes, drug resistance, and clinical outcome in pediatric B-cell precursor acute lymphoblastic leukemia. Sci Rep 2019; 9:4634. [PMID: 30874617 PMCID: PMC6420659 DOI: 10.1038/s41598-019-41078-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is associated with a high frequency of copy number alterations (CNAs) in IKZF1, EBF1, PAX5, CDKN2A/B, RB1, BTG1, ETV6, and/or the PAR1 region (henceforth: B-cell development genes). We aimed to gain insight in the association between CNAs in these genes, clinical outcome parameters, and cellular drug resistance. 71% of newly diagnosed pediatric BCP-ALL cases harbored one or more CNAs in these B-cell development genes. The distribution and clinical relevance of these CNAs was highly subtype-dependent. In the DCOG-ALL10 cohort, only loss of IKZF1 associated as single marker with unfavorable outcome parameters and cellular drug resistance. Prednisolone resistance was observed in IKZF1-deleted primary high hyperdiploid cells (~1500-fold), while thiopurine resistance was detected in IKZF1-deleted primary BCR-ABL1-like and non-BCR-ABL1-like B-other cells (~2.7-fold). The previously described risk stratification classifiers, i.e. IKZF1plus and integrated cytogenetic and CNA classification, both predicted unfavorable outcome in the DCOG-ALL10 cohort, and associated with ex vivo drug cellular resistance to thiopurines, or L-asparaginase and thiopurines, respectively. This resistance could be attributed to overrepresentation of BCR-ABL1-like cases in these risk groups. Taken together, our data indicate that the prognostic value of CNAs in B-cell development genes is linked to subtype-related drug responses.
Collapse
Affiliation(s)
- Elisabeth M P Steeghs
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Judith M Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alex Q Hoogkamer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Aurélie Boeree
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Valerie de Haas
- DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands
| | | | - Martin A Horstmann
- COALL - German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, University Medical Centre Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Gabriele Escherich
- COALL - German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, University Medical Centre Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands
| | - Monique L den Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands.
| |
Collapse
|
22
|
Fibroblast growth factor receptor signaling in pediatric B-cell precursor acute lymphoblastic leukemia. Sci Rep 2019; 9:1875. [PMID: 30755670 PMCID: PMC6372586 DOI: 10.1038/s41598-018-38169-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/12/2018] [Indexed: 12/27/2022] Open
Abstract
The FGF receptor signaling pathway is recurrently involved in the leukemogenic processes. Oncogenic fusions of FGFR1 with various fusion partners were described in myeloid proliferative neoplasms, and overexpression and mutations of FGFR3 are common in multiple myeloma. In addition, fibroblast growth factors are abundant in the bone marrow, and they were shown to enhance the survival of acute myeloid leukemia cells. Here we investigate the effect of FGFR stimulation on pediatric BCP-ALL cells in vitro, and search for mutations with deep targeted next-generation sequencing of mutational hotspots in FGFR1, FGFR2, and FGFR3. In 481 primary BCP-ALL cases, 28 samples from 19 unique relapsed BCP-ALL cases, and twelve BCP-ALL cell lines we found that mutations are rare (4/481 = 0.8%, 0/28 and 0/12) and do not affect codons which are frequently mutated in other malignancies. However, recombinant ligand FGF2 reduced the response to prednisolone in several BCP-ALL cell lines in vitro. We therefore conclude that FGFR signaling can contribute to prednisolone resistance in BCP-ALL cells, but that activating mutations in this receptor tyrosine kinase family are very rare.
Collapse
|
23
|
Steeghs EMP, Bakker M, Hoogkamer AQ, Boer JM, Hartman QJ, Stalpers F, Escherich G, de Haas V, de Groot-Kruseman HA, Pieters R, den Boer ML. High STAP1 expression in DUX4-rearranged cases is not suitable as therapeutic target in pediatric B-cell precursor acute lymphoblastic leukemia. Sci Rep 2018; 8:693. [PMID: 29330417 PMCID: PMC5766593 DOI: 10.1038/s41598-017-17704-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
Approximately 25% of the pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cases are genetically unclassified. More thorough elucidation of the pathobiology of these genetically unclassified (‘B-other’) cases may identify novel treatment options. We analyzed gene expression profiles of 572 pediatric BCP-ALL cases, representing all major ALL subtypes. High expression of STAP1, an adaptor protein downstream of the B-cell receptor (BCR), was identified in BCR-ABL1-like and non-BCR-ABL1-like B-other cases. Limma analysis revealed an association between high expression of STAP1 and BCR signaling genes. However, STAP1 expression and pre-BCR signaling were not causally related: cytoplasmic Igμ levels were not abnormal in cases with high levels of STAP1 and stimulation of pre-BCR signaling did not induce STAP1 expression. To elucidate the role of STAP1 in BCP-ALL survival, expression was silenced in two human BCP-ALL cell lines. Knockdown of STAP1 did not reduce the proliferation rate or viability of these cells, suggesting that STAP1 is not a likely candidate for precision medicines. Moreover, high expression of STAP1 was not predictive for an unfavorable prognosis of BCR-ABL1-like and non-BCR-ABL1-like B-other cases. Remarkably, DUX4-rearrangements and intragenic ERG deletions, were enriched in cases harboring high expression of STAP1.
