1
|
Jung S, Nelde A, Maringer Y, Denk M, Zieschang L, Kammer C, Özbek M, Martus P, Hackenbruch C, Englisch A, Heitmann JS, Salih HR, Walz JS. AML-VAC-XS15-01: protocol of a first-in-human clinical trial to evaluate the safety, tolerability and preliminary efficacy of a multi-peptide vaccine based on leukemia stem cell antigens in acute myeloid leukemia patients. Front Oncol 2024; 14:1458449. [PMID: 39469638 PMCID: PMC11513396 DOI: 10.3389/fonc.2024.1458449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Acute myeloid leukemia (AML) has a dismal prognosis, mostly due to minimal residual disease-driven relapse, making an elimination of persisting therapy-resistant leukemia progenitor/stem cells (LPCs) the main goal for novel therapies. Peptide-based immunotherapy offers a low-side-effect approach aiming to induce T cell responses directed against human leukocyte antigen (HLA) presented tumor antigens on malignant cells by therapeutic vaccination. Mass spectrometry-based analysis of the naturally presented immunopeptidome of primary enriched LPC and AML samples enabled the selection of antigens exclusively expressed on LPC/AML cells, which showed de novo induction and spontaneous memory T cell responses in AML patients, and whose presentation and memory T cell recognition was associated with improved disease outcome. Methods Based on these data the therapeutic vaccine AML-VAC-XS15 was designed, comprising two mutated HLA class I-restricted peptides from the common AML-specific mutation in NPM1 and seven HLA class II-restricted peptides (six non-mutated high-frequent AML/LPC-associated antigens and one mutated peptide from the AML-specific mutation R140Q in IDH2), adjuvanted with the toll like receptor 1/2 ligand XS15 and emulsified in Montanide ISA 51 VG. A phase I open label clinical trial investigating AML-VAC-XS15 was designed, recruiting AML patients in complete cytological remission (CR) or CR with incomplete blood count recovery. Patients are vaccinated twice with a six-week interval, with an optional booster vaccination four months after 2nd vaccination, and are then followed up for two years. The trial's primary objectives are the assessment of the vaccine's immunogenicity, safety and toxicity, secondary objectives include characterization of vaccine-induced T cell responses and assessment of preliminary clinical efficacy. Ethics and dissemination The AML-VAC-XS15-01 study was approved by the Ethics Committee of the Bavarian State medical association and the Paul-Ehrlich Institut (P01392). Clinical trial results will be published in peer-reviewed journals.
Collapse
Affiliation(s)
- Susanne Jung
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
| | - Monika Denk
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Lisa Zieschang
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Christine Kammer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
| | - Melek Özbek
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University and Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Christopher Hackenbruch
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
| | - Alexander Englisch
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Department of Women’s Health, University Hospital Tübingen, Tübingen, Germany
| | - Jonas S. Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University of Tübingen and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Vinayak S, Cecil DL, Disis ML. Vaccines for breast cancer prevention: Are we there yet? Mol Aspects Med 2024; 98:101292. [PMID: 38991631 DOI: 10.1016/j.mam.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Shaveta Vinayak
- University of Washington, Division of Oncology, Seattle, WA, USA; Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Denise L Cecil
- University of Washington, Division of Oncology, Seattle, WA, USA
| | - Mary L Disis
- University of Washington, Division of Oncology, Seattle, WA, USA; Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
3
|
Hackenbruch C, Bauer J, Heitmann JS, Maringer Y, Nelde A, Denk M, Zieschang L, Kammer C, Federmann B, Jung S, Martus P, Malek NP, Nikolaou K, Salih HR, Bitzer M, Walz JS. FusionVAC22_01: a phase I clinical trial evaluating a DNAJB1-PRKACA fusion transcript-based peptide vaccine combined with immune checkpoint inhibition for fibrolamellar hepatocellular carcinoma and other tumor entities carrying the oncogenic driver fusion. Front Oncol 2024; 14:1367450. [PMID: 38606105 PMCID: PMC11007196 DOI: 10.3389/fonc.2024.1367450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
