1
|
Yap TA, Fontana E, Lee EK, Spigel DR, Højgaard M, Lheureux S, Mettu NB, Carneiro BA, Carter L, Plummer R, Cote GM, Meric-Bernstam F, O'Connell J, Schonhoft JD, Wainszelbaum M, Fretland AJ, Manley P, Xu Y, Ulanet D, Rimkunas V, Zinda M, Koehler M, Silverman IM, Reis-Filho JS, Rosen E. Camonsertib in DNA damage response-deficient advanced solid tumors: phase 1 trial results. Nat Med 2023; 29:1400-1411. [PMID: 37277454 PMCID: PMC10287555 DOI: 10.1038/s41591-023-02399-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Predictive biomarkers of response are essential to effectively guide targeted cancer treatment. Ataxia telangiectasia and Rad3-related kinase inhibitors (ATRi) have been shown to be synthetic lethal with loss of function (LOF) of ataxia telangiectasia-mutated (ATM) kinase, and preclinical studies have identified ATRi-sensitizing alterations in other DNA damage response (DDR) genes. Here we report the results from module 1 of an ongoing phase 1 trial of the ATRi camonsertib (RP-3500) in 120 patients with advanced solid tumors harboring LOF alterations in DDR genes, predicted by chemogenomic CRISPR screens to sensitize tumors to ATRi. Primary objectives were to determine safety and propose a recommended phase 2 dose (RP2D). Secondary objectives were to assess preliminary anti-tumor activity, to characterize camonsertib pharmacokinetics and relationship with pharmacodynamic biomarkers and to evaluate methods for detecting ATRi-sensitizing biomarkers. Camonsertib was well tolerated; anemia was the most common drug-related toxicity (32% grade 3). Preliminary RP2D was 160 mg weekly on days 1-3. Overall clinical response, clinical benefit and molecular response rates across tumor and molecular subtypes in patients who received biologically effective doses of camonsertib (>100 mg d-1) were 13% (13/99), 43% (43/99) and 43% (27/63), respectively. Clinical benefit was highest in ovarian cancer, in tumors with biallelic LOF alterations and in patients with molecular responses. ClinicalTrials.gov registration: NCT04497116 .
Collapse
Affiliation(s)
- Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Elizabeth K Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David R Spigel
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | | | | | - Niharika B Mettu
- Department of Medical Oncology, Duke University, Durham, NC, USA
| | - Benedito A Carneiro
- Legorreta Cancer Center at Brown University and Lifespan Cancer Institute, Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Louise Carter
- Division of Cancer Sciences, University of Manchester and the Christie NHS Foundation Trust, Manchester, UK
| | - Ruth Plummer
- Newcastle University and Newcastle Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle-upon-Tyne, UK
| | - Gregory M Cote
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Yi Xu
- Repare Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ezra Rosen
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Morris BB, Wages NA, Grant PA, Stukenberg PT, Gentzler RD, Hall RD, Akerley WL, Varghese TK, Arnold SM, Williams TM, Coppola V, Jones DR, Auble DT, Mayo MW. MYBL2-Driven Transcriptional Programs Link Replication Stress and Error-prone DNA Repair With Genomic Instability in Lung Adenocarcinoma. Front Oncol 2021; 10:585551. [PMID: 33489883 PMCID: PMC7821388 DOI: 10.3389/fonc.2020.585551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
It has long been recognized that defects in cell cycle checkpoint and DNA repair pathways give rise to genomic instability, tumor heterogeneity, and metastasis. Despite this knowledge, the transcription factor-mediated gene expression programs that enable survival and proliferation in the face of enormous replication stress and DNA damage have remained elusive. Using robust omics data from two independent studies, we provide evidence that a large cohort of lung adenocarcinomas exhibit significant genome instability and overexpress the DNA damage responsive transcription factor MYB proto-oncogene like 2 (MYBL2). Across two studies, elevated MYBL2 expression was a robust marker of poor overall survival and disease-free survival outcomes, regardless of disease stage. Clinically, elevated MYBL2 expression identified patients with aggressive early onset disease, increased lymph node involvement, and increased incidence of distant metastases. Analysis of genomic sequencing data demonstrated that MYBL2 High lung adenocarcinomas had elevated somatic mutation burden, widespread chromosomal alterations, and alterations in single-strand DNA break repair pathways. In this study, we provide evidence that impaired single-strand break repair, combined with a loss of cell cycle regulators TP53 and RB1, give rise to MYBL2-mediated transcriptional programs. Omics data supports a model wherein tumors with significant genomic instability upregulate MYBL2 to drive genes that control replication stress responses, promote error-prone DNA repair, and antagonize faithful homologous recombination repair. Our study supports the use of checkpoint kinase 1 (CHK1) pharmacological inhibitors, in targeted MYBL2 High patient cohorts, as a future therapy to improve lung adenocarcinoma patient outcomes.
Collapse
Affiliation(s)
- Benjamin B. Morris
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, United States
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Nolan A. Wages
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Patrick A. Grant
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States
| | - P. Todd Stukenberg
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Ryan D. Gentzler
- Division of Medical Oncology, Department of Internal Medicine, Hematology/Oncology, University of Virginia Health System, Charlottesville, VA, United States
| | - Richard D. Hall
- Division of Medical Oncology, Department of Internal Medicine, Hematology/Oncology, University of Virginia Health System, Charlottesville, VA, United States
| | - Wallace L. Akerley
- Department of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, UT, United States
| | - Thomas K. Varghese
- Division of Thoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, United States
| | - Susanne M. Arnold
- Department of Internal Medicine, Division of Medical Oncology, Markey Cancer Center, Lexington, KY, United States
| | - Terence M. Williams
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - David R. Jones
- Department of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - David T. Auble
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Marty W. Mayo
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
3
|
Gachechiladze M, Skarda J, Bouchalova K, Soltermann A, Joerger M. Predictive and Prognostic Value of DNA Damage Response Associated Kinases in Solid Tumors. Front Oncol 2020; 10:581217. [PMID: 33224881 PMCID: PMC7670868 DOI: 10.3389/fonc.2020.581217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Dysfunctional DNA repair with subsequent genome instability and high mutational burden represents a major hallmark of cancer. In established malignant tumors, increased DNA repair capacity mediates resistance to DNA-damaging therapeutics, including cytotoxic drugs, radiotherapy, and selected small molecules including inhibitors of poly (ADP-ribose) polymerase (PARP), Ataxia Telangiectasia Mutated (ATM), ataxia telangiectasia and Rad3-related protein (ATR), and Wee1 kinase (Wee1). In addition, DNA repair deficiency is not only associated with sensitivity to selected anticancer drugs, but also with increased mutagenicity and increased neoantigen load on tumor cells, resulting in increased immunogenicity and improved response to CTLA4- or PD-(L)1 targeting monoclonal antibodies. DNA damage response (DDR) is composed of complex signalling pathways, including the sensing of the DNA damage, signal transduction, cellular response pathways to DNA damage, and activation of DNA repair. DNA double strand breaks (DSBs) are the most dangerous form of DNA damage. Tumor cells are characterised by frequent accumulation of DSBs caused by either endogenous replication stress or the impact of cancer treatment, most prominently chemotherapy and radiotherapy. Therefore, response of cancer cells to DSBs represents a crucial mechanism for how tumors respond to systemic treatment or radiotherapy, and how resistance develops. Ample clinical evidence supports the importance of DDR associated kinases as predictive and prognostic biomarkers in cancer patients. The ATM-CHK2 and ATR-CHK1-WEE1 pathways initiate DNA DSB repair. In the current review, we focus on major DDR associated kinases including ATM, ATR, CHK1, CHK2, and WEE1, and discuss their potential prognostic and predictive value in solid malignancies.
Collapse
Affiliation(s)
- Mariam Gachechiladze
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Josef Skarda
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | | | | | - Markus Joerger
- Department of Medical Oncology and Haematology, Cantonal Hospital, St. Gallen, Switzerland
| |
Collapse
|
4
|
Santana dos Santos E, Lallemand F, Petitalot A, Caputo SM, Rouleau E. HRness in Breast and Ovarian Cancers. Int J Mol Sci 2020; 21:E3850. [PMID: 32481735 PMCID: PMC7312125 DOI: 10.3390/ijms21113850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian and breast cancers are currently defined by the main pathways involved in the tumorigenesis. The majority are carcinomas, originating from epithelial cells that are in constant division and subjected to cyclical variations of the estrogen stimulus during the female hormonal cycle, therefore being vulnerable to DNA damage. A portion of breast and ovarian carcinomas arises in the context of DNA repair defects, in which genetic instability is the backdrop for cancer initiation and progression. For these tumors, DNA repair deficiency is now increasingly recognized as a target for therapeutics. In hereditary breast/ovarian cancers (HBOC), tumors with BRCA1/2 mutations present an impairment of DNA repair by homologous recombination (HR). For many years, BRCA1/2 mutations were only screened on germline DNA, but now they are also searched at the tumor level to personalize treatment. The reason of the inactivation of this pathway remains uncertain for most cases, even in the presence of a HR-deficient signature. Evidence indicates that identifying the mechanism of HR inactivation should improve both genetic counseling and therapeutic response, since they can be useful as new biomarkers of response.
Collapse
Affiliation(s)
- Elizabeth Santana dos Santos
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, 94800 Villejuif, France;
- Department of Clinical Oncology, A.C. Camargo Cancer Center, São Paulo 01509-010, Brazil
| | - François Lallemand
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Ambre Petitalot
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Sandrine M. Caputo
- Department of Genetics, Institut Curie, 75005 Paris, France; (F.L.); (A.P.); (S.M.C.)
- PSL Research University, 75005 Paris, France
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, 94800 Villejuif, France;
| |
Collapse
|
5
|
Association of Cytokeratin 5 and Claudin 3 expression with BRCA1 and BRCA2 germline mutations in women with early breast cancer. BMC Cancer 2019; 19:695. [PMID: 31307407 PMCID: PMC6631579 DOI: 10.1186/s12885-019-5908-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND It is important to identify biomarkers associated with BRCA mutation in women with early breast cancer (BC) to improve early identification of mutation carriers. Thus, in this study, we examined the protein expression of claudin (CLDN) 3, CLDN4, CLDN7, and E-cadherin. Moreover, we analyzed additional histopathological variables and their associations in familial BC. METHODS Immunohistochemical analysis for CLDNs and E-cadherin was performed on 237 BC cases of three different subsets of BC tumors: 62 from BRCA1 mutation carriers, 59 from BRCA2 mutation carriers, and 116 tumors from patients with BRCA wild type (WT) as controls. Histopathological data were also analyzed in the different subgroups. Logistic regression and receiver operation characteristic (ROC) curve were conducted to investigate factors associated with BRCA tumors. RESULTS Expression of CLDN3 positively correlated with BRCA-mutated BC. CLDN3 was expressed in 58% of BRCA1-mutated tumors compared to only 7% in BRCA2-mutated tumors (p < 0.001) and 1% in WT tumors (p < 0.001). CK5 and CK14 expression were also more likely to arise in BRCA1 tumors (44 and 16%, respectively) than in the control group (8 and 4%) (p < 0.001, p = 0.012, respectively). We also found a significantly higher proportion of CK5+ among BRCA1 tumors (44%) in comparison with BRCA2-related BC (8%) (p < 0.001). In addition, there was a significant difference between both groups regarding CK14: positive expression in 16 and 5%, respectively (p = 0.030). CK5 and CK14 did not differ between the BRCA2 group and the WT tumors significantly. In a multivariate regression model, expression of CK5 (Odds ratio (OR): 6.46; 95% confidence interval (CI): 1.52-27.43; p = 0.011), and CLDN3 (OR: 200.48; 95% CI: 21.52-1867.61; p < 0.001) were associated with BRCA1 mutation status. CONCLUSIONS Our data suggests that CLDN3, CK5, and CK14 in combination with ER, PR and HER2 are associated with BRCA1 mutation status.