Collapse
Affiliation(s)
- Elisabeth M P Steeghs
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marjolein Bakker
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Alex Q Hoogkamer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Judith M Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Quirine J Hartman
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Femke Stalpers
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Gabriele Escherich
- COALL - German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, University Medical Centre Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Valerie de Haas
- DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands
| | - Monique L den Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands. .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands. .,DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands.
| |
Collapse
|
24
|
Jerchel IS, Chatzivasileiou D, Hoogkamer AQ, Boer JM, Beverloo HB, Pieters R, den Boer ML. High PDGFRA expression does not serve as an effective therapeutic target in ERG-deleted B-cell precursor acute lymphoblastic leukemia. Haematologica 2017; 103:e73-e77. [PMID: 29170250 DOI: 10.3324/haematol.2017.171702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Isabel S Jerchel
- Department of Pediatric Oncology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Danai Chatzivasileiou
- Department of Pediatric Oncology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Alex Q Hoogkamer
- Department of Pediatric Oncology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Judith M Boer
- Department of Pediatric Oncology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Monique L den Boer
- Department of Pediatric Oncology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
25
|
Jerchel IS, Hoogkamer AQ, Ariës IM, Steeghs EMP, Boer JM, Besselink NJM, Boeree A, van de Ven C, de Groot-Kruseman HA, de Haas V, Horstmann MA, Escherich G, Zwaan CM, Cuppen E, Koudijs MJ, Pieters R, den Boer ML. RAS pathway mutations as a predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia. Leukemia 2017; 32:931-940. [PMID: 28972594 PMCID: PMC5886052 DOI: 10.1038/leu.2017.303] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022]
Abstract
RAS pathway mutations have been linked to relapse and chemotherapy resistance in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, comprehensive data on the frequency and prognostic value of subclonal mutations in well-defined subgroups using highly sensitive and quantitative methods are lacking. Targeted deep sequencing of 13 RAS pathway genes was performed in 461 pediatric BCP-ALL cases at initial diagnosis and in 19 diagnosis-relapse pairs. Mutations were present in 44.2% of patients, with 24.1% carrying a clonal mutation. Mutation frequencies were highest in high hyperdiploid, infant t(4;11)-rearranged, BCR-ABL1-like and B-other cases (50-70%), whereas mutations were less frequent in ETV6-RUNX1-rearranged, and rare in TCF3-PBX1- and BCR-ABL1-rearranged cases (27-4%). RAS pathway-mutated cells were more resistant to prednisolone and vincristine ex vivo. Clonal, but not subclonal, mutations were linked to unfavorable outcome in standard- and high-risk-treated patients. At relapse, most RAS pathway mutations were clonal (9 of 10). RAS mutant cells were sensitive to the MEK inhibitor trametinib ex vivo, and trametinib sensitized resistant cells to prednisolone. We conclude that RAS pathway mutations are frequent, and that clonal, but not subclonal, mutations are associated with unfavorable risk parameters in newly diagnosed pediatric BCP-ALL. These mutations may designate patients eligible for MEK inhibitor treatment.
Collapse
Affiliation(s)
- I S Jerchel
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - A Q Hoogkamer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - I M Ariës
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - E M P Steeghs
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J M Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - N J M Besselink
- Center for Personalized Cancer Treatment (CPCT), University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Boeree
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C van de Ven
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - V de Haas
- DCOG, The Hague, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M A Horstmann
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,On behalf of the COALL
| | - G Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,On behalf of the COALL
| | - C M Zwaan
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - E Cuppen
- Center for Personalized Cancer Treatment (CPCT), University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J Koudijs
- Center for Personalized Cancer Treatment (CPCT), University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R Pieters
- DCOG, The Hague, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M L den Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.,DCOG, The Hague, The Netherlands
| |
Collapse
|
26
|
JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia. Oncotarget 2017; 8:89923-89938. [PMID: 29163799 PMCID: PMC5685720 DOI: 10.18632/oncotarget.21027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL.
Collapse
|
27
|
Bainer RO, Trendowski MR, Cheng C, Pei D, Yang W, Paugh SW, Goss KH, Skol AD, Pavlidis P, Pui CH, Gilliam TC, Evans WE, Onel K. A p53-regulated apoptotic gene signature predicts treatment response and outcome in pediatric acute lymphoblastic leukemia. Cancer Manag Res 2017; 9:397-410. [PMID: 28979163 PMCID: PMC5602435 DOI: 10.2147/cmar.s139864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gene signatures have been associated with outcome in pediatric acute lymphoblastic leukemia (ALL) and other malignancies. However, determining the molecular drivers of these expression changes remains challenging. In ALL blasts, the p53 tumor suppressor is the primary regulator of the apoptotic response to genotoxic chemotherapy, which is predictive of outcome. Consequently, we hypothesized that the normal p53-regulated apoptotic response to DNA damage would be altered in ALL and that this alteration would influence drug response and treatment outcome. To test this, we first used global expression profiling in related human B-lineage lymphoblastoid cell lines with either wild type or mutant TP53 to characterize the normal p53-mediated transcriptional response to ionizing radiation (IR) and identified 747 p53-regulated apoptotic target genes. We then sorted these genes into six temporal expression clusters (TECs) based upon differences over time in their IR-induced p53-regulated gene expression patterns, and found that one cluster (TEC1) was associated with multidrug resistance in leukemic blasts in one cohort of children with ALL and was an independent predictor of survival in two others. Therefore, by investigating p53-mediated apoptosis in vitro, we identified a gene signature significantly associated with drug resistance and treatment outcome in ALL. These results suggest that intersecting pathway-derived and clinically derived expression data may be a powerful method to discover driver gene signatures with functional and clinical implications in pediatric ALL and perhaps other cancers as well.