The DNAJB1-PRKACA fusion transcript was identified as the oncogenic driver of tumor pathogenesis in fibrolamellar hepatocellular carcinoma (FL-HCC), also known as fibrolamellar carcinoma (FLC), as well as in other tumor entities, thus representing a broad target for novel treatment in multiple cancer entities. FL-HCC is a rare primary liver tumor with a 5-year survival rate of only 45%, which typically affects young patients with no underlying primary liver disease. Surgical resection is the only curative treatment option if no metastases are present at diagnosis. There is no standard of care for systemic therapy. Peptide-based vaccines represent a low side-effect approach relying on specific immune recognition of tumor-associated human leucocyte antigen (HLA) presented peptides. The induction (priming) of tumor-specific T-cell responses against neoepitopes derived from gene fusion transcripts by peptide-vaccination combined with expansion of the immune response and optimization of immune function within the tumor microenvironment achieved by immune-checkpoint-inhibition (ICI) has the potential to improve response rates and durability of responses in malignant diseases. The phase I clinical trial FusionVAC22_01 will enroll patients with FL-HCC or other cancer entities carrying the DNAJB1-PRKACA fusion transcript that are locally advanced or metastatic. Two doses of the DNAJB1-PRKACA fusion-based neoepitope vaccine Fusion-VAC-XS15 will be applied subcutaneously (s.c.) with a 4-week interval in combination with the anti-programmed cell death-ligand 1 (PD-L1) antibody atezolizumab starting at day 15 after the first vaccination. Anti-PD-L1 will be applied every 4 weeks until end of the 54-week treatment phase or until disease progression or other reason for study termination. Thereafter, patients will enter a 6 months follow-up period. The clinical trial reported here was approved by the Ethics Committee II of the University of Heidelberg (Medical faculty of Mannheim) and the Paul-Ehrlich-Institute (P-00540). Clinical trial results will be published in peer-reviewed journals. Trial registration numbers EU CT Number: 2022-502869-17-01 and ClinicalTrials.gov Registry (NCT05937295).
Collapse
Affiliation(s)
- Christopher Hackenbruch
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Jens Bauer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Jonas S. Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Monika Denk
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Lisa Zieschang
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Christine Kammer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Birgit Federmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Susanne Jung
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Peter Martus
- Institute for Medical Biometrics and Clinical Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Nisar P. Malek
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
- The M3 Research Institute, University of Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Michael Bitzer
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Vajari MK, Sanaei MJ, Salari S, Rezvani A, Ravari MS, Bashash D. Breast cancer vaccination: Latest advances with an analytical focus on clinical trials. Int Immunopharmacol 2023; 123:110696. [PMID: 37494841 DOI: 10.1016/j.intimp.2023.110696] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer (BC) is one of the main causes of cancer-related death worldwide. The heterogenicity of breast tumors and the presence of tumor resistance, metastasis, and disease recurrence make BC a challenging malignancy. A new age in cancer treatment is being ushered in by the enormous success of cancer immunotherapy, and therapeutic cancer vaccination is one such area of research. Nevertheless, it has been shown that the application of cancer vaccines in BC as monotherapy could not induce satisfying anti-tumor immunity. Indeed, the application of various vaccine platforms as well as combination therapies like immunotherapy could influence the clinical benefits of BC treatment. We analyzed the clinical trials of BC vaccination and revealed that the majority of trials were in phase I and II meaning that the BC vaccine studies lack favorable outcomes or they need more development. Furthermore, peptide- and cell-based vaccines are the major platforms utilized in clinical trials according to our analysis. Besides, some studies showed satisfying outcomes regarding carbohydrate-based vaccines in BC treatment. Recent advancements in therapeutic vaccines for breast cancer were promising strategies that could be accessible in the near future.