Collapse
|
6
|
Zhu X, Tian T, Ruan M, Rao J, Yang W, Cai X, Sun M, Qin G, Zhao Z, Wu J, Shao Z, Shui R, Hu Z. Expression of DNA Damage Response Proteins and Associations with Clinicopathologic Characteristics in Chinese Familial Breast Cancer Patients with BRCA1/2 Mutations. J Breast Cancer 2018; 21:297-305. [PMID: 30275858 PMCID: PMC6158157 DOI: 10.4048/jbc.2018.21.e38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023] Open
Abstract
Purpose The characteristic expression of DNA damage response proteins in familial breast cancers with BRCA1, BRCA2, or non-BRCA1/2 mutations has not been analyzed in Chinese patients. Our study aimed to assess the differential expression of microcephalin 1 (BRIT1), ATM serine/threonine kinase (ATM), checkpoint kinase 2 (CHEK2), BRCA1, RAD51 recombinase (RAD51), and poly (ADP-ribose) polymerase 1 (PARP-1) and establish the profile of Chinese familial breast cancers with different mutation status. Methods We constructed five tissue microarrays from 183 familial breast cancer patients (31 with BRCA1 mutations; 14 with BRCA2 mutations, and 138 with non-BRCA1/2 mutations). The DNA response and repair markers used for immunohistochemistry analysis included BRIT1, ATM, CHEK2, BRCA1, RAD51, and PARP-1. The expressions of these proteins were analyzed in BRCA1/2 mutated tumors. The association between pathologic characteristics with BRCA1/2 mutation status was also analyzed. Results In familial breast cancer patients, BRCA1 mutated tumors were more frequent with high nuclear grade, estrogen receptor/progesterone receptor/human epidermal growth factor receptor 2 negative, low Ki-67, and positive CK5/6. BRCA1 mutated tumors had lower CHEK2 and higher cytoplasmic BRIT1 expression than BRCA2 and non-BRCA1/2 mutation tumors. BRCA2-associated tumors showed higher CHEK2 and cytoplasmic RAD51 expression than those in other groups. Nuclear PARP-1 expression in BRCA1/2-associated tumors was significantly higher than in non-BRCA1/2 mutation tumors. Moreover, we found quite a few of negative PARP-1 expression cases in BRCA1/2 mutated groups. Conclusion The clinicopathologic findings of BRCA1-associated Chinese familial breast cancers were similar to the results of other studies. Chinese familial breast cancer patients with BRCA1/2 mutations might have distinctive expression of different DNA damage response proteins. The reduced expression of PARP-1 in Chinese BRCA1/2 mutated breast cancer patients could influence the therapeutic outcome of PARP-1 inhibitors.
Collapse
Affiliation(s)
- Xinyi Zhu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tian Tian
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Miao Ruan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jia Rao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xu Cai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Menghong Sun
- Department of Tissue Bank, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guangqi Qin
- Department of Tissue Bank, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhonghua Zhao
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ruohong Shui
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Hu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
7
|
Comprehensive Proteomic Profiling–derived Immunohistochemistry-based Prediction Models for BRCA1 and BRCA2 Germline Mutation-related Breast Carcinomas. Am J Surg Pathol 2018; 42:1262-1272. [DOI: 10.1097/pas.0000000000001115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Meyer S, Stevens A, Paredes R, Schneider M, Walker MJ, Williamson AJK, Gonzalez-Sanchez MB, Smetsers S, Dalal V, Teng HY, White DJ, Taylor S, Muter J, Pierce A, de Leonibus C, Rockx DAP, Rooimans MA, Spooncer E, Stauffer S, Biswas K, Godthelp B, Dorsman J, Clayton PE, Sharan SK, Whetton AD. Acquired cross-linker resistance associated with a novel spliced BRCA2 protein variant for molecular phenotyping of BRCA2 disruption. Cell Death Dis 2017; 8:e2875. [PMID: 28617445 PMCID: PMC5520920 DOI: 10.1038/cddis.2017.264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022]
Abstract
BRCA2 encodes a protein with a fundamental role in homologous recombination that is essential for normal development. Carrier status of mutations in BRCA2 is associated with familial breast and ovarian cancer, while bi-allelic BRCA2 mutations can cause Fanconi anemia (FA), a cancer predisposition syndrome with cellular cross-linker hypersensitivity. Cancers associated with BRCA2 mutations can acquire chemo-resistance on relapse. We modeled acquired cross-linker resistance with an FA-derived BRCA2-mutated acute myeloid leukemia (AML) platform. Associated with acquired cross-linker resistance was the expression of a functional BRCA2 protein variant lacking exon 5 and exon 7 (BRCA2ΔE5+7), implying a role for BRCA2 splicing for acquired chemo-resistance. Integrated network analysis of transcriptomic and proteomic differences for phenotyping of BRCA2 disruption infers impact on transcription and chromatin remodeling in addition to the DNA damage response. The striking overlap with transcriptional profiles of FA patient hematopoiesis and BRCA mutation associated ovarian cancer helps define and explicate the ‘BRCAness’ profile.
Collapse
Affiliation(s)
- Stefan Meyer
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric and Adolescent Oncology, Royal Manchester Children's Hospital, Manchester, UK.,Young Oncology Unit, Christie Hospital, Manchester, UK
| | - Adam Stevens
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Roberto Paredes
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Marion Schneider
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Walker
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew J K Williamson
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Maria-Belen Gonzalez-Sanchez
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Stephanie Smetsers
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Vineet Dalal
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Hsiang Ying Teng
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Daniel J White
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Sam Taylor
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Joanne Muter
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew Pierce
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Chiara de Leonibus
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Davy A P Rockx
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin A Rooimans
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Elaine Spooncer
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Stacey Stauffer
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Kajal Biswas
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Barbara Godthelp
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Josephine Dorsman
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter E Clayton
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Shyam K Sharan
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Anthony D Whetton
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Stoller Biomarker Discovery Centre, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Gachechiladze M, Škarda J, Soltermann A, Joerger M. RAD51 as a potential surrogate marker for DNA repair capacity in solid malignancies. Int J Cancer 2017; 141:1286-1294. [PMID: 28477336 DOI: 10.1002/ijc.30764] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/29/2022]
Abstract
Targeting deficient mechanisms of cellular DNA repair still represents the basis for the treatment of the majority of solid tumors, and increased DNA repair capacity is a hallmark mechanism of resistance not only to DNA-damaging treatments such as cytotoxic drugs and radiotherapy, but also to small molecule targeted drugs such as inhibitors of poly-ADP ribose polymerase (PARP). Hence, there is substantial medical need for potent and convenient biomarkers of individual response to DNA-targeted treatment in personalized cancer care. RAD51 is a highly conserved protein that catalyzes DNA repair via homologous recombination, a major DNA repair pathway which directly modulates cellular sensitivity to DNA-damaging treatments. The clinical and biological significance of RAD51 protein expression is still under investigation. Pre-clinical studies consistently show the important role of nuclear RAD51 immunoreactivity in chemo- and radioresistance. Validating data from clinical trials however is limited at present, and some clinical studies show controversial results. This review gives a comprehensive overview on the current knowledge about the prognostic and predictive value of RAD51 protein expression and genetic variability in patients with solid malignancies.
Collapse
Affiliation(s)
- Mariam Gachechiladze
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Josef Škarda
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alex Soltermann
- Department of Pathology and Molecular Pathology, University Hospital, Zurich, Switzerland
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital, St.Gallen, Switzerland
| |
Collapse
|
10
|
Schirosi L, De Summa S, Tommasi S, Paradiso A, Sambiasi D, Popescu O, Simone G, Mangia A. Immunoprofile from tissue microarrays to stratify familial breast cancer patients. Oncotarget 2016; 6:27865-79. [PMID: 26312763 PMCID: PMC4695031 DOI: 10.18632/oncotarget.4720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022] Open
Abstract
Familial breast cancer (BC) is a heterogeneous disease with variable prognosis. The identification of an immunoprofile is important to predict tumor behavior for the routine clinical management of familial BC patients. Using immunohistochemistry on tissue microarrays, we studied 95 familial BCs in order to analyze the expression of some biomarkers involved in different pathways. We used unsupervised hierarchical clustering analyses (HCA), performed using the immunohistochemical score data, to define an immunoprofile able to characterize these tumors. The analyses on 95 and then on a subset of 45 tumors with all biomarkers contemporarily evaluable, revealed the same biomarker and patient clusters. Focusing on the 45 tumors we identified a group of patients characterized by the low expression of estrogen receptor (P = 0.009), progesterone receptor (P < 0.001), BRCA1 (P = 0.005), nuclear Na+/H+ exchanger regulatory factor 1 (NHERF1) (P = 0.026) and hypoxia inducible factor-1 alpha (P < 0.001), and also by the higher expression of MIB1 (P = 0.043), cytoplasmic NHERF1 (P = 0.004), cytoplasmic BRCT-repeat inhibitor of hTERT expression (P = 0.001), vascular endothelial growth factor (VEGF) (P = 0.024) and VEGF receptor-1 (P = 0.029). This immunoprofile identified a more aggressive tumor phenotype associated also with a larger tumor size (P = 0.012) and G3 grade (P = 0.006), confirmed by univariate and multivariate analyses. In conclusion, the clinical application of HCA of immunohistochemical data could allow the assessment of prognostic biomarkers to be used simultaneously. The 10 protein expression panel might be used to identify the more aggressive tumor phenotype in familial BC and to direct patients towards a different clinical therapy.
Collapse
Affiliation(s)
- Laura Schirosi
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Simona De Summa
- Molecular Genetic Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Stefania Tommasi
- Molecular Genetic Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Angelo Paradiso
- Experimental Medical Oncology, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Domenico Sambiasi
- Experimental Medical Oncology, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Ondina Popescu
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Giovanni Simone
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| |
Collapse
|
11
|
Massink MPG, Kooi IE, van Mil SE, Jordanova ES, Ameziane N, Dorsman JC, van Beek DM, van der Voorn JP, Sie D, Ylstra B, van Deurzen CHM, Martens JW, Smid M, Sieuwerts AM, de Weerd V, Foekens JA, van den Ouweland AMW, van Dyk E, Nederlof PM, Waisfisz Q, Meijers-Heijboer H. Proper genomic profiling of (BRCA1-mutated) basal-like breast carcinomas requires prior removal of tumor infiltrating lymphocytes. Mol Oncol 2015; 9:877-88. [PMID: 25616998 PMCID: PMC5528776 DOI: 10.1016/j.molonc.2014.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/20/2014] [Accepted: 12/27/2014] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION BRCA1-mutated breast carcinomas may have distinct biological features, suggesting the involvement of specific oncogenic pathways in tumor development. The identification of genomic aberrations characteristic for BRCA1-mutated breast carcinomas could lead to a better understanding of BRCA1-associated oncogenic events and could prove valuable in clinical testing for BRCA1-involvement in patients. METHODS For this purpose, genomic and gene expression profiles of basal-like BRCA1-mutated breast tumors (n = 27) were compared with basal-like familial BRCAX (non-BRCA1/2/CHEK2*1100delC) tumors (n = 14) in a familial cohort of 120 breast carcinomas. RESULTS Genome wide copy number profiles of the BRCA1-mutated breast carcinomas in our data appeared heterogeneous. Gene expression analyses identified varying amounts of tumor infiltrating lymphocytes (TILs) as a major cause for this heterogeneity. Indeed, selecting tumors with relative low amounts of TILs, resulted in the identification of three known but also five previously unrecognized BRCA1-associated copy number aberrations. Moreover, these aberrations occurred with high frequencies in the BRCA1-mutated tumor samples. Using these regions it was possible to discriminate BRCA1-mutated from BRCAX breast carcinomas, and they were validated in two independent cohorts. To further substantiate our findings, we used flow cytometry to isolate cancer cells from formalin-fixed, paraffin-embedded, BRCA1-mutated triple negative breast carcinomas with estimated TIL percentages of 40% and higher. Genomic profiles of sorted and unsorted fractions were compared by shallow whole genome sequencing and confirm our findings. CONCLUSION This study shows that genomic profiling of in particular basal-like, and thus BRCA1-mutated, breast carcinomas is severely affected by the presence of high numbers of TILs. Previous reports on genomic profiling of BRCA1-mutated breast carcinomas have largely neglected this. Therefore, our findings have direct consequences on the interpretation of published genomic data. Also, these findings could prove valuable in light of currently used genomic tools for assessing BRCA1-involvement in breast cancer patients and pathogenicity assessment of BRCA1 variants of unknown significance. The BRCA1-associated genomic aberrations identified in this study provide possible leads to a better understanding of BRCA1-associated oncogenesis.