Collapse
Affiliation(s)
| | - Matthew R Trendowski
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | | | | | | | - Steven W Paugh
- Hematological Malignancy Program, St Jude Children's Research Hospital, Memphis, TN
| | | | - Andrew D Skol
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Paul Pavlidis
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Ching-Hon Pui
- Hematological Malignancy Program, St Jude Children's Research Hospital, Memphis, TN.,Department of Oncology
| | | | - William E Evans
- Hematological Malignancy Program, St Jude Children's Research Hospital, Memphis, TN.,Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Kenan Onel
- Division of Human Genetics and Genomics.,Division of Hematology/Oncology and Stem Cell Transplantation, Cohen Children's Medical Center, New Hyde Park.,The Feinstein Institute for Medical Research, Manhasset, NY.,Hofstra Northwell School of Medicine, Hofstra University, Hempstead, NY, USA
| |
Collapse
|
28
|
Evangelisti C, Cappellini A, Oliveira M, Fragoso R, Barata JT, Bertaina A, Locatelli F, Simioni C, Neri LM, Chiarini F, Lonetti A, Buontempo F, Orsini E, Pession A, Manzoli L, Martelli AM, Evangelisti C. Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia. J Cell Physiol 2017; 233:1796-1811. [DOI: 10.1002/jcp.26135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences; University of Cassino; Cassino Italy
| | - Mariana Oliveira
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - João T. Barata
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Alice Bertaina
- Department of Pediatric Hematology-Oncology, IRCCS; Bambino Gesù Children's Hospital; Rome Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS; Bambino Gesù Children's Hospital; Rome Italy
| | - Carolina Simioni
- Department of Morphology; Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
| | - Luca M. Neri
- Department of Morphology; Surgery and Experimental Medicine; University of Ferrara; Ferrara Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics; Rizzoli Orthopedic Institute, National Research Council; Bologna Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences; University of Bologna; Bologna Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | | | - Camilla Evangelisti
- Institute of Molecular Genetics; Rizzoli Orthopedic Institute, National Research Council; Bologna Italy
| |
Collapse
|
29
|
Delgado-Martin C, Meyer LK, Huang BJ, Shimano KA, Zinter MS, Nguyen JV, Smith GA, Taunton J, Winter SS, Roderick JR, Kelliher MA, Horton TM, Wood BL, Teachey DT, Hermiston ML. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia 2017; 31:2568-2576. [PMID: 28484265 PMCID: PMC5729333 DOI: 10.1038/leu.2017.136] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/09/2017] [Accepted: 04/24/2017] [Indexed: 12/27/2022]
Abstract
While outcomes for children with T-cell acute lymphoblastic leukemia (T-ALL) have improved dramatically, survival rates for patients with relapsed/refractory disease remain dismal. Prior studies indicate that glucocorticoid (GC) resistance is more common than resistance to other chemotherapies at relapse. In addition, failure to clear peripheral blasts during a prednisone prophase correlates with an elevated risk of relapse in newly diagnosed patients. Here we show that intrinsic GC resistance is present at diagnosis in early thymic precursor (ETP) T-ALLs as well as in a subset of non-ETP T-ALLs. GC-resistant non-ETP T-ALLs are characterized by strong induction of JAK/STAT signaling in response to interleukin-7 (IL7) stimulation. Removing IL7 or inhibiting JAK/STAT signaling sensitizes these T-ALLs, and a subset of ETP T-ALLs, to GCs. The combination of the GC dexamethasone and the JAK1/2 inhibitor ruxolitinib altered the balance between pro- and anti-apoptotic factors in samples with IL7-dependent GC resistance, but not in samples with IL7-independent GC resistance. Together, these data suggest that the addition of ruxolitinib or other inhibitors of IL7 receptor/JAK/STAT signaling may enhance the efficacy of GCs in a biologically defined subset of T-ALL.
Collapse
Affiliation(s)
- C Delgado-Martin
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - L K Meyer
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - B J Huang
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - K A Shimano
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - M S Zinter
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - J V Nguyen
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - G A Smith
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - J Taunton
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - S S Winter
- Department of Pediatric Hematology/Oncology, University of New Mexico, Albuquerque, NM, USA
| | - J R Roderick
- Department of Cancer Biology, University of Massachusetts, Worcester, MA, USA
| | - M A Kelliher
- Department of Cancer Biology, University of Massachusetts, Worcester, MA, USA
| | - T M Horton
- Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - B L Wood
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - D T Teachey
- Department of Pediatrics, Children's Hospital of Pennsylvania, Philadelphia, PA, USA
| | - M L Hermiston
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
30
|
Ramani R, Megason G, Schallheim J, Karlson C, Vijayakumar V, Vijayakumar S, Hicks C. Integrative Analysis of MicroRNA-Mediated Gene Signatures and Pathways Modulating White Blood Cell Count in Childhood Acute Lymphoblastic Leukemia. Biomark Insights 2017; 12:1177271917702895. [PMID: 28469402 PMCID: PMC5397277 DOI: 10.1177/1177271917702895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 03/06/2017] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) regulate the expression of protein-coding genes and represent potential biomarkers for childhood acute lymphoblastic leukemia (ALL). However, information linking miRNAs with their messenger RNA (mRNA) target genes modulating white blood cell (WBC) count is lacking. Here, we analyzed miRNAs and gene expression data from pediatric patients with ALL to identify a signature of miRNAs involved in ALL and their mRNA target genes, molecular networks, and biological pathways modulating WBC. We discovered a signature of miRNAs differentially expressed in ALL and a signature of mRNA target genes distinguishing patients with high WBC from patients with low WBC. In addition, we identified molecular networks and biological pathways, among them PI3/AKT, JAK/STAT, IL-17, TGF-β, apoptosis, IL-15, STAT3, IGF-1, FGF, mTOR, VEGF, NF-kB, and P53 signaling pathways, enriched for or targeted by miRNAs. The discovered miRNAs and their target genes and pathways represent potential clinically actionable biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ritika Ramani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gail Megason