Collapse
Affiliation(s)
- Mahdi Kohansal Vajari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology-Hematology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Rezvani
- Department of Internal Medicine, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Lekshmy M, Dhanya CR, Smrithi JS, Sindhurani JA, Vandanamthadathil JJ, Veettil JT, Anila L, Lathakumari VS, Nayar AM, Madhavan M. Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape. Pharmaceuticals (Basel) 2023; 16:1054. [PMID: 37513965 PMCID: PMC10383774 DOI: 10.3390/ph16071054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Breast and gynecologic cancers are significant global threats to women's health and those living with the disease require lifelong physical, financial, and social support from their families, healthcare providers, and society as a whole. Cancer vaccines offer a promising means of inducing long-lasting immune response against the disease. Among various types of cancer vaccines available, peptide vaccines offer an effective strategy to elicit specific anti-tumor immune responses. Peptide vaccines have been developed based on tumor associated antigens (TAAs) and tumor specific neoantigens which can also be of viral origin. Molecular alterations in HER2 and non-HER2 genes are established to be involved in the pathogenesis of female-specific cancers and hence were exploited for the development of peptide vaccines against these diseases, most of which are in the latter stages of clinical trials. However, prophylactic vaccines for viral induced cancers, especially those against Human Papillomavirus (HPV) infection are well established. This review discusses therapeutic and prophylactic approaches for various types of female-specific cancers such as breast cancer and gynecologic cancers with special emphasis on peptide vaccines. We also present a pipeline for the design and evaluation of a multiepitope peptide vaccine that can be active against female-specific cancers.
Collapse
Affiliation(s)
- Manju Lekshmy
- Department of Botany and Biotechnology, St. Xavier’s College, Thumba, Thiruvananthapuram 695586, Kerala, India;
| | | | | | | | | | | | - Leelamma Anila
- Department of Biochemistry, NSS College, Nilamel, Kollam 691535, Kerala, India;
| | - Vishnu Sasidharan Lathakumari
- Department of Biochemistry and Industrial Microbiology, Sree Narayana College for Women, Kollam 691001, Kerala, India;
| | - Adhira M. Nayar
- Department of Zoology, Mahatma Gandhi College, Thiruvananthapuram 695004, Kerala, India;
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
6
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
7
|
Sun J, Sun Y, Miniderima, Wang X. Cytokine-induced killer cell treatment is superior to chemotherapy alone in esophageal cancer. Pathol Oncol Res 2023; 29:1610710. [PMID: 37342361 PMCID: PMC10277884 DOI: 10.3389/pore.2023.1610710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/18/2023] [Indexed: 09/21/2024]
Abstract
Background: The therapeutic efficacy of cytokine-induced killer (CIK) cells versus dendritic cells (DC) co-cultured with CIK cells (DC-CIK) in treating esophageal cancer (EC) remains unclear due to the absence of a direct comparison of these two regimens. This study evaluated the comparative efficacy and safety of CIK cells versus DC-CIK using network meta-analysis in treating EC. Material and methods: We identified eligible studies from previous meta-analyses, then conducted an updated search to retrieve additional trials between February 2020 and July 2021. The primary outcomes included overall survival (OS), objective response rate (ORR), and disease control rate (DCR), and the secondary outcomes included quality of life improved rate (QLIR) and adverse events (AEs). A network meta-analysis of 12 studies was conducted using ADDIS software. Results: Twelve studies were identified, including six comparing CIK or DC-CIK plus chemotherapy (CT) with CT alone. Immunotherapy plus CT significantly improved overall survival (OS) (odds ratio [OR] 4.10, 95% confidence interval [CI] 1.23-13.69), objective response rate (ORR) (OR 2.72, 95% CI 1.79-4.11), disease control rate (DCR) (OR 3.45, 95% CI 2.32-5.14), and quality of life improvement rate (QLIR) (OR 3.54, 95% CI 2.31-5.41). DC-CIK+CT decreased the risk of leukopenia compared with CT alone. However, no statistical difference was detected between CIK-CT and DC-CIK+CT. Conclusion: Based on the available evidence, we concluded that CIK cell treatment is superior to CT alone, but CIK-CT and DC-CIK+CT may be comparable in treating EC. However, comparing CIK-CT and DC-CIK+CT is only based on indirect evidence, so it is undoubtedly necessary to conduct studies to compare CIK-CT with DC-CIK+CT in EC patients directly.