Collapse
Affiliation(s)
- Maarten P G Massink
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Saskia E van Mil
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Ekaterina S Jordanova
- Department of Obstetrics and Gynaecology, Center for Gynaecologic Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Najim Ameziane
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Daphne M van Beek
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | | | - Daoud Sie
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Carolien H M van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - John W Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Ans M W van den Ouweland
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Ewald van Dyk
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Petra M Nederlof
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Pitroda SP, Pashtan IM, Logan HL, Budke B, Darga TE, Weichselbaum RR, Connell PP. DNA repair pathway gene expression score correlates with repair proficiency and tumor sensitivity to chemotherapy. Sci Transl Med 2014; 6:229ra42. [PMID: 24670686 DOI: 10.1126/scitranslmed.3008291] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mutagenesis is a hallmark of malignancy, and many oncologic treatments function by generating additional DNA damage. Therefore, DNA damage repair is centrally important in both carcinogenesis and cancer treatment. Homologous recombination (HR) and nonhomologous end joining are alternative pathways of double-strand DNA break repair. We developed a method to quantify the efficiency of DNA repair pathways in the context of cancer therapy. The recombination proficiency score (RPS) is based on the expression levels for four genes involved in DNA repair pathway preference (Rif1, PARI, RAD51, and Ku80), such that high expression of these genes yields a low RPS. Carcinoma cells with low RPS exhibit HR suppression and frequent DNA copy number alterations, which are characteristic of error-prone repair processes that arise in HR-deficient backgrounds. The RPS system was clinically validated in patients with breast or non-small cell lung carcinomas (NSCLCs). Tumors with low RPS were associated with greater mutagenesis, adverse clinical features, and inferior patient survival rates, suggesting that HR suppression contributes to the genomic instability that fuels malignant progression. This adverse prognosis associated with low RPS was diminished if NSCLC patients received adjuvant chemotherapy, suggesting that HR suppression and associated sensitivity to platinum-based drugs counteract the adverse prognosis associated with low RPS. Therefore, RPS may help oncologists select which therapies will be effective for individual patients, thereby enabling more personalized care.
Collapse
Affiliation(s)
- Sean P Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60647, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Senkus E, Szade J, Pieczyńska B, Zaczek A, Świerblewski M, Biernat W, Jassem J. Are bilateral breast cancers and breast cancers coexisting with ovarian cancer different from solitary tumors? A pair-matched immunohistochemical analysis aimed at intrinsic tumor phenotype. Pathol Int 2014; 64:508-17. [PMID: 25296577 DOI: 10.1111/pin.12202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022]
Abstract
Patients with bilateral breast cancer (BBC) and breast-ovarian cancer syndrome (BOCS) constitute populations potentially enriched for molecular defects involved in the pathomechanisms of these malignancies. The aim of our study was to compare tumor morphology and expression of estrogen and progesterone receptor, HER2, Ki67, cytokeratin 5/6, E-cadherin, vimentin and epidermal growth factor receptor in tissue microarrays from 199 tumors from BBC or BOCS patients and 199 age-matched solitary tumors. Compared to controls, BBC and BOCS considered jointly had lower incidence of DCIS, lower expression of PgR and HER2, and higher expression of Ki67 and vimentin. BOCS tumors were of higher grade, had lower expression of ER and PgR and higher expression of Ki67, CK5/6, vimentin and EGFR. BBC had less DCIS component, lower HER2 expression and higher Ki67 expression. Metachronous BBC (mBBC) had lower expression of ER, PgR and HER2, and higher expression of Ki67 and vimentin. Synchronous BBC (sBBC) had less DCIS component, higher expression of ER, and lower expression of CK5/6, EGFR and E-cadherin. BBC and breast cancers in BOCS differ in many aspects from solitary tumors. BBC are a heterogeneous group of tumors, differing between sBBC and mBBC. mBBC phenotype shares many features with BOCS tumors.
Collapse
Affiliation(s)
- Elżbieta Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
14
|
Kamieniak MM, Rico D, Milne RL, Muñoz-Repeto I, Ibáñez K, Grillo MA, Domingo S, Borrego S, Cazorla A, García-Bueno JM, Hernando S, García-Donas J, Hernández-Agudo E, Y Cajal TR, Robles-Díaz L, Márquez-Rodas I, Cusidó M, Sáez R, Lacambra-Calvet C, Osorio A, Urioste M, Cigudosa JC, Paz-Ares L, Palacios J, Benítez J, García MJ. Deletion at 6q24.2-26 predicts longer survival of high-grade serous epithelial ovarian cancer patients. Mol Oncol 2014; 9:422-36. [PMID: 25454820 PMCID: PMC5528660 DOI: 10.1016/j.molonc.2014.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/12/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
Standard treatments for advanced high-grade serous ovarian carcinomas (HGSOCs) show significant side-effects and provide only short-term survival benefits due to disease recurrence. Thus, identification of novel prognostic and predictive biomarkers is urgently needed. We have used 42 paraffin-embedded HGSOCs, to evaluate the utility of DNA copy number alterations, as potential predictors of clinical outcome. Copy number-based unsupervised clustering stratified HGSOCs into two clusters of different immunohistopathological features and survival outcome (HR = 0.15, 95%CI = 0.03-0.81; Padj = 0.03). We found that loss at 6q24.2-26 was significantly associated with the cluster of longer survival independently from other confounding factors (HR = 0.06, 95%CI = 0.01-0.43, Padj = 0.005). The prognostic value of this deletion was validated in two independent series, one consisting of 36 HGSOCs analyzed by fluorescent in situ hybridization (P = 0.04) and another comprised of 411 HGSOCs from the Cancer Genome Atlas study (TCGA) (HR = 0.67, 95%CI = 0.48-0.93, Padj = 0.019). In addition, we confirmed the association of low expression of the genes from the region with longer survival in 799 HGSOCs (HR = 0.74, 95%CI = 0.61-0.90, log-rank P = 0.002) and 675 high-FIGO stage HGSOCs (HR = 0.76, 95%CI = 0.61-0.96, log-rank P = 0.02) available from the online tool KM-plotter. Finally, by integrating copy number, RNAseq and survival data of 296 HGSOCs from TCGA we propose a few candidate genes that can potentially explain the association. Altogether our findings indicate that the 6q24.2-26 deletion is an independent marker of favorable outcome in HGSOCs with potential clinical value as it can be analyzed by FISH on tumor sections and guide the selection of patients towards more conservative therapeutic strategies in order to reduce side-effects and improve quality of life.
Collapse
Affiliation(s)
- Marta M Kamieniak
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Daniel Rico
- Structural Computational Biology Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3 28029, Madrid, Spain
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne 3004, Australia; Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street Carlton, Melbourne 3010, Victoria, Australia
| | - Ivan Muñoz-Repeto
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Kristina Ibáñez
- Structural Computational Biology Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3 28029, Madrid, Spain
| | - Miguel A Grillo
- Molecular Cytogenetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Samuel Domingo
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Salud Borrego
- Departments of Genetics, Reproduction, and Fetal Medicine, IBIS, University Hospital Virgen del Rocio/CSIC/University of Seville, Avda. Manuel Siurot, s/n., 41013 Sevilla, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Alicia Cazorla
- Pathology Department, Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040 Madrid, Spain
| | - José M García-Bueno
- Oncology Department, Hospital General de Albacete, Calle Hermanos Falco, 37, 02006 Albacete, Spain
| | - Susana Hernando
- Oncology Department, Fundación Hospital Alcorcón, Calle Valdelaguna, 1, 28922 Alcorcón, Spain
| | - Jesús García-Donas
- Medical Oncology Service, Oncologic Center Clara Campal, Calle Oña, 10, 28050 Madrid, Spain
| | - Elena Hernández-Agudo
- Breast Cancer Clinical Research Unit, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Teresa Ramón Y Cajal
- Medical Oncology Service, Hospital Sant Pau, Carrer de Sant Quintí, 89, 08026 Barcelona, Spain
| | - Luis Robles-Díaz
- Familial Cancer Unit and Medical Oncology Department, Hospital 12 de Octubre, Avda de Córdoba, s/n, 28041 Madrid, Spain
| | - Ivan Márquez-Rodas
- Medical Oncology Service, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Maite Cusidó
- Obstetrics and Gynecology Department, Institut Universitari Dexeus, Carrer de Sabino Arana, 5, 08028 Barcelona, Spain
| | - Raquel Sáez
- Laboratory of Genetics, Hospital Donostia, Calle Doctor Begiristain, 117, 20080 San Sebastián, Spain
| | - Carmen Lacambra-Calvet
- Department of Internal Medicine, Hospital Severo Ochoa, Avd. de Orellana, s/n., 28911 Madrid, Spain
| | - Ana Osorio
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Juan C Cigudosa
- Molecular Cytogenetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Luis Paz-Ares
- Medical Oncology Department, University Hospital Virgen del Rocio, Avda. Manuel Siurot s/n., 41013 Sevilla, Spain
| | - José Palacios
- Pathology Department, Hospital Universitario Ramón y Cajal, Ctra. de Colmenar Viejo, km. 9,100, 28034 Madrid, Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - María J García
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain.
| |
Collapse
|
15
|
Tanic M, Yanowski K, Gómez-López G, Rodriguez-Pinilla MS, Marquez-Rodas I, Osorio A, Pisano DG, Martinez-Delgado B, Benítez J. MicroRNA expression signatures for the prediction of BRCA1/2 mutation-associated hereditary breast cancer in paraffin-embedded formalin-fixed breast tumors. Int J Cancer 2014; 136:593-602. [PMID: 24917463 DOI: 10.1002/ijc.29021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/26/2014] [Indexed: 01/07/2023]
Abstract
Screening for germline mutations in breast cancer-associated genes BRCA1 and BRCA2 is indicated for patients with breast cancer from high-risk breast cancer families and influences both treatment options and clinical management. However, only 25% of selected patients test positive for BRCA1/2 mutation, indicating that additional diagnostic biomarkers are necessary. We analyzed 124 formalin-fixed paraffin-embedded (FFPE) tumor samples from patients with hereditary (104) and sporadic (20) invasive breast cancer, divided into two series (A and B). Microarray expression profiling of 829 human miRNAs was performed on 76 samples (Series A), and bioinformatics tool Prophet was used to develop and test a microarray classifier. Samples were stratified into a training set (n = 38) for microarray classifier generation and a test set (n = 38) for signature validation. A 35-miRNA microarray classifier was generated for the prediction of BRCA1/2 mutation status with a reported 95% (95% CI = 0.88-1.0) and 92% (95% CI: 0.84-1.0) accuracy in the training and the test set, respectively. Differential expression of 12 miRNAs between BRCA1/2 mutation carriers versus noncarriers was validated by qPCR in an independent tumor series B (n = 48). Logistic regression model based on the expression of six miRNAs (miR-142-3p, miR-505*, miR-1248, miR-181a-2*, miR-25* and miR-340*) discriminated between tumors from BRCA1/2 mutation carriers and noncarriers with 92% (95% CI: 0.84-0.99) accuracy. In conclusion, we identified miRNA expression signatures predictive of BRCA1/2 mutation status in routinely available FFPE breast tumor samples, which may be useful to complement current patient selection criteria for gene testing by identifying individuals with high likelihood of being BRCA1/2 mutation carriers.