- Children’s Cancer Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jason Schallheim
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Cynthia Karlson
- Children’s Cancer Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Vani Vijayakumar
- Department of Radiology, University of Mississippi Medical Center, MS, USA
| | | | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, LA, USA
| |
Collapse
|
31
|
Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood 2017; 129:e26-e37. [PMID: 28122742 DOI: 10.1182/blood-2016-09-738070] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Drug sensitivity and resistance testing on diagnostic leukemia samples should provide important functional information to guide actionable target and biomarker discovery. We provide proof of concept data by profiling 60 drugs on 68 acute lymphoblastic leukemia (ALL) samples mostly from resistant disease in cocultures of bone marrow stromal cells. Patient-derived xenografts retained the original pattern of mutations found in the matched patient material. Stromal coculture did not prevent leukemia cell cycle activity, but a specific sensitivity profile to cell cycle-related drugs identified samples with higher cell proliferation both in vitro and in vivo as leukemia xenografts. In patients with refractory relapses, individual patterns of marked drug resistance and exceptional responses to new agents of immediate clinical relevance were detected. The BCL2-inhibitor venetoclax was highly active below 10 nM in B-cell precursor ALL (BCP-ALL) subsets, including MLL-AF4 and TCF3-HLF ALL, and in some T-cell ALLs (T-ALLs), predicting in vivo activity as a single agent and in combination with dexamethasone and vincristine. Unexpected sensitivity to dasatinib with half maximal inhibitory concentration values below 20 nM was detected in 2 independent T-ALL cohorts, which correlated with similar cytotoxic activity of the SRC inhibitor KX2-391 and inhibition of SRC phosphorylation. A patient with refractory T-ALL was treated with dasatinib on the basis of drug profiling information and achieved a 5-month remission. Thus, drug profiling captures disease-relevant features and unexpected sensitivity to relevant drugs, which warrants further exploration of this functional assay in the context of clinical trials to develop drug repurposing strategies for patients with urgent medical needs.
Collapse
|
32
|
Boer JM, Steeghs EM, Marchante JR, Boeree A, Beaudoin JJ, Berna Beverloo H, Kuiper RP, Escherich G, van der Velden VH, van der Schoot CE, de Groot-Kruseman HA, Pieters R, den Boer ML. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia. Oncotarget 2017; 8:4618-4628. [PMID: 27894077 PMCID: PMC5354859 DOI: 10.18632/oncotarget.13492] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 10/29/2016] [Indexed: 11/25/2022] Open
Abstract
Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome.
Collapse
Affiliation(s)
- Judith M. Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Elisabeth M.P. Steeghs
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - João R.M. Marchante
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Aurélie Boeree
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - James J. Beaudoin
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - H. Berna Beverloo
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands
| | - Roland P. Kuiper
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gabriele Escherich
- German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia (COALL), Hamburg, Germany
| | | | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Rob Pieters
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Monique L. den Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands
| |
Collapse
|
33
|
Laskowska J, Lewandowska-Bieniek J, Szczepanek J, Styczyński J, Tretyn A. Genomic and transcriptomic profiles and in vitro resistance to mitoxantrone and idarubicin in pediatric acute leukemias. J Gene Med 2016; 18:165-79. [PMID: 27280600 DOI: 10.1002/jgm.2889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A major problem in the treatment of leukemia is the development of drug resistance to chemotherapeutic agents. METHODS To determine the ex vivo drug resistance profile to anthracyclines, an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) cytotoxicity assay was performed on mononuclear cells obtained from 155 patients with acute lymphoblastic leukemia (ALL) or acute myeloblastic leukemia (AML). Gene expression profiles (for 51 patients with ALL and 16 with AML) were prepared on the basis of cRNA hybridization to oligonucleotide arrays of the human genome (Affymetrix). Hierarchical clustering, assignment location and biological function were investigated during the correlation analysis for identified probe sets. Comparative genomic hybridization (CGH) array profiles (34 patients with ALL and 12 with AML) were prepared on the basis of DNA hybridization to oligonucleotide arrays of the human genome (Agilent). The validation of the array results was performed by a quantitative reverse transcriptase polymerase chain reaction. RESULTS The collected expression and CGH microarray experiment results indicate that the ITGB2, SCL6A7, CASP1 and DUSP genes may comprise a resistance marker for acute leukemia cells correlated with anthracyclines. Moreover, there were also identified chromosome rearrangements associated with drug resistance, such as del5q32-35.3 and amp8p12-p11.21. Precise genes, as well as genome aberrations, might be classified as targets in therapy. CONCLUSIONS In AML, the resistance of blasts to idarubicin and mitoxantrone may reflect an impaired integrin pathway. In ALL, the development of resistance is caused by the inhibition of B and T cell activation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Joanna Laskowska
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Torun, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | | | - Joanna Szczepanek
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Torun, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Tretyn
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Torun, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
34
|
Einsfeldt K, Baptista IC, Pereira JCCV, Costa-Amaral IC, da Costa ES, Ribeiro MCM, Land MGP, Alves TLM, Larentis AL, Almeida RV. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli. PLoS One 2016; 11:e0156692. [PMID: 27253887 PMCID: PMC4890785 DOI: 10.1371/journal.pone.0156692] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/18/2016] [Indexed: 01/11/2023] Open
Abstract
L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically) in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells.