Collapse
Affiliation(s)
- Jiayang Sun
- Department of Thoracic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yushu Sun
- Department of Oncology, Inner Mongolia Cancer Hospital and Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Miniderima
- Department of Oncology, Inner Mongolia Cancer Hospital and Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiumei Wang
- Department of Oncology, Inner Mongolia Cancer Hospital and Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
8
|
O’Shea AE, Clifton GT, Qiao N, Heckman-Stoddard BM, Wojtowicz M, Dimond E, Bedrosian I, Weber D, Garber JE, Husband A, Pastorello R, Lee JJ, Hernandez M, Liu DD, Vornik LA, Brown PH, Alatrash G, Peoples GE, Mittendorf EA. Phase II Trial of Nelipepimut-S Peptide Vaccine in Women with Ductal Carcinoma In Situ. Cancer Prev Res (Phila) 2023; 16:333-341. [PMID: 37259799 PMCID: PMC10903526 DOI: 10.1158/1940-6207.capr-22-0388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
NeuVax is a vaccine comprised of the HER2-derived MHC class I peptide E75 (nelipepimut-S, NPS) combined with GM-CSF. We completed a randomized trial of preoperative vaccination with NeuVax versus GM-CSF alone in patients with ductal carcinoma in situ (DCIS). The primary objective was to evaluate for NPS-specific cytotoxic T lymphocyte (CTL) responses. Patients with human leukocyte antigen (HLA)-A2-positive DCIS were enrolled and randomized 2:1 to NeuVax versus GM-CSF alone and received two inoculations prior to surgery. The number of NPS-specific CTL was measured pre-vaccination, at surgery, and 1 and 3 to 6 months post-operation by dextramer assay. Differences in CTL responses between groups and between pre-vaccination and 1-month post-operation were analyzed using a two-sample t test or Wilcoxon rank sum test. The incidence and severity of adverse events were compared between groups. Overall, 45 patients were registered; 20 patients were HLA-A2 negative, 7 declined participation, 1 withdrew, and 4 failed screening for other reasons. The remaining 13 were randomized to NeuVax (n = 9) or GM-CSF alone (n = 4). Vaccination was well-tolerated with similar treatment-related toxicity between groups with the majority (>89%) of adverse events being grade 1. The percentage of NPS-specific CTLs increased in both arms between baseline (pre-vaccination) and 1-month post-operation. The increase was numerically greater in the NPS+GM-CSF arm, but the difference was not statistically significant. NPS+GM-CSF is safe and well-tolerated when given preoperatively to patients with DCIS. In patients with HLA-A2-positive DCIS, two inoculations with NPS+GM-CSF can induce in vivo immunity and a continued antigen-specific T-cell response 1-month postsurgery. PREVENTION RELEVANCE This trial showed that vaccination of patients with HLA-A2-positive DCIS with NeuVax in the preoperative setting can induce a sustained antigen-specific T-cell response. This provides proof of principle that vaccination in the preoperative or adjuvant setting may stimulate an adaptive immune response that could potentially prevent disease recurrence.