Collapse
Affiliation(s)
- Miljana Tanic
- Human Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
MicroRNA-based molecular classification of non-BRCA1/2 hereditary breast tumours. Br J Cancer 2013; 109:2724-34. [PMID: 24104964 PMCID: PMC3833208 DOI: 10.1038/bjc.2013.612] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 02/07/2023] Open
Abstract
Background: Hereditary breast cancer comprises 5–10% of all breast cancers. Mutations in two high-risk susceptibility genes, BRCA1 and BRCA2, along with rare intermediate-risk genes and common low-penetrance alleles identified, altogether explain no more than 45% of the high-risk breast cancer families, although the majority of cases are unaccounted for and are designated as BRCAX tumours. Micro RNAs have called great attention for classification of different cancer types and have been implicated in a range of important biological processes and are deregulated in cancer pathogenesis. Methods: Here we have performed an exploratory hypothesis-generating study of miRNA expression profiles in a large series of 66 primary hereditary breast tumours by microarray analysis. Results: Unsupervised clustering analysis of miRNA molecular profiles revealed distinct subgroups of BRCAX tumours, ‘normal-like' BRCAX-A, ‘proliferative' BRCAX-B, ‘BRCA1/2-like' BRCAX-C and ‘undefined' BRCAX-D subgroup. These findings introduce a new insight in the biology of hereditary breast cancer, defining specific BRCAX subgroups, which could help in the search for novel susceptibility pathways in hereditary breast cancer. Conclusion: Our data demonstrate that BRCAX hereditary breast tumours can be sub-classified into four previously unknown homogenous groups characterised by specific miRNA expression signatures and histopathological features.
Collapse
|
17
|
Jeyasekharan AD, Liu Y, Hattori H, Pisupati V, Jonsdottir AB, Rajendra E, Lee M, Sundaramoorthy E, Schlachter S, Kaminski C, Ofir-Rosenfeld Y, Sato K, Savill J, Ayoub N, Venkitaraman AR. A cancer-associated BRCA2 mutation reveals masked nuclear export signals controlling localization. Nat Struct Mol Biol 2013; 20:1191-8. [PMID: 24013206 PMCID: PMC3796201 DOI: 10.1038/nsmb.2666] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/25/2013] [Indexed: 02/02/2023]
Abstract
Germline missense mutations affecting a single BRCA2 allele predispose humans to cancer. Here we identify a protein-targeting mechanism that is disrupted by the cancer-associated mutation, BRCA2(D2723H), and that controls the nuclear localization of BRCA2 and its cargo, the recombination enzyme RAD51. A nuclear export signal (NES) in BRCA2 is masked by its interaction with a partner protein, DSS1, such that point mutations impairing BRCA2-DSS1 binding render BRCA2 cytoplasmic. In turn, cytoplasmic mislocalization of mutant BRCA2 inhibits the nuclear retention of RAD51 by exposing a similar NES in RAD51 that is usually obscured by the BRCA2-RAD51 interaction. Thus, a series of NES-masking interactions localizes BRCA2 and RAD51 in the nucleus. Notably, BRCA2(D2723H) decreases RAD51 nuclear retention even when wild-type BRCA2 is also present. Our findings suggest a mechanism for the regulation of the nucleocytoplasmic distribution of BRCA2 and RAD51 and its impairment by a heterozygous disease-associated mutation.
Collapse
Affiliation(s)
- Anand D Jeyasekharan
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | - Yang Liu
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | - Hiroyoshi Hattori
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | - Venkat Pisupati
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | - Asta Bjork Jonsdottir
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | - Eeson Rajendra
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | - Miyoung Lee
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | | | | | | | - Yaara Ofir-Rosenfeld
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | - Ko Sato
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | - Jane Savill
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | - Nabieh Ayoub
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | - Ashok R Venkitaraman
- The Medical Research Council Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| |
Collapse
|
18
|
Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. Nat Cell Biol 2013; 15:967-77. [DOI: 10.1038/ncb2795] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/24/2013] [Indexed: 12/25/2022]
|
19
|
Senkus E, Szade J, Pieczyńska B, Żaczek A, Brożek I, Radecka B, Kowalczyk A, Wełnicka-Jaśkiewicz M, Jassem J. Are bilateral breast cancers different from breast cancers coexisting with ovarian cancer? An immunohistochemical analysis aimed at intrinsic tumor phenotype. Breast 2013; 22:425-30. [PMID: 23642527 DOI: 10.1016/j.breast.2013.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/19/2013] [Accepted: 04/03/2013] [Indexed: 11/24/2022] Open
Abstract
RATIONALE Bilateral breast cancers (BBC) and breast cancers coexisting with ovarian cancer (BOCS) are associated with genetic predisposition more frequently than sporadic cases. We compared the phenotypes of these tumors to better understand their pathomechanisms and aid the guiding of their clinical management. MATERIALS AND METHODS Tumor morphology and expression of ER, PgR, HER2, Ki67, CK5/6, E-cadherin, vimentin and EGFR were assessed in a tissue microarray containing cores from 174 BBC, 23 BOCS and 2 BBC + BOCS. RESULTS BOCS tumors were characterized by higher incidence of EGFR expression, HER2 negativity and lower incidence of intraductal component. HER2-positive phenotypes were marginally more frequent in the BBC group and triple negative tumors - in BOCS. CONCLUSION Breast cancers from BOCS patients are characterized by more aggressive phenotype, most probably related to their more frequent association with BRCA1 mutation.
Collapse
Affiliation(s)
- Elżbieta Senkus
- Department of Oncology & Radiotherapy, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The complex genetic landscape of familial breast cancer. Hum Genet 2013; 132:845-63. [PMID: 23552954 DOI: 10.1007/s00439-013-1299-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/21/2013] [Indexed: 01/19/2023]
Abstract
Familial breast cancer represents a minor percentage of all human breast cancers. Mutations in two high susceptibility genes BRCA1 and BRCA2 explain around 25 % of familial breast cancers, while other high, moderate and low susceptibility genes explain up to 20 % more of breast cancer families. Thus, it is important to decipher the genetic architecture of families that show no mutations to improve genetic counselling. The comprehensive description of familial breast cancer using different techniques and platforms has shown to be very valuable for better patient diagnosis, tumour surveillance, and ultimately patient treatment. This review focuses on the complex landscape of pathological, protein, genetic and genomic features associated with BRCA1-, BRCA2-, and non-BRCA1/BRCA2-related cancers described up to date. Special emphasis deserves the coexistence of distinct molecular breast cancer subtypes, the development of tumour classifiers to predict BRCA1/2 mutations, and the last insights from recent whole genome sequencing studies and miRNA profiling.
Collapse
|
21
|
Salimi M, Mozdarani H, Majidzadeh K. Expression pattern of ATM and cyclin D1 in ductal carcinoma, normal adjacent and normal breast tissues of Iranian breast cancer patients. Med Oncol 2011; 29:1502-9. [DOI: 10.1007/s12032-011-0043-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
|
22
|
Martinez-Marignac VL, Rodrigue A, Davidson D, Couillard M, Al-Moustafa AE, Abramovitz M, Foulkes WD, Masson JY, Aloyz R. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells. PLoS One 2011; 6:e16394. [PMID: 21283680 PMCID: PMC3025979 DOI: 10.1371/journal.pone.0016394] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/14/2010] [Indexed: 12/21/2022] Open
Abstract
Over-expression of DNA repair genes has been associated with resistance to radiation and DNA-damage induced by chemotherapeutic agents such as cisplatin. More recently, based on the analysis of genome expression profiling, it was proposed that over-expression of DNA repair genes enhances the invasive behaviour of tumour cells. In this study we present experimental evidence utilizing functional assays to test this hypothesis. We assessed the effect of the DNA repair proteins known as X-ray complementing protein 3 (XRCC3) and RAD51, to the invasive behavior of the MCF-7 luminal epithelial-like and BT20 basal-like triple negative human breast cancer cell lines. We report that stable or transient over-expression of XRCC3 but not RAD51 increased invasiveness in both cell lines in vitro. Moreover, XRCC3 over-expressing MCF-7 cells also showed a higher tumorigenesis in vivo and this phenotype was associated with increased activity of the metalloproteinase MMP-9 and the expression of known modulators of cell-cell adhesion and metastasis such as CD44, ID-1, DDR1 and TFF1. Our results suggest that in addition to its' role in facilitating repair of DNA damage, XRCC3 affects invasiveness of breast cancer cell lines and the expression of genes associated with cell adhesion and invasion.
Collapse
Affiliation(s)
| | - Amélie Rodrigue
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, Québec City, Canada
| | - David Davidson
- McGill University, Lady Davis Institute & Segal Cancer Center, Jewish General Hospital, Montreal, Canada
| | - Martin Couillard
- McGill University, Lady Davis Institute & Segal Cancer Center, Jewish General Hospital, Montreal, Canada
| | - Ala-Eddin Al-Moustafa
- McGill University, Lady Davis Institute & Segal Cancer Center, Jewish General Hospital, Montreal, Canada
| | - Mark Abramovitz
- McGill University, Lady Davis Institute & Segal Cancer Center, Jewish General Hospital, Montreal, Canada
| | - William D. Foulkes
- Faculty of Medicine, Program in Cancer Genetics, McGill University, Montreal, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, Québec City, Canada
| | - Raquel Aloyz
- McGill University, Lady Davis Institute & Segal Cancer Center, Jewish General Hospital, Montreal, Canada
- Faculty of Medicine, Program in Cancer Genetics, McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
23
|
Barbano R, Copetti M, Perrone G, Pazienza V, Muscarella LA, Balsamo T, Storlazzi CT, Ripoli M, Rinaldi M, Valori VM, Latiano TP, Maiello E, Stanziale P, Carella M, Mangia A, Pellegrini F, Bisceglia M, Muda AO, Altomare V, Murgo R, Fazio VM, Parrella P. High RAD51 mRNA expression characterize estrogen receptor-positive/progesteron receptor-negative breast cancer and is associated with patient's outcome. Int J Cancer 2010; 129:536-45. [PMID: 21064098 DOI: 10.1002/ijc.25736] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/28/2010] [Indexed: 11/12/2022]
Abstract
Mutations in DNA double-strand breaks (DSB) repair genes are involved in the pathogenesis of hereditary mammary tumors, it is, however, still unclear whether defects in this pathway may play a role in sporadic breast cancer. In this study, we initially determined mRNA expression of 15 DSB related genes by reverse transcription quantitative polymerase chain reaction in paired normal tissue and cancer specimen from 20 breast cancer cases to classify them into homogeneous clusters. G22P1/ku70, ATR and RAD51 genes were differentially expressed in the three branches recognized by clustering analysis. In particular, a breast cancer subgroup characterized by high RAD51 mRNA levels and estrogen receptor (ER)-positive/progesteron receptor (PR)-negative phenotype was identified. This result was confirmed by the analysis of G22P1/ku70, ATR and RAD51 mRNA levels on paired normal and tumor specimens from an extended breast cancer cohort (n = 75). RAD51 mRNA levels were inversely associated with PR status (p = 0.02) and the highest levels were, indeed, detected in ER-positive/PR-negative tumors (p = 0.03). RAD51 immunostaining of a tissue microarray confirmed the inverse relationship between high RAD51 expression and negative PR status (p = 0.002), as well as, the association with ER-positive/PR-negative phenotype (p = 0.003). Interestingly, the analysis of microarray expression data from 295 breast cancers indicate that RAD51 increased mRNA expression is associated with higher risk of tumor relapse, distant metastases and worst overall survival (p = 0.015, p = 0.009 and p = 0.013 respectively). Our results suggest that RAD51 expression determination could contribute to a better molecular classification of mammary tumors and may represent a novel tool for evaluating postoperative adjuvant therapy for breast cancer patients.
Collapse
Affiliation(s)
- Raffaela Barbano
- Laboratory of Oncology, Research Department, Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Patients with germline mutations in BRCA1 or BRCA2 genes are predisposed to breast cancer. The BRCA1-associated breast cancers have distinct morphology, being more often medullary-like, triple negative and showing a 'basal' phenotype. On the other hand, BRCA2 and BRCAX cancers are a heterogeneous group without a specific phenotype. When incorporated into risk assessment models, pathology data improves prediction of carrier status. The role of BRCA1 and BRCA2 in DNA repair is being exploited to develop novel therapies, for example, using the poly-ADP-ribose polymerase inhibitors. A number of low-to-moderate-penetrant genes/loci have also been identified, but their role and contribution in breast cancer development is still under investigation.
Collapse
|
25
|
Asakawa H, Koizumi H, Koike A, Takahashi M, Wu W, Iwase H, Fukuda M, Ohta T. Prediction of breast cancer sensitivity to neoadjuvant chemotherapy based on status of DNA damage repair proteins. Breast Cancer Res 2010; 12:R17. [PMID: 20205718 PMCID: PMC2879561 DOI: 10.1186/bcr2486] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/07/2010] [Accepted: 03/05/2010] [Indexed: 12/31/2022] Open
Abstract
Introduction Various agents used in breast cancer chemotherapy provoke DNA double-strand breaks (DSBs). DSB repair competence determines the sensitivity of cells to these agents whereby aberrations in the repair machinery leads to apoptosis. Proteins required for this pathway can be detected as nuclear foci at sites of DNA damage when the pathway is intact. Here we investigate whether focus formation of repair proteins can predict chemosensitivity of breast cancer. Methods Core needle biopsy specimens were obtained from sixty cases of primary breast cancer before and 18-24 hours after the first cycle of neoadjuvant epirubicin plus cyclophosphamide (EC) treatment. Nuclear focus formation of DNA damage repair proteins was immunohistochemically analyzed and compared with tumor response to chemotherapy. Results EC treatment induced nuclear foci of γH2AX, conjugated ubiquitin, and Rad51 in a substantial amount of cases. In contrast, BRCA1 foci were observed before treatment in the majority of the cases and only decreased after EC in thirteen cases. The presence of BRCA1-, γH2AX-, or Rad51-foci before treatment or the presence of Rad51-foci after treatment was inversely correlated with tumor response to chemotherapy. DNA damage response (DDR) competence was further evaluated by considering all four repair indicators together. A high DDR score significantly correlated with low tumor response to EC and EC + docetaxel whereas other clinicopathological factors analyzed did not. Conclusions High performing DDR focus formation resulted in tumor resistance to DNA damage-inducing chemotherapy. Our results suggested an importance of evaluation of DDR competence to predict breast cancer chemosensitivity, and merits further studying into its usefulness in exclusion of non-responder patients.
Collapse
Affiliation(s)
- Hideki Asakawa
- Division of Breast and Endocrine Surgery, Department of Surgery, St, Marianna University School of Medicine, Kawasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Melchor L, Saucedo-Cuevas LP, Muñoz-Repeto I, Rodríguez-Pinilla SM, Honrado E, Campoverde A, Palacios J, Nathanson KL, García MJ, Benítez J. Comprehensive characterization of the DNA amplification at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes. Breast Cancer Res 2009; 11:R86. [PMID: 19995430 PMCID: PMC2815550 DOI: 10.1186/bcr2456] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/17/2009] [Accepted: 12/08/2009] [Indexed: 02/04/2023] Open
Abstract
Introduction Breast cancer subtypes exhibit different genomic aberration patterns with a tendency for high-level amplifications in distinct chromosomal regions. These genomic aberrations may drive carcinogenesis through the upregulation of proto-oncogenes. We have characterized DNA amplification at the human chromosomal region 13q34 in breast cancer. Methods A set of 414 familial and sporadic breast cancer cases was studied for amplification at region 13q34 by fluorescence in situ hybridization (FISH) analysis on tissue microarrays. Defining the minimal common region of amplification in those cases with amplification at 13q34 was carried out using an array-based comparative genomic hybridization platform. We performed a quantitative real-time - polymerase chain reaction (qRT-PCR) gene expression analysis of 11 candidate genes located within the minimal common region of amplification. Protein expression levels of two of these genes (TFDP1 and CUL4A) were assessed by immunohistochemical assays on the same tissue microarrays used for FISH studies, and correlated with the expression of a panel of 33 antibodies previously analyzed. Results We have found 13q34 amplification in 4.5% of breast cancer samples, but the frequency increased to 8.1% in BRCA1-associated tumors and to 20% in basal-like tumors. Tumors with 13q34 amplification were associated with high grade, estrogen receptor negativity, and expression of EGFR, CCNE, CK5, and P-Cadherin, among other basal cell markers. We have defined a 1.83 megabases minimal common region of genomic amplification and carried out mRNA expression analyses of candidate genes located therein, identifying CUL4A and TFDP1 as the most likely target genes. Moreover, we have confirmed that tumors with 13q34 amplification significantly overexpress CUL4A and TFDP1 proteins. Tumors overexpressing either CUL4A or TFDP1 were associated with tumor proliferation and cell cycle progression markers. Conclusions We conclude that 13q34 amplification may be of relevance in tumor progression of basal-like breast cancers by inducing overexpression of CUL4A and TFDP1, which are both important in cell cycle regulation. Alternatively, as these genes were also overexpressed in non-basal-like tumor samples, they could play a wider role in cancer development by inducing tumor proliferation.
Collapse
Affiliation(s)
- Lorenzo Melchor
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Center (CNIO), Madrid, E-28029, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Waddell N, Arnold J, Cocciardi S, da Silva L, Marsh A, Riley J, Johnstone CN, Orloff M, Assie G, Eng C, Reid L, Keith P, Yan M, Fox S, Devilee P, Godwin AK, Hogervorst FBL, Couch F, Grimmond S, Flanagan JM, Khanna K, Simpson PT, Lakhani SR, Chenevix-Trench G. Subtypes of familial breast tumours revealed by expression and copy number profiling. Breast Cancer Res Treat 2009; 123:661-77. [PMID: 19960244 DOI: 10.1007/s10549-009-0653-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/13/2009] [Indexed: 01/03/2023]
Abstract
Extensive expression profiling studies have shown that sporadic breast cancer is composed of five clinically relevant molecular subtypes. However, although BRCA1-related tumours are known to be predominantly basal-like, there are few published data on other classes of familial breast tumours. We analysed a cohort of 75 BRCA1, BRCA2 and non-BRCA1/2 breast tumours by gene expression profiling and found that 74% BRCA1 tumours were basal-like, 73% of BRCA2 tumours were luminal A or B, and 52% non-BRCA1/2 tumours were luminal A. Thirty-four tumours were also analysed by single nucleotide polymorphism-comparative genomic hybridization (SNP-CGH) arrays. Copy number data could predict whether a tumour was basal-like or luminal with high accuracy, but could not predict its mutation class. Basal-like BRCA1 and basal-like non-BRCA1 tumours were very similar, and contained the highest number of chromosome aberrations. We identified regions of frequent gain containing potential driver genes in the basal (8q and 12p) and luminal A tumours (1q and 17q). Regions of homozygous loss associated with decreased expression of potential tumour suppressor genes were also detected, including in basal tumours (5q and 9p), and basal and luminal tumours (10q). This study highlights the heterogeneity of familial tumours and the clinical consequences for treatment and prognosis.
Collapse
Affiliation(s)
- Nic Waddell
- Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mitra A, Jameson C, Barbachano Y, Sanchez L, Kote-Jarai Z, Peock S, Sodha N, Bancroft E, Fletcher A, Cooper C, Easton D, Eeles R, Foster CS. Overexpression of RAD51 occurs in aggressive prostatic cancer. Histopathology 2009; 55:696-704. [PMID: 20002770 PMCID: PMC2856636 DOI: 10.1111/j.1365-2559.2009.03448.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS To test the hypothesis that, in a matched series of prostatic cancers, either with or without BRCA1 or BRCA2 mutations, RAD51 protein expression is enhanced in association with BRCA mutation genotypes. METHODS AND RESULTS RAD51 expression identified immunohistochemically was compared between prostatic cancers occurring in BRCA1 or BRCA2 mutation carriers and controls. RAD51 protein expression in the cytoplasm and nuclei of the benign tissues was significantly less than in the malignant tissues (P < 0.001). In all cancers, cytoplasmic expression of RAD51 was more prevalent and associated with higher Gleason score (P < 0.05) irrespective of BRCA mutational status, than its expression in benign tissues (P < 0.001). Although nuclear immunoreactivity was not observed in BRCA-associated cancers with Gleason score < or =7, it was significantly increased in all other groups of prostatic cancers when compared with benign tissues (P < 0.001). CONCLUSIONS RAD51 protein is strongly expressed in high-grade prostatic cancers, whether sporadic or associated with BRCA germ-line mutations. Distinct localization of RAD51 between cytoplasm and nucleus, particularly in cancers of Gleason score < or =7, reflects distinct levels of RAD51 regulatory activity, from transcription to DNA repair. This biomarker may be of value in identifying patients requiring urgent treatment at diagnosis as well as in analysing biological mechanisms underlying aggressive phenotype of human prostatic cancer.
Collapse
Affiliation(s)
- Anita Mitra
- Translational Cancer Genetics Team, Section of Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Welsh JW, Ellsworth RK, Kumar R, Fjerstad K, Martinez J, Nagel RB, Eschbacher J, Stea B. Rad51 protein expression and survival in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2009; 74:1251-5. [PMID: 19545791 DOI: 10.1016/j.ijrobp.2009.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 02/11/2009] [Accepted: 03/10/2009] [Indexed: 02/03/2023]
Abstract
PURPOSE Treatment of glioblastoma multiforme (GBM) continues to pose a significant therapeutic challenge, with most tumors recurring within the previously irradiated tumor bed. To improve outcomes, we must be able to identify and treat resistant cell populations. Rad51, an enzyme involved in homologous recombinational repair, leads to increased resistance of tumor cells to cytotoxic treatments such as radiotherapy. We hypothesized that Rad51 might contribute to GBM's apparent radioresistance and consequently influence survival. METHODS AND MATERIALS A total of 68 patients with an initial diagnosis of GBM were retrospectively evaluated; for 10 of these patients, recurrent tumor specimens were used to construct a tissue microarray. Rad51 protein expression was then correlated with the actual and predicted survival using recursive partitioning analysis. RESULTS Rad51 protein was elevated in 53% of the GBM specimens at surgery. The Rad51 levels correlated directly with survival, with a median survival of 15 months for patients with elevated Rad51 compared with 9 months for patients with low or absent levels of Rad51 (p = .05). At disease recurrence, 70% of patients had additional increases in Rad51 protein. Increased Rad51 levels at disease recurrence similarly predicted for improved overall survival, with a mean survival of 16 months from the second craniotomy compared with only 4 months for patients with low Rad51 levels (p = .13). CONCLUSION Elevated levels of the double-stranded DNA repair protein Rad51 predicted for an increase survival duration in patients with GBM, at both initial tumor presentation and disease recurrence.
Collapse
Affiliation(s)
- James W Welsh
- Department of Radiation Oncology, University of Arizona College of Medicine, Tucson, AZ, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bennett BT, Bewersdorf J, Knight KL. Immunofluorescence imaging of DNA damage response proteins: optimizing protocols for super-resolution microscopy. Methods 2009; 48:63-71. [PMID: 19245833 DOI: 10.1016/j.ymeth.2009.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 02/15/2009] [Indexed: 10/21/2022] Open
Abstract
Immunofluorescence imaging has provided captivating visual evidence for numerous cellular events, from vesicular trafficking, organelle maturation and cell division to nuclear processes including the appearance of various proteins and chromatin components in distinct foci in response to DNA damaging agents. With the advent of new super-resolution microscope technologies such as 4Pi microscopy, standard immunofluorescence protocols deserve some reevaluation in order to take full advantage of these new technological accomplishments. Here we describe several methodological considerations that will help overcome some of the limitations that may result from the use of currently applied procedures, with particular attention paid to the analysis of possible colocalization of fluorescent signals. We conclude with an example of how application of optimized methods led to a breakthrough in super-resolution imaging of nuclear events occurring in response to DNA damage.
Collapse
Affiliation(s)
- Brian T Bennett
- Department of Biochemistry and Molecular Pharmacology, Aaron Lazare Medical Research Building, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
31
|
Rosa-Rosa JM, Pita G, Urioste M, Llort G, Brunet J, Lázaro C, Blanco I, Ramón y Cajal T, Díez O, de la Hoya M, Caldés T, Tejada MI, González-Neira A, Benítez J. Genome-wide linkage scan reveals three putative breast-cancer-susceptibility loci. Am J Hum Genet 2009; 84:115-22. [PMID: 19147119 DOI: 10.1016/j.ajhg.2008.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/17/2008] [Accepted: 12/17/2008] [Indexed: 11/29/2022] Open
Abstract
Despite all the research efforts made during the last few decades, most of the cases of families with breast cancer remain unexplained. Mutations in BRCA1 and BRCA2, and in other breast-cancer-susceptibility genes, account for about 25% of familial breast cancer. Linkage studies have failed to identify other breast-cancer-susceptibility genes. The selection criteria of the families, differences in the population background, or clinical and genetic heterogeneity, among other factors, might determine the power to detect the linkage signal. We have performed a SNP-based linkage scan with a total of 6000 SNP markers across the genome in 41 breast-cancer Spanish families, with an average of four breast-cancer cases per family not associated with BRCA1 or BRCA2 germline mutations. In addition, we have included three BRCA-positive families to test the power in linkage detection from a low-complexity family in which a high-penetrance mutation segregates. We have identified three regions of interest, located on 3q25, 6q24, and 21q22. The two former regions showed a suggestive linkage signal (HLOD scores 3.01 and 2.26, respectively), and the latter region showed a significant linkage signal (HLOD score 3.55). Moreover, we found that a subset of 13 families with bilateral breast cancer presented a HLOD of 3.13 on the 3q25 region. Our results suggest that several variables must be taken into account before performing a linkage study in familial breast cancer because of the high heterogeneity within non-BRCA1/2 families. Phenotypic and geographic homogeneity could be the most important factors.
Collapse
Affiliation(s)
- Juan Manuel Rosa-Rosa
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hofstra RMW, Spurdle AB, Eccles D, Foulkes WD, de Wind N, Hoogerbrugge N, Hogervorst FBL. Tumor characteristics as an analytic tool for classifying genetic variants of uncertain clinical significance. Hum Mutat 2008; 29:1292-303. [PMID: 18951447 DOI: 10.1002/humu.20894] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is important to identify a germline mutation in a patient with an inherited cancer syndrome to allow mutation carriers to be included in cancer surveillance programs, which have been proven to save lives. Many of the mutations identified result in premature termination of translation, and thus in loss-of-function of the encoded mutated protein. However, the significance of a large proportion of the sequence changes reported is unknown. Some of these variants will be associated with a high risk of cancer and have direct clinical consequence. Many criteria can be used to classify variants with unknown significance; most criteria are based on the characteristics of the amino acid change, on segregation data and appearance of the variant, on the presence of the variant in controls, or on functional assays. In inherited cancers, tumor characteristics can also be used to classify variants. It is worthwhile to examine the clinical, morphological and molecular features of a patient, and his or her family, when assessing whether the role of a variant is likely to be neutral or pathogenic. Here we describe the advantages and disadvantages of using the tumor characteristics of patients carrying germline variants of uncertain significance (VUS) in BRCA1, BRCA2, or in one of the mismatch repair (MMR) genes, MLH1, MSH2, or MSH6, to infer pathogenicity.
Collapse
Affiliation(s)
- Robert M W Hofstra
- Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Colombo M, Giarola M, Mariani L, Ripamonti CB, De Benedetti V, Sardella M, Losa M, Manoukian S, Peissel B, Pierotti MA, Pilotti S, Radice P. Cyclin D1 expression analysis in familial breast cancers may discriminate BRCAX from BRCA2-linked cases. Mod Pathol 2008; 21:1262-70. [PMID: 18327210 DOI: 10.1038/modpathol.2008.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most familial breast cancers arise in patients who tested negative for germline mutations in BRCA1 and BRCA2 genes (also referred to as BRCAX cases). Several studies aimed to define histopathological and molecular profiles characteristic of BRCA1, BRCA2 and BRCAX tumors have been performed. Major pathological and immunohistochemical differences have been reported in BRCA1 cancers compared to the other two groups, whereas less difference has been observed between BRCA2 and BRCAX cases. The aim of this study was to investigate the ability of selected tumor markers to discriminate BRCAX breast cancers from cancers arising in carriers of mutations in BRCA genes, and their usefulness in selecting familial cases in whom testing for such mutations is more likely to result uninformative. We carried out a morphological and immunohistochemical analysis on 22 BRCA1, 16 BRCA2 and 33 BRCAX familial breast cancers. Age at first diagnosis, histological type and grade, and immunostaining for estrogen receptor (ER), progesterone receptor (PR), p53, HER2/Neu, E-cadherin and cyclin D1 were investigated. The occurrence of somatic mutations of the TP53 gene was also verified. BRCA1 tumors resulted clearly distinguishable from BRCAX cases, occurring at a younger age, being more frequently of higher grade, negative for ER, PR and cyclin D1 expression and positive for p53 alterations. The predictive value of age at diagnosis, histological grade and PR expression was confirmed in a multivariable analysis. When comparing BRCA2 with BRCAX tumors, the only parameter that differed was cyclin D1, which was significantly overexpressed in BRCA2 cases both in the univariable and the multivariable analyses. If confirmed by further studies, our observations indicate that the investigation of cyclin D1 expression in familial breast cancer cases could be used, in conjunction with the analysis of other tumor markers preferentially associated with BRCA1 or BRCA2 tumors, to prioritize hereditary cases for mutation testing in BRCA genes.
Collapse
Affiliation(s)
- Mara Colombo
- Unit of Genetic Susceptibility to Cancer, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lynch HT, Marcus JN, Rubinstein WS. Stemming the tide of cancer for BRCA1/2 mutation carriers. J Clin Oncol 2008; 26:4239-43. [PMID: 18779610 DOI: 10.1200/jco.2008.17.4201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Tan DSP, Marchiò C, Reis-Filho JS. Hereditary breast cancer: from molecular pathology to tailored therapies. J Clin Pathol 2008; 61:1073-82. [PMID: 18682420 DOI: 10.1136/jcp.2008.057950] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hereditary breast cancer accounts for up to 5-10% of all breast carcinomas. Recent studies have demonstrated that mutations in two high-penetrance genes, namely BRCA1 and BRCA2, are responsible for about 16% of the familial risk of breast cancer. Even though subsequent studies have failed to find another high-penetrance breast cancer susceptibility gene, several genes that confer a moderate to low risk of breast cancer development have been identified; moreover, hereditary breast cancer can be part of multiple cancer syndromes. In this review we will focus on the hereditary breast carcinomas caused by mutations in BRCA1, BRCA2, Fanconi anaemia (FANC) genes, CHK2 and ATM tumour suppressor genes. We describe the hallmark histological features of these carcinomas compared with non-hereditary breast cancers and show how an accurate histopathological diagnosis may help improve the identification of patients to be screened for mutations. Finally, novel therapeutic approaches to treat patients with BRCA1 and BRCA2 germ line mutations, including cross-linking agents and PARP inhibitors, are discussed.
Collapse
Affiliation(s)
- D S P Tan
- Molecular Pathology Laboratory, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | | | | |
Collapse
|
36
|
Martin RW, Orelli BJ, Yamazoe M, Minn AJ, Takeda S, Bishop DK. RAD51 up-regulation bypasses BRCA1 function and is a common feature of BRCA1-deficient breast tumors. Cancer Res 2007; 67:9658-65. [PMID: 17942895 DOI: 10.1158/0008-5472.can-07-0290] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The breast cancer susceptibility gene BRCA1 encodes a large protein thought to contribute to a variety of cellular processes, although the critical determinants of BRCA1-deficient tumorigenesis remain unclear. Given that BRCA1 is required for cell proliferation, suppressor mutations are believed to modify BRCA1 phenotypes and contribute to the etiology of BRCA1-deficient tumors. Here, we show that overexpression of the homologous recombinase RAD51 in a DT40 BRCA1Delta/Delta mutant rescues defects in proliferation, DNA damage survival, and homologous recombination (HR). In addition, epistasis analysis with BRCA1 and the DNA end-joining factor KU70 indicates that these factors operate independently of one another to repair double-strand breaks. Consistent with this genetic finding, cell synchronization studies show that the ability of BRCA1 to promote radioresistance is restricted to the late S and G2 phases of the cell cycle, as predicted for genes whose function is specific to homology-mediated repair rather than nonhomologous end-joining. Notably, retrospective analyses of microarray expression data reveal elevated expression of RAD51 and two of its late-acting cofactors, RAD54 and RAD51AP1, in BRCA1-deficient versus sporadic breast tumors. Taken together, our results indicate that up-regulation of HR provides a permissive genetic context for cells lacking BRCA1 function by circumventing its requirement in RAD51 subnuclear assembly. Furthermore, the data support a model in which enhanced HR activity contributes to the etiology of BRCA1-deficient tumors.
Collapse
Affiliation(s)
- Richard W Martin
- Department of Radiation, Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
37
|
Melchor L, Honrado E, García MJ, Alvarez S, Palacios J, Osorio A, Nathanson KL, Benítez J. Distinct genomic aberration patterns are found in familial breast cancer associated with different immunohistochemical subtypes. Oncogene 2007; 27:3165-75. [PMID: 18071313 DOI: 10.1038/sj.onc.1210975] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Five breast cancer subtypes have been described in sporadic breast cancer (SBC) using expression arrays: basal-like, ERBB2, normal breast-like, luminal A and B. These molecular subtypes show different genomic aberration patterns (GAPs). Recently, our group described these breast cancer subtypes in 50 non-BRCA1/2 familial tumors using immunohistochemistry assays. We extended this study to the other classes of familial breast cancer (FBC), including 62 tumors (18 BRCA1, 16 BRCA2 and 28 non-BRCA1/2), with the same panel of 25 immunohistochemical (IHC) markers and histological grade obtaining a similar classification. We combined these data with results generated by a 1 Mb BAC array-based CGH study to evaluate the genomic aberrations of each group. We found that BRCA1-related tumors are preferentially basal-like, whereas non-BRCA1/2 familial tumors are mainly luminal A subtype. We described distinct GAPs related to each IHC subtype. Basal tumors had a greater number of gains/losses, while luminal B tumors had more high-level DNA amplifications. Our data are similar to those obtained in SBC studies, highlighting the existence of distinct genetic pathways of tumor evolution, common to both SBC and FBC.
Collapse
Affiliation(s)
- L Melchor
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Center (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Antoni L, Sodha N, Collins I, Garrett MD. CHK2 kinase: cancer susceptibility and cancer therapy - two sides of the same coin? Nat Rev Cancer 2007; 7:925-36. [PMID: 18004398 DOI: 10.1038/nrc2251] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the past decade, CHK2 has emerged as an important multifunctional player in the DNA-damage response signalling pathway. Parallel studies of the human CHEK2 gene have also highlighted its role as a candidate multiorgan tumour susceptibility gene rather than a highly penetrant predisposition gene for Li-Fraumeni syndrome. As discussed here, our current understanding of CHK2 function in tumour cells, in both a biological and genetic context, suggests that targeted modulation of the active kinase or exploitation of its loss in tumours could prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Laurent Antoni
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | | | | | | |
Collapse
|
39
|
Honrado E, Osorio A, Milne RL, Paz MF, Melchor L, Cascón A, Urioste M, Cazorla A, Díez O, Lerma E, Esteller M, Palacios J, Benítez J. Immunohistochemical classification of non-BRCA1/2 tumors identifies different groups that demonstrate the heterogeneity of BRCAX families. Mod Pathol 2007; 20:1298-306. [PMID: 17885670 DOI: 10.1038/modpathol.3800969] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Around 25% of hereditary breast and ovarian cancer families have mutations in the BRCA1 and BRCA2 genes. The search for other genes has until now failed, probably because there is not one single BRCAX gene, but rather various genes that may each be responsible for a small number of breast cancer families and/or may interact according to a polygenic model. We have studied 50 tumors from probands belonging to non-BRCA1/2 breast cancer families (BRCAX), using 25 immunohistochemical markers. The objective was to classify these tumors and confirm that they are heterogeneous. Unsupervised cluster analysis showed the existence of the following two main groups of tumors: high-grade and estrogen receptor (ER)-negative tumors (50%), and low-grade and ER-positive tumors (50%). In addition we identified five subgroups, three among the high-grade and two among the low-grade groups; one overexpressing HER-2 (18%); one with a basal-like phenotype (14%); one with a normal breast-like phenotype (18%); a luminal A subgroup (36%), and a luminal B subgroup (14%). Hypermethylation of the BRCA1 gene was observed in 42% of the cases, spread across all five subgroups, but only 37% of those had loss of heterozygosity as well. These latter cases were all clustered in the high-grade group and the majority of them in the basal-like subgroup. Our results show that familial non-BRCA1/2 tumors are heterogeneous and suggest a polygenic model for explaining the majority of BRCAX families. In addition we have defined a subset of them that have somatic inactivation of the BRCA1 gene.
Collapse
Affiliation(s)
- Emiliano Honrado
- Department of Human Genetics, Spanish National Cancer Centre, Melchor Fernandez Almagro 3, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Söderlund K, Skoog L, Fornander T, Askmalm MS. The BRCA1/BRCA2/Rad51 complex is a prognostic and predictive factor in early breast cancer. Radiother Oncol 2007; 84:242-51. [PMID: 17707537 DOI: 10.1016/j.radonc.2007.06.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/03/2007] [Accepted: 06/27/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE The breast cancer susceptibility genes BRCA1 and BRCA2 interact with Rad51, one of the central components in the homologous recombination repair pathway. This study evaluates the prognostic and predictive role of BRCA1, BRCA2 and Rad51, individually and as a complex, in breast cancer. MATERIALS AND METHODS Expression of BRCA1, BRCA2 and Rad51 was investigated using immunohistochemistry in tumours from 224 women with early breast cancer, who were randomised to receive postoperative radiotherapy or adjuvant chemotherapy (CMF). RESULTS Fifty-three percent (112/212) of the tumours had reduced expression of the BRCA1/BRCA2/Rad51 complex. Low expression correlated to high histologic grade (p=0.05). Patients with low expression of the complex developed significantly more local recurrences as compared to patients with high expression (RR=3.20, 95% CI 1.48-6.88, p=0.003). Expression of the BRCA1/BRCA2/Rad51 complex was an independent prognostic factor in multivariate analysis (p=0.03). Patients with low expression of the complex responded well to radiotherapy (RR=0.31, 95% CI 0.14-0.70, p=0.005), whereas patients with high expression had few local recurrences and no additional benefit from radiotherapy (RR=1.08, 95% CI 0.40-2.90, p=0.88). CONCLUSIONS Low expression of the BRCA1/BRCA2/Rad51 complex is a marker of poor prognosis, but predicts good response to radiotherapy in patients with early breast cancer.
Collapse
Affiliation(s)
- Karin Söderlund
- Department of Biomedicine and Surgery, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
41
|
Eccles D, Gerty S, Simmonds P, Hammond V, Ennis S, Altman DG. Prospective study of Outcomes in Sporadic versus Hereditary breast cancer (POSH): study protocol. BMC Cancer 2007; 7:160. [PMID: 17697367 PMCID: PMC1995215 DOI: 10.1186/1471-2407-7-160] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 08/15/2007] [Indexed: 11/10/2022] Open
Abstract
Background Young women presenting with breast cancer are more likely to have a genetic predisposition to the disease than breast cancer patients in general. A genetic predisposition is known to increase the risk of new primary breast (and other) cancers. It is unclear from the literature whether genetic status should be taken into consideration when planning adjuvant treatment in a young woman presenting with a first primary breast cancer. The primary aim of the POSH study is to establish whether genetic status influences the prognosis of primary breast cancer independently of known prognostic factors. Methods/design The study is a prospective cohort study recruiting 3,000 women aged 40 years or younger at breast cancer diagnosis; the recruiting period covers 1st June 2001 to 31st December 2007. Written informed consent is obtained at study entry. Family history and known epidemiological risk data are collected by questionnaire. Clinical information about diagnosis, treatment and clinical course is collected and blood is stored. Follow up data are collected annually after the first year. An additional recruitment category includes women aged 41 to 50 years who are found to be BRCA1 or BRCA2 gene carriers and were diagnosed with their first breast cancer during the study recruiting period. Discussion Power estimates were based on 10% of the cohort carrying a BRCA1 gene mutation. Preliminary BRCA1 and BRCA2 mutation analysis in a pilot set of study participants confirms we should have 97% power to detect a difference of 10% in event rates between gene carriers and sporadic young onset cases. Most of the recruited patients (>80%) receive an anthracycline containing adjuvant chemotherapy regimen making planned analyses more straightforward.
Collapse
Affiliation(s)
- Diana Eccles
- Somers Cancer Sciences Building Mail Point 824, Southampton University Hospitals NHS Trust, Tremona Road, Southampton SO16 6YA, UK
| | - Sue Gerty
- Somers Cancer Sciences Building Mail Point 824, Southampton University Hospitals NHS Trust, Tremona Road, Southampton SO16 6YA, UK
| | - Peter Simmonds
- Somers Cancer Sciences Building Mail Point 824, Southampton University Hospitals NHS Trust, Tremona Road, Southampton SO16 6YA, UK
| | - Victoria Hammond
- Somers Cancer Sciences Building Mail Point 824, Southampton University Hospitals NHS Trust, Tremona Road, Southampton SO16 6YA, UK
| | - Sarah Ennis
- Somers Cancer Sciences Building Mail Point 824, Southampton University Hospitals NHS Trust, Tremona Road, Southampton SO16 6YA, UK
| | - Douglas G Altman
- Centre for Statistics in Medicine, Wolfson College Annexe, Linton Road, Oxford OX2 6UD, UK
| | | |
Collapse
|
42
|
Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ, Devilee P. Genetic susceptibility for breast cancer: How many more genes to be found? Crit Rev Oncol Hematol 2007; 63:125-49. [PMID: 17498966 DOI: 10.1016/j.critrevonc.2006.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 12/01/2006] [Accepted: 12/14/2006] [Indexed: 12/16/2022] Open
Abstract
Today, breast cancer is the most commonly occurring cancer among women. It accounts for 22% of all female cancers and the estimated annual incidence of breast cancer worldwide is about one million cases. Many risk factors have been identified but a positive family history remains among the most important ones established for breast cancer, with first-degree relatives of patients having an approximately two-fold elevated risk. It is currently estimated that approximately 20-25% of this risk is explained by known breast cancer susceptibility genes, mostly those conferring high risks, such as BRCA1 and BRCA2. However, these genes explain less than 5% of the total breast cancer incidence, even though several studies have suggested that the proportion of breast cancer that can be attributed to a genetic factor may be as high as 30%. It is thus likely that there are still breast cancer susceptibility genes to be found. It is presently not known how many such genes there still are, nor how many will fall into the class of rare high-risk (e.g. BRCAx) or of common low-risk susceptibility genes, nor if and how these factors interact with each other to cause susceptibility (a polygenic model). In this review we will address this question and discuss the different undertaken approaches used in identifying new breast cancer susceptibility genes, such as (genome-wide) linkage analysis, CGH, LOH, association studies and global gene expression analysis.
Collapse
Affiliation(s)
- R A Oldenburg
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands. r.oldenburg.@erasmusmc.nl
| | | | | | | |
Collapse
|
43
|
Rubinstein WS. Hereditary breast cancer: pathobiology, clinical translation, and potential for targeted cancer therapeutics. Fam Cancer 2007; 7:83-9. [PMID: 17624601 DOI: 10.1007/s10689-007-9147-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/14/2007] [Indexed: 11/24/2022]
Abstract
BRCA1 and BRCA2 breast cancers have distinct biological features as evidenced by histopathologic, immunohistochemical, gene expression profiling, and array-comparative genomic hybridization data. BRCA1 breast cancers may have a worse prognosis but may, however be amenable to treatment such as chemotherapy for small high-grade, lymph node negative breast cancers. Paradoxically, tamoxifen may provide effective adjuvant and chemopreventive therapy despite the predominantly negative estrogen receptor status of BRCA1 breast cancers. The distinctive biology of BRCA1 and BRCA2 breast cancers bodes well for the development of targeted cancer therapies. Cells with BRCA1 or BRCA2 loss of function are deficient in DNA double strand break repair and are sensitized to poly(ADP-ribose) polymerase (PARP) inhibitors, causing the persistence of DNA lesions which are usually repaired by homologous recombination and ultimately leading to apoptosis. The potentially high efficacy and low toxicity of poly(ADP-ribose) polymerase inhibitors presents an opportunity for targeted cancer therapeutics for BRCA1 and BRCA2 germline mutation carriers. Genotype-tailored chemoprevention may be feasible which could theoretically eliminate single cells that have sustained a second hit, before cancer progression takes place. If targeted cancer therapies emerge, it will become crucially important to identify BRCA carriers at the time of diagnosis for optimal therapy and to identify unaffected carriers for chemoprevention. If so, then to the extent that barriers in the recognition and referral of patients to genetic counseling cannot be surmounted, pathological and genomic methods to identify a BRCA1 or BRCA2 breast cancer profile will gain increasing clinical importance.
Collapse
|
44
|
Vaz FH, Machado PM, Brandão RD, Laranjeira CT, Eugénio JS, Fernandes AH, André SP. Familial breast/ovarian cancer and BRCA1/2 genetic screening: the role of immunohistochemistry as an additional method in the selection of patients. J Histochem Cytochem 2007; 55:1105-13. [PMID: 17625228 PMCID: PMC3957528 DOI: 10.1369/jhc.7a7209.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Only 20-25% of families screened for BRCA1/2 mutations are found positive. Because only a positive result is informative, we studied the role of BRCA1/2 immunohistochemistry as an additional method for patient selection. From 53 high-risk-affected probands, 18 (34%) had available paraffin blocks of their tumors and were selected for this study. Mutation screening was done by conformation-sensitive gel electrophoresis and multiplex ligation-dependent probe amplification. For immunohistochemistry, 21 neoplastic specimens (15 breast carcinomas, 5 ovary neoplasms, and 1 rectal adenocarcinoma) were analyzed with BRCA1 (monoclonal antibody, Ab-1, oncogene) and BRCA2 (polyclonal antibody, Ab-2, oncogene) antibodies. Absence of the BRCA1 protein was confirmed in negative tumors by Western blotting. Seven patients were positive for BRCA1/2 mutations: 5 for BRCA1 and 2 for BRCA2. Four out of five positive patients had tumors negative for BRCA1 immunostaining, and the remaining 13 BRCA1-negative patients had positive BRCA1 immunostaining in all tumor samples. Sensitivity to predict for BRCA1 mutation carriers was 80%, and specificity was 100%, with a positive predictive value of 100% and a negative predictive value of 93%. This correlation was statistically significant (p=0.001). No correlation was observed for BRCA2. If larger studies confirm these results, high-risk patients with BRCA1-negative tumors should be screened first for this gene.
Collapse
Affiliation(s)
- Fátima H Vaz
- Breast and Cancer Risk Evaluation Clinic, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Portugal.
| | | | | | | | | | | | | |
Collapse
|
45
|
Osorio A, Milne RL, Honrado E, Barroso A, Diez O, Salazar R, de la Hoya M, Vega A, Benítez J. Classification of missense variants of unknown significance inBRCA1based on clinical and tumor information. Hum Mutat 2007; 28:477-85. [PMID: 17279547 DOI: 10.1002/humu.20470] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Classification of rare missense variants in disease susceptibility genes as neutral or disease-causing is important for genetic counseling. Different criteria are used to help classify such variants in BRCA1 and BRCA2; however, the strongest evidence tends to come from segregation analysis and observed cooccurrence with known pathogenic mutations, which both require information that is not readily available in most circumstances. A likelihood-based model has been developed, integrating most of the data currently used to classify these variants. We have adapted the original model, including only that information that could be more easily obtained from a cancer genetics laboratory, such as loss of heterozygosity (LOH), grade, and immunohistochemical analysis to assess estrogen receptor (ER) status for the tumors of carriers of these variants. We also considered summary family history (personal or first-degree family history of bilateral breast or ovarian cancer), which was not incorporated into the original model. To test the ability of the modified model to classify missense variants in BRCA1, we analyzed 17 variants, of which 10 have previously been classified as pathogenic mutations or neutral polymorphisms. We also included a prior step consisting of the screening of the variants among 1,000 controls, with which we were able to classify five as neutral, based solely on their observed frequency. We found that combining this relatively easily collected information can be sufficient to classify variants as pathogenic or neutral if tumors from at least three carriers of the same variant can be collected and analyzed.
Collapse
Affiliation(s)
- A Osorio
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Centre, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Landgren O, Pfeiffer RM, Stewart L, Gridley G, Mellemkjaer L, Hemminki K, Goldin LR, Travis LB. Risk of second malignant neoplasms among lymphoma patients with a family history of cancer. Int J Cancer 2007; 120:1099-102. [PMID: 17131330 DOI: 10.1002/ijc.22414] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Radiotherapy and chemotherapy are known risk factors for second cancers after lymphoma. The role of genetic influences, however, remains largely unknown. We assessed risk of second cancers associated with family history of any cancer in 41,181 patients with Hodgkin lymphoma (HL) (n = 7,476), non-Hodgkin lymphoma (NHL) (n = 25,941), or chronic lymphocytic leukemia (CLL) (n = 7,764), using a large population-based database. Family history of cancer was based on a diagnosis of any cancer in 110,862 first-degree relatives. We found increased relative risk (RR) (1.81, 95% confidence interval (CI): 1.04-3.16) of breast cancer among HL patient with positive (vs. negative) family history of cancer. Among CLL patients with positive (vs. negative) family history of cancer, we observed elevated risks of bladder (RR = 3.53, 95% CI: 1.31-9.55) and prostate cancer (RR = 2.15, 95% CI: 1.17-3.94). For NHL patients with positive (vs. negative) family history of cancer, we observed non-significantly increased risk of non-melanoma skin cancer (RR = 1.94, 95% CI: 0.86-4.38) and lung cancer (RR = 1.99, 95% CI: 0.73-5.39). Our observations suggest that genetic factors, as measured by positive family history of cancer, may be influential risk-factors for selected second tumors following lymphoproliferative disorders.
Collapse
Affiliation(s)
- Ola Landgren
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Brekelmans CTM, Tilanus-Linthorst MMA, Seynaeve C, vd Ouweland A, Menke-Pluymers MBE, Bartels CCM, Kriege M, van Geel AN, Burger CW, Eggermont AMM, Meijers-Heijboer H, Klijn JGM. Tumour characteristics, survival and prognostic factors of hereditary breast cancer from BRCA2-, BRCA1- and non-BRCA1/2 families as compared to sporadic breast cancer cases. Eur J Cancer 2007; 43:867-76. [PMID: 17307353 DOI: 10.1016/j.ejca.2006.12.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 12/08/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
AIM OF THE STUDY Results on tumour characteristics and survival of hereditary breast cancer (BC), especially on BRCA2-associated BC, are inconclusive. The prognostic impact of the classical tumour and treatment factors in hereditary BC is insufficiently known. METHODS We selected 103 BRCA2-, 223 BRCA1- and 311 non-BRCA1/2 BC patients (diagnosis 1980-2004) from the Rotterdam Family Cancer Clinic. To correct for longevity bias, analyses were also performed while excluding index patients undergoing DNA testing 2 years after BC diagnosis. As a comparison group, 759 sporadic BC patients of comparable age at and year of diagnosis were selected. We compared tumour characteristics, the occurrence of ipsilateral recurrence (LRR) and contralateral BC (CBC) as well as distant disease-free (DDFS), BC-specific (BCSS) and overall survival (OS) between these groups. By multivariate modelling, the prognostic impact of tumour and treatment factors was investigated separately in hereditary BC. RESULTS We confirmed the presence of the particular BRCA1-phenotype. In contrast, tumour characteristics of BRCA2-associated BC were similar to those of non-BRCA1/2 and sporadic BC, with the exception of a high risk of CBC (3.1% per year) and oestrogen-receptor (ER)-positivity (83%). No significant differences between BRCA2-associated BC and other BC subgroups were found with respect to LRR, DDFS, BCSS and OS. Independent prognostic factors for BC-specific survival in hereditary BC (combining the three subgroups) were tumour stage, adjuvant chemotherapy, histologic grade, ER status and a prophylactic (salpingo-)oophorectomy. CONCLUSIONS Apart from the frequent occurrence of contralateral BC and a positive ER-status, BRCA2-associated BC did not markedly differ from other hereditary or sporadic BC. Our observation that tumour size and nodal status are prognostic factors also in hereditary BC implies that the strategy to use these factors as a proxy for ultimate mortality appears to be valid also in this specific group of patients.
Collapse
Affiliation(s)
- C T M Brekelmans
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC-Daniel den Hoed Cancer Center, P.O. Box 5201, 3008 AE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Current World Literature. Curr Opin Oncol 2007; 19:65-9. [PMID: 17133115 DOI: 10.1097/cco.0b013e328012d5fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Terry G, Ho L, Londesborough P, Duggan C, Hanby A, Cuzick J. The expression of FHIT, PCNA and EGFR in benign and malignant breast lesions. Br J Cancer 2006; 96:110-7. [PMID: 17164758 PMCID: PMC2360209 DOI: 10.1038/sj.bjc.6603512] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immunohistochemical staining for FHIT and PCNA proteins was carried out in 451 breast lesions showing nonproliferative benign breast disease (BBD) (n=263), proliferative BBD without atypia (n=128), proliferative BBD with atypia (n=11), carcinoma in situ (n=15) or invasive carcinoma (n=34) and for EGFR protein in a subset of 71 of these cases. FHIT underexpression was not detected in nonproliferative lesions, but occurred in 2% of proliferative BBD without atypia, 10% proliferative BBD with atypia, 27% of carcinoma in situ and 41% of invasive carcinoma, which suggests that it could be useful in assessing those carcinoma in situ lesions (ductal, DCIS and lobular, LCIS) that are more likely to progress to malignancy. Preliminary microarray comparisons on DCIS and invasive carcinoma samples dissected from formalin-fixed paraffin sections showed a consistent downregulation of two previously identified FHIT-related genes, caspase 1 and BRCA1 in lesions underexpressing FHIT.
Collapse
Affiliation(s)
- G Terry
- Department of Epidemiology, Mathematics and Statistics, Cancer Research UK, Queen Mary University of London, Wolfson Institute, Charterhouse Square, London ECIM 6BQ, UK
| | - L Ho
- Department of Epidemiology, Mathematics and Statistics, Cancer Research UK, Queen Mary University of London, Wolfson Institute, Charterhouse Square, London ECIM 6BQ, UK
- E-mail:
| | - P Londesborough
- Department of Epidemiology, Mathematics and Statistics, Cancer Research UK, Queen Mary University of London, Wolfson Institute, Charterhouse Square, London ECIM 6BQ, UK
| | - C Duggan
- Department of Epidemiology, Mathematics and Statistics, Cancer Research UK, Queen Mary University of London, Wolfson Institute, Charterhouse Square, London ECIM 6BQ, UK
| | - A Hanby
- St. James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - J Cuzick
- Department of Epidemiology, Mathematics and Statistics, Cancer Research UK, Queen Mary University of London, Wolfson Institute, Charterhouse Square, London ECIM 6BQ, UK
| |
Collapse
|
50
|
Abstract
Breast cancers arising in germline carriers of BRCA1 mutations have a characteristic phenotype that has been shown in many studies to differentiate BRCA1 tumours from sporadic tumours. Recently, it has become clear that the characteristic phenotype of BRCA1 tumours is due to expression of the basal-like phenotype. We review these phenotypes, the evidence for BRCA1 pathway dysfunction in sporadic basal-like cancers, and discuss the clinical significance of the basal-like phenotype for cancer genetics and treatment.
Collapse
Affiliation(s)
- N C Turner
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Fulham Road, London, UK.
| | | |
Collapse
|