Zhang S, Wu X, Liao X, Zhang S. Nanodrug Hijacking Blood Transferrin for Ferroptosis-Mediated Cancer Treatment.
J Am Chem Soc 2024;
146:8567-8575. [PMID:
38489761 DOI:
10.1021/jacs.4c00395]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Ferroptosis as a promising method of cancer treatment heavily relies on the intracellular iron ion level. Herein, a new iron-supplement nanodrug was developed by conjugating transferrin-homing peptide T10 on the surface of cross-linked lipoic acid vesicles (T10@cLAV), which could hijack blood transferrin (Tf) and specifically deliver it to tumor cells to elevate the Fe2+ level. Meanwhile, the intracellular degradation product of cLAV, dihydrolipoic acid, could regenerate Fe2+ to further boost the ferroptosis. The results disclosed that T10@cLAV achieved tumor inhibition comparable to that of cisplatin at a dose as low as 5 mg/kg in the HeLa tumor-bearing nude mice model and caused no toxicity at the dose up to 300 mg/kg. This tactful iron-supplement strategy of hijacking blood Tf is superior to the current strategies: one is the induction of intracellular ferritin degradation, which is limited by the low content of ferritin, and the other is the delivery of iron-based materials, which easily causes adverse effects.
Collapse