Collapse
Affiliation(s)
- Karen Einsfeldt
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail: (ALL); (KE); (RVA)
| | - Isis Cavalcante Baptista
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Juliana Christina Castanheira Vicente Pereira
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Isabele Campos Costa-Amaral
- Programa de Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca (ENSP), Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine Sobral da Costa
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Cecília Menks Ribeiro
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo Gerardin Poirot Land
- Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tito Lívio Moitinho Alves
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ariane Leites Larentis
- Programa de Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca (ENSP), Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (ALL); (KE); (RVA)
| | - Rodrigo Volcan Almeida
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail: (ALL); (KE); (RVA)
| |
Collapse
|
35
|
Pal D, Blair HJ, Elder A, Dormon K, Rennie KJ, Coleman DJL, Weiland J, Rankin KS, Filby A, Heidenreich O, Vormoor J. Long-term in vitro maintenance of clonal abundance and leukaemia-initiating potential in acute lymphoblastic leukaemia. Leukemia 2016; 30:1691-700. [PMID: 27109511 PMCID: PMC4980562 DOI: 10.1038/leu.2016.79] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 12/31/2022]
Abstract
Lack of suitable in vitro culture conditions for primary acute lymphoblastic leukaemia (ALL) cells severely impairs their experimental accessibility and the testing of new drugs on cell material reflecting clonal heterogeneity in patients. We show that Nestin-positive human mesenchymal stem cells (MSCs) support expansion of a range of biologically and clinically distinct patient-derived ALL samples. Adherent ALL cells showed an increased accumulation in the S phase of the cell cycle and diminished apoptosis when compared with cells in the suspension fraction. Moreover, surface expression of adhesion molecules CD34, CDH2 and CD10 increased several fold. Approximately 20% of the ALL cells were in G0 phase of the cell cycle, suggesting that MSCs may support quiescent ALL cells. Cellular barcoding demonstrated long-term preservation of clonal abundance. Expansion of ALL cells for >3 months compromised neither feeder dependence nor cancer initiating ability as judged by their engraftment potential in immunocompromised mice. Finally, we demonstrate the suitability of this co-culture approach for the investigation of drug combinations with luciferase-expressing primograft ALL cells. Taken together, we have developed a preclinical platform with patient-derived material that will facilitate the development of clinically effective combination therapies for ALL.
Collapse
Affiliation(s)
- D Pal
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - H J Blair
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - A Elder
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - K Dormon
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - K J Rennie
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - D J L Coleman
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - J Weiland
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK.,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - K S Rankin
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - A Filby
- Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - O Heidenreich
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - J Vormoor
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK.,Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
36
|
Nakanishi T, Song Y, He C, Wang D, Morita K, Tsukada J, Kanazawa T, Yoshida Y. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia. PeerJ 2016; 4:e2026. [PMID: 27190722 PMCID: PMC4868592 DOI: 10.7717/peerj.2026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/19/2016] [Indexed: 12/24/2022] Open
Abstract
We previously reported that the inflammasome inhibitor cucurbitacin D (CuD) induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL) inhibitor on autophagy in peripheral blood lymphocytes (PBL) isolated from adult T-cell leukemia (ATL) patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA). The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose) polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients.
Collapse
Affiliation(s)
- Tsukasa Nakanishi
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Hematology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuan Song
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Clinical Laboratory, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cuiying He
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Duo Wang
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentaro Morita
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Junichi Tsukada
- Department of Hematology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tamotsu Kanazawa
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
37
|
MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia 2016; 30:1832-43. [PMID: 27174491 PMCID: PMC5240021 DOI: 10.1038/leu.2016.83] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
We identified mutations in the IL7Ra gene or in genes encoding the downstream signaling molecules JAK1, JAK3, STAT5B, N-RAS, K-RAS, NF1, AKT and PTEN in 49% of patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL). Strikingly, these mutations (except RAS/NF1) were mutually exclusive, suggesting that they each cause the aberrant activation of a common downstream target. Expressing these mutant signaling molecules—but not their wild-type counterparts—rendered Ba/F3 cells independent of IL3 by activating the RAS-MEK-ERK and PI3K-AKT pathways. Interestingly, cells expressing either IL7Ra or JAK mutants are sensitive to JAK inhibitors, but respond less robustly to inhibitors of the downstream RAS-MEK-ERK and PI3K-AKT-mTOR pathways, indicating that inhibiting only one downstream pathway is not sufficient. Here, we show that inhibiting both the MEK and PI3K-AKT pathways synergistically prevents the proliferation of BaF3 cells expressing mutant IL7Ra, JAK and RAS. Furthermore, combined inhibition of MEK and PI3K/AKT was cytotoxic to samples obtained from 6 out of 11 primary T-ALL patients, including 1 patient who had no mutations in the IL7R signaling pathway. Taken together, these results suggest that the potent cytotoxic effects of inhibiting both MEK and PI3K/AKT should be investigated further as a therapeutic option using leukemia xenograft models.
Collapse
|
38
|
Jackson RK, Irving JAE, Veal GJ. Personalization of dexamethasone therapy in childhood acute lymphoblastic leukaemia. Br J Haematol 2016; 173:13-24. [DOI: 10.1111/bjh.13924] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rosanna K. Jackson
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne UK
| | - Julie A. E. Irving
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne UK
| | - Gareth J. Veal
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
39
|
Integrative computational in-depth analysis of dysregulated miRNA-mRNA interactions in drug-resistant pediatric acute lymphoblastic leukemia cells: an attempt to obtain new potential gene-miRNA pathways involved in response to treatment. Tumour Biol 2015; 37:7861-72. [DOI: 10.1007/s13277-015-4553-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022] Open
|
40
|
B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment. Blood 2015; 126:2404-14. [DOI: 10.1182/blood-2015-03-634238] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022] Open
Abstract
Key Points
Primary BCP-ALL cells use tunneling nanotubes to signal to mesenchymal stromal cells and thereby trigger cytokine secretion. Inhibiting tunneling nanotube signaling is a promising approach to induce apoptosis and sensitize BCP-ALL cells toward prednisolone.
Collapse
|
41
|
Paugh SW, Bonten EJ, Evans WE. Inflammasome-mediated glucocorticoid resistance: The receptor rheostat. Mol Cell Oncol 2015; 3:e1065947. [PMID: 27308575 DOI: 10.1080/23723556.2015.1065947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 10/22/2022]
Abstract
In primary acute lymphoblastic leukemia cells exhibiting de novo resistance to glucocorticoids, we recently discovered decreased promoter methylation of caspase 1 (CASP1) and NLR family, pyrin domain containing 3 (NLRP3), which resulted in increased transcription, constitutive NALP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome activation, and caspase 1-mediated cleavage of the glucocorticoid receptor. This revealed a novel mechanism of glucocorticoid resistance that was recapitulated in model systems.
Collapse
Affiliation(s)
- Steven W Paugh
- Hematological Malignancies Program, and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital , Memphis, TN, USA
| | - Erik J Bonten
- Hematological Malignancies Program, and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital , Memphis, TN, USA
| | - William E Evans
- Hematological Malignancies Program, and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital , Memphis, TN, USA
| |
Collapse
|
42
|
Paugh SW, Bonten EJ, Savic D, Ramsey LB, Thierfelder WE, Gurung P, Malireddi RKS, Actis M, Mayasundari A, Min J, Coss DR, Laudermilk LT, Panetta JC, McCorkle JR, Fan Y, Crews KR, Stocco G, Wilkinson MR, Ferreira AM, Cheng C, Yang W, Karol SE, Fernandez CA, Diouf B, Smith C, Hicks JK, Zanut A, Giordanengo A, Crona D, Bianchi JJ, Holmfeldt L, Mullighan CG, den Boer ML, Pieters R, Jeha S, Dunwell TL, Latif F, Bhojwani D, Carroll WL, Pui CH, Myers RM, Guy RK, Kanneganti TD, Relling MV, Evans WE. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat Genet 2015; 47:607-14. [PMID: 25938942 PMCID: PMC4449308 DOI: 10.1038/ng.3283] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/24/2015] [Indexed: 01/05/2023]
Abstract
Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and leukemia cell resistant to glucocorticoids confers a poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the sensitivity to prednisolone of primary leukemia cells from 444 newly diagnosed ALL patients, revealing significantly higher expression of caspase 1 (CASP1) and its activator NLRP3 in glucocorticoid resistant leukemia cells, due to significantly lower somatic methylation of CASP1 and NLRP3 promoters. Over-expression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1 overexpressing ALL. Our findings establish a new mechanism by which the NLRP3/CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on glucocorticoid transcriptional response suggests this mechanism could also modify glucocorticoid effects in other diseases.
Collapse
Affiliation(s)
- Steven W Paugh
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Erik J Bonten
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daniel Savic
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Laura B Ramsey
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - William E Thierfelder
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marcelo Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David R Coss
- High-Performance Computing Facility, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lucas T Laudermilk
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J Robert McCorkle
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kristine R Crews
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gabriele Stocco
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mark R Wilkinson
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Antonio M Ferreira
- High-Performance Computing Facility, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wenjian Yang
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Seth E Karol
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [3] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christian A Fernandez
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Barthelemy Diouf
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Colton Smith
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J Kevin Hicks
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Alessandra Zanut
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Audrey Giordanengo
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daniel Crona
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Joy J Bianchi
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Linda Holmfeldt
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles G Mullighan
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Monique L den Boer
- Division of Pediatric Oncology-Hematology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Rob Pieters
- 1] Division of Pediatric Oncology-Hematology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands. [2] Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Sima Jeha
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas L Dunwell
- Centre for Rare Diseases and Personalized Medicine, University of Birmingham, Birmingham, UK
| | - Farida Latif
- Centre for Rare Diseases and Personalized Medicine, University of Birmingham, Birmingham, UK
| | - Deepa Bhojwani
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - William L Carroll
- New York University Cancer Institute, New York University Langone Medical Center, New York, New York, USA
| | - Ching-Hon Pui
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Mary V Relling
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - William E Evans
- 1] Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
43
|
Identification of differentially expressed genes associated with prognosis of B acute lymphoblastic leukemia. DISEASE MARKERS 2015; 2015:828145. [PMID: 25802479 PMCID: PMC4354728 DOI: 10.1155/2015/828145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/19/2022]
Abstract
Background. Acute lymphoblastic leukemia type B (B-ALL) is a neoplastic disorder with high mortality rates. The aim of this study was to validate the expression profile of 45 genes associated with signaling pathways involved in leukemia and to evaluate their association with the prognosis of B-ALL. Methods. 219 samples of peripheral blood mononuclear cells obtained from 73 B-ALL patients were studied at diagnosis, four, and eight weeks after starting treatment. Gene expression was analyzed by quantitative real-time polymerase chain reaction. Results. Normalized delta Cq values of 23 genes showed differences between B-ALL and controls at diagnosis time (P values < 0.05). There were significant associations between B-ALL patients relapse/death and the expression levels of IL2RA, SORT1, DEFA1, and FLT3 genes at least in one of the times evaluated (P values < 0.05 and odds ratio ranges: 3.73–27). The association between FLT3 deregulation and relapse/death was a constant in the times studied and their overexpression significantly increased the odds of relapse/death in a range of 3.73 and 6.05 among study population (P values < 0.05). Conclusions. Overexpression of FLT3 and DEFA1 genes retained independent prognostic significance for B-ALL outcome, reflected as increased risks of relapse/death among the study population.
Collapse
|
44
|
Groth-Pedersen L, Chen YH, Faber M, Valentin R, Albertsen BK, Wehner PS, Rosthøj S, Frandsen TL, Marquart HV, Schmiegelow K. A novel chemosensitivity profiling platform for small acute lymphoblastic leukemia cell populations. Leuk Lymphoma 2014; 56:2208-11. [PMID: 25530346 DOI: 10.3109/10428194.2014.996851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Line Groth-Pedersen
- Department of Pediatric and Adolescent Medicine, University Hospital Rigshospitalet , Copenhagen , Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Warris LT, van den Heuvel-Eibrink MM, Ariës IM, Pieters R, van den Akker ELT, den Boer ML. Hydrocortisone does not influence glucocorticoid sensitivity of acute lymphoblastic leukemia cells. Haematologica 2014; 100:e137-9. [PMID: 25425687 DOI: 10.3324/haematol.2014.112177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lidewij T Warris
- Department of Pediatric Hematology and Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam Department of Pediatric Endocrinology, Erasmus MC-Sophia Children's Hospital, Rotterdam
| | - Marry M van den Heuvel-Eibrink
- Department of Pediatric Hematology and Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam Department of Pediatric Endocrinology, Erasmus MC-Sophia Children's Hospital, Rotterdam
| | - Ingrid M Ariës
- Department of Pediatric Hematology and Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam
| | - Rob Pieters
- Department of Pediatric Hematology and Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Erica L T van den Akker
- Department of Pediatric Hematology and Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Monique L den Boer
- Department of Pediatric Hematology and Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam
| |
Collapse
|
46
|
Multi-agent chemotherapy overcomes glucocorticoid resistance conferred by a BIM deletion polymorphism in pediatric acute lymphoblastic leukemia. PLoS One 2014; 9:e103435. [PMID: 25090024 PMCID: PMC4121131 DOI: 10.1371/journal.pone.0103435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/29/2014] [Indexed: 12/03/2022] Open
Abstract
A broad range of anti-cancer agents, including glucocorticoids (GCs) and tyrosine kinase inhibitors (TKIs), kill cells by upregulating the pro-apoptotic BCL2 family member, BIM. A common germline deletion in the BIM gene was recently shown to favor the production of non-apoptotic BIM isoforms, and to predict inferior responses in TKI-treated chronic myeloid leukemia (CML) and EGFR-driven lung cancer patients. Given that both in vitro and in vivo GC resistance are predictive of adverse outcomes in acute lymphoblastic leukemia (ALL), we hypothesized that this polymorphism would mediate GC resistance, and serve as a biomarker of poor response in ALL. Accordingly, we used zinc finger nucleases to generate ALL cell lines with the BIM deletion, and confirmed the ability of the deletion to mediate GC resistance in vitro. In contrast to CML and lung cancer, the BIM deletion did not predict for poorer clinical outcome in a retrospective analysis of 411 pediatric ALL patients who were uniformly treated with GCs and chemotherapy. Underlying the lack of prognostic significance, we found that the chemotherapy agents used in our cohort (vincristine, L-asparaginase, and methotrexate) were each able to induce ALL cell death in a BIM-independent fashion, and resensitize BIM deletion-containing cells to GCs. Together, our work demonstrates how effective therapy can overcome intrinsic resistance in ALL patients, and suggests the potential of using combinations of drugs that work via divergent mechanisms of cell killing to surmount BIM deletion-mediated drug resistance in other cancers.
Collapse
|
47
|
A pre-clinical model of resistance to induction therapy in pediatric acute lymphoblastic leukemia. Blood Cancer J 2014; 4:e232. [PMID: 25083816 PMCID: PMC4219466 DOI: 10.1038/bcj.2014.52] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022] Open
Abstract
Relapse and acquired drug resistance in T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. This study was designed to establish a preclinical model of resistance to induction therapy in childhood T-ALL to examine the emergence of drug resistance and identify novel therapies. Patient-derived T-ALL xenografts in immune-deficient (non-obese diabetic/severe combined immunodeficient) mice were exposed to a four-drug combination of vincristine, dexamethasone (DEX), L-asparaginase and daunorubicin (VXLD). ‘Relapse' xenografts were characterized by responses to drugs, changes in gene expression profiles and Connectivity Map (CMap) prediction of strategies to reverse drug resistance. Two of four xenografts developed ex vivo and in vivo drug resistance. Both resistant lines showed altered lipid and cholesterol metabolism, yet they had a distinct drug resistance pattern. CMap analyses reinforced these features, identifying the cholesterol pathway inhibitor simvastatin (SVT) as a potential therapy to overcome resistance. Combined ex vivo with DEX, SVT was significantly synergistic, yet when administered in vivo with VXLD it did not delay leukemia progression. Synergy of SVT with established chemotherapy may depend on higher drug doses than are tolerable in this model. Taken together, we have developed a clinically relevant in vivo model of T-ALL suitable to examine the emergence of drug resistance and to identify novel therapies.
Collapse
|
48
|
PKCζ and PKMζ are overexpressed in TCF3-rearranged paediatric acute lymphoblastic leukaemia and are associated with increased thiopurine sensitivity. Leukemia 2014; 29:304-11. [PMID: 24990612 PMCID: PMC4320296 DOI: 10.1038/leu.2014.210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/11/2022]
Abstract
Both tumour suppressor and oncogenic functions have been ascribed to the atypical zeta isoform of protein kinase C (PKCζ), whereas its constitutively active form PKMζ is almost exclusively expressed in the brain where it has a role in long-term memory. Using primers unique for either isoform, we found that both PKCζ and PKMζ were expressed in a subset of paediatric acute lymphoblastic leukaemia (ALL) cases carrying a TCF3 (E2A) chromosomal rearrangement. Combined PKCζ and PKMζ (PKC/Mζ) protein as well as phosphorylation levels were elevated in ALL cases, especially TCF3-rearranged precursor B-ALL cases, compared with normal bone marrow (P<0.01). Furthermore, high PKC/Mζ expression in primary ALL cells was associated with increased sensitivity to 6-thioguanine and 6-mercaptopurine (P<0.01), thiopurines used in ALL treatment. PKCζ is believed to stabilize mismatch-repair protein MSH2, facilitating thiopurine responsiveness in T-ALL. However, PKC/Mζ knockdown in a TCF3-rearranged cell line model decreased MSH2 expression but did not induce thiopurine resistance, indicative that the link between high PKC/Mζ levels and thiopurine sensitivity in paediatric precursor B-ALL is not directly causal. Collectively, our data indicate that thiopurine treatment may be effective, especially in paediatric TCF3-rearranged ALL and other patients with a high expression of PKC/Mζ.
Collapse
|
49
|
van den Berk LCJ, van der Veer A, Willemse ME, Theeuwes MJGA, Luijendijk MW, Tong WH, van der Sluis IM, Pieters R, den Boer ML. Disturbed CXCR4/CXCL12 axis in paediatric precursor B-cell acute lymphoblastic leukaemia. Br J Haematol 2014; 166:240-9. [PMID: 24697337 DOI: 10.1111/bjh.12883] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/04/2014] [Indexed: 12/14/2022]
Abstract
Malignant cells infiltrating the bone marrow (BM) interfere with normal cellular behaviour of supporting cells, thereby creating a malignant niche. We found that CXCR4-receptor expression was increased in paediatric precursor B-cell acute lymphoblastic leukaemia (BCP-ALL) cells compared with normal mononuclear haematopoietic cells (P < 0·0001). Furthermore, high CXCR4-expression correlated with an unfavourable outcome in BCP-ALL (5-year cumulative incidence of relapse ± standard error: 38·4% ± 6·9% in CXCR4-high versus 12% ± 4·6% in CXCR4-low expressing cases, P < 0·0001). Interestingly, BM levels of the CXCR4-ligand (CXCL12) were 2·7-fold lower (P = 0·005) in diagnostic BCP-ALL samples compared with non-leukaemic controls. Induction chemotherapy restored CXCL12 levels to normal. Blocking the CXCR4-receptor with Plerixafor showed that the lower CXCL12 serum levels at diagnosis could not be explained by consumption by the leukaemic cells, nor did we observe an altered CXCL12-production capacity of BM-mesenchymal stromal cells (BM-MSC) at this time-point. We rather observed that a very high density of leukaemic cells negatively affected CXCL12-production by the BM-MSC while stimulating the secretion levels of granulocyte colony-stimulating factor (G-CSF). These results suggest that highly proliferative leukaemic cells are able to down-regulate secretion of cytokines involved in homing (CXCL12), while simultaneously up-regulating those involved in haematopoietic mobilization (G-CSF). Therefore, interference with the CXCR4/CXCL12 axis may be an effective way to mobilize BCP-ALL cells.
Collapse
Affiliation(s)
- Lieke C J van den Berk
- Department of Paediatric Oncology/Haematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Spijkers-Hagelstein JAP, Schneider P, Pinhanços SM, Garrido Castro P, Pieters R, Stam RW. Glucocorticoid sensitisation in Mixed Lineage Leukaemia-rearranged acute lymphoblastic leukaemia by the pan-BCL-2 family inhibitors gossypol and AT-101. Eur J Cancer 2014; 50:1665-74. [PMID: 24703900 DOI: 10.1016/j.ejca.2014.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/05/2014] [Accepted: 03/09/2014] [Indexed: 01/10/2023]
Abstract
AIM OF THE STUDY Resistance to glucocorticoids (GCs) remains a major problem in the treatment of infants with acute lymphoblastic leukaemia (ALL) carrying Mixed Lineage Leukaemia (MLL) translocations. Despite intensive research, the mechanism(s) underlying GC resistance remain poorly understood. Recent studies suggested an important role for the pro-survival BCL-2 family member MCL1 in GC resistance in MLL-rearranged ALL. METHODS We exposed GC-resistant MLL-rearranged SEMK2 cells to potent MCL1-inhibiting agents, including gossypol, AT-101, rapamycin, SU9516 and obatoclax (GX15-070) and determined GC sensitisation using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays. Using Western blotting we analysed the protein expression of most BCL-2 family members in MLL-rearranged SEMK2 cells after treatment with potent MCL-1 inhibiting agents. RESULTS Only gossypol and its synthetic analogue AT-101 induced GC sensitivity in MLL-rearranged ALL cells. Remarkably, the GC-sensitising effects of gossypol and AT-101 appeared not to be mediated by down-regulation MCL1 or other anti-apoptotic BCL-2 family members, but rather involved up-regulation of multiple pro-apoptotic BCL-2 family members, in particular that of BIM and BID. CONCLUDING REMARKS In conclusion, gossypol and AT-101 induce GC sensitivity in MLL-rearranged ALL cells, most likely mediated by the activation of BID and BIM without the necessity to down-regulate anti-apoptotic BCL-2 family members like MCL1. Hence, co-administration of either gossypol or AT-101 during GC treatment of GC-resistant MLL-rearranged ALL patients may overcome GC resistance and improve prognosis in this high-risk childhood leukaemia.
Collapse
Affiliation(s)
- Jill A P Spijkers-Hagelstein
- Department of Paediatric Oncology/Haematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Pauline Schneider
- Department of Paediatric Oncology/Haematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sandra Mimoso Pinhanços
- Department of Paediatric Oncology/Haematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Patricia Garrido Castro
- Department of Paediatric Oncology/Haematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Rob Pieters
- Department of Paediatric Oncology/Haematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Ronald W Stam
- Department of Paediatric Oncology/Haematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.
| |
Collapse
|