Collapse
Affiliation(s)
- Anne E. O’Shea
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - Guy T. Clifton
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - Na Qiao
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Eileen Dimond
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Isabelle Bedrosian
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diane Weber
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judy E. Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Center for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexander Husband
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ricardo Pastorello
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mike Hernandez
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diane D. Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lana A. Vornik
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Powel H. Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Alatrash
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Elizabeth A. Mittendorf
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Debbi K, Grellier N, Loganadane G, Boukhobza C, Mahé M, Cherif MA, Rida H, Gligorov J, Belkacemi Y. Interaction between Radiation Therapy and Targeted Therapies in HER2-Positive Breast Cancer: Literature Review, Levels of Evidence for Safety and Recommendations for Optimal Treatment Sequence. Cancers (Basel) 2023; 15:cancers15082278. [PMID: 37190205 DOI: 10.3390/cancers15082278] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Purpose: Over the past twenty years, anti-HER2 targeted therapies have proven to be a revolution in the management of human epidermal growth receptor 2 (HER2)-positive breast cancers. Anti-HER2 therapies administered alone or in combination with chemotherapy have been specifically studied. Unfortunately, the safety of anti-HER2 therapies in combination with radiation remains largely unknown. Thus, we propose a literature review of the risks and safety of combining radiotherapy with anti-HER2 therapies. We will focus on the benefit/risk rationale and try to understand the risk of toxicity in early-stage and advanced breast cancer. Methods: Research was carried out on the following databases: PubMed, EMBASE, ClinicalTrial.gov, Medline, and Web of Science for the terms "radiotherapy", "radiation therapy", "radiosurgery", "local ablative therapy", and "stereotactic", combined with "trastuzumab", "pertuzumab", "trastuzumab emtansine", "TDM-1", "T-Dxd", "trastuzumab deruxtecan", "tucatinib", "lapatinib", "immune checkpoint inhibitors", "atezolizumab", "pembrolizumab", "nivolumab", "E75 vaccine", "interferon", "anti-IL-2", "anti-IL 12", and "ADC". Results: Association of radiation and monoclonal antibodies such as trastuzumab and pertuzumab (with limited data) seems to be safe, with no excess risk of toxicity. Preliminary data with radiation and of antibody-drug conjugate of trastuzumab combined cytotoxic (trastuzumab emtansine, trastuzumab deruxtecan), given the underlying mechanism of action, suggest that one must be particularly cautious with the association. The safety of the combination of a tyrosine kinase inhibitor (lapatinib, tucatinib) and radiation remains under-studied. The available evidence suggests that checkpoint inhibitors can be safely administrated with radiation. Conclusions: HER2-targeting monoclonal antibodies and checkpoint inhibitors can be combined with radiation, apparently with no excess toxicities. Caution is required when associating radiation with TKI and antibody drugs, considering the limited evidence.
Collapse
Affiliation(s)
- Kamel Debbi
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, i-Biot, UPEC, 94000 Créteil, France
| | - Noémie Grellier
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Gokoulakrichenane Loganadane
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, i-Biot, UPEC, 94000 Créteil, France
| | - Chahrazed Boukhobza
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Mathilde Mahé
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Mohamed Aziz Cherif
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Hanan Rida
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Joseph Gligorov
- APHP-Medical Oncology Department, Institut Universitaire de Cancérologie, Sorbonne Université, 75013 Paris, France
| | - Yazid Belkacemi
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, i-Biot, UPEC, 94000 Créteil, France
| |
Collapse
|
10
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
11
|
Immunoinformatics Approach for Epitope-Based Vaccine Design: Key Steps for Breast Cancer Vaccine. Diagnostics (Basel) 2022; 12:diagnostics12122981. [PMID: 36552988 PMCID: PMC9777080 DOI: 10.3390/diagnostics12122981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines are an upcoming medical intervention for breast cancer. By targeting the tumor antigen, cancer vaccines can be designed to train the immune system to recognize tumor cells. Therefore, along with technological advances, the vaccine design process is now starting to be carried out with more rational methods such as designing epitope-based peptide vaccines using immunoinformatics methods. Immunoinformatics methods can assist vaccine design in terms of antigenicity and safety. Common protocols used to design epitope-based peptide vaccines include tumor antigen identification, protein structure analysis, T cell epitope prediction, epitope characterization, and evaluation of protein-epitope interactions. Tumor antigen can be divided into two types: tumor associated antigen and tumor specific antigen. We will discuss the identification of tumor antigens using high-throughput technologies. Protein structure analysis comprises the physiochemical, hydrochemical, and antigenicity of the protein. T cell epitope prediction models are widely available with various prediction parameters as well as filtering tools for the prediction results. Epitope characterization such as allergenicity and toxicity can be done in silico as well using allergenicity and toxicity predictors. Evaluation of protein-epitope interactions can also be carried out in silico with molecular simulation. We will also discuss current and future developments of breast cancer vaccines using an immunoinformatics approach. Finally, although prediction models have high accuracy, the opposite can happen after being tested in vitro and in vivo. Therefore, further studies are needed to ensure the effectiveness of the vaccine to be developed. Although epitope-based peptide vaccines have the disadvantage of low immunogenicity, the addition of adjuvants can be a solution.
Collapse
|
12
|
Lai HZ, Han JR, Fu X, Ren YF, Li ZH, You FM. Targeted Approaches to HER2-Low Breast Cancer: Current Practice and Future Directions. Cancers (Basel) 2022; 14:cancers14153774. [PMID: 35954438 PMCID: PMC9367369 DOI: 10.3390/cancers14153774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary HER2-low breast cancer (BC) accounts for more than half of breast cancer patients. Anti-HER2 therapy has been ineffective in HER2-low BC, for which palliative chemotherapy is the main treatment modality. The definitive efficacy of T-Dxd in HER2-low BC breaks previous treatment strategies, which will redefine HER2-low and thus reshape anti-HER2 therapy. This review summarizes detection technologies and novel agents for HER2-low BC, and explores their possible role in future clinics, to provide ideas for the diagnosis and treatment of HER2-low BC. Abstract HER2-low breast cancer (BC) has a poor prognosis, making the development of more suitable treatment an unmet clinical need. While chemotherapy is the main method of treatment for HER2-low BC, not all patients benefit from it. Antineoplastic therapy without chemotherapy has shown promise in clinical trials and is being explored further. As quantitative detection techniques become more advanced, they assist in better defining the expression level of HER2 and in guiding the development of targeted therapies, which include directly targeting HER2 receptors on the cell surface, targeting HER2-related intracellular signaling pathways and targeting the immune microenvironment. A new anti-HER2 antibody-drug conjugate called T-DM1 has been successfully tested and found to be highly effective in clinical trials. With this progress, it could eventually be transformed from a disease without a defined therapeutic target into a disease with a defined therapeutic molecular target. Furthermore, efforts are being made to compare the sequencing and combination of chemotherapy, endocrine therapy, and HER2-targeted therapy to improve prognosis to customize the subtype of HER2 low expression precision treatment regimens. In this review, we summarize the current and upcoming treatment strategies, to achieve accurate management of HER2-low BC.
Collapse
|
13
|
Peptide-Based Vaccines in Clinical Phases and New Potential Therapeutic Targets as a New Approach for Breast Cancer: A Review. Vaccines (Basel) 2022; 10:vaccines10081249. [PMID: 36016136 PMCID: PMC9416350 DOI: 10.3390/vaccines10081249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer is the leading cause of death in women from 20 to 59 years old. The conventional treatment includes surgery, chemotherapy, hormonal therapy, and immunotherapy. This immunotherapy is based on administering monoclonal therapeutic antibodies (passive) or vaccines (active) with therapeutic purposes. Several types of vaccines could be used as potential treatments for cancer, including whole-cell, DNA, RNA, and peptide-based vaccines. Peptides used to develop vaccines are derived from tumor-associated antigens or tumor-specific antigens, such as HER-2, MUC1, ErbB2, CEA, FRα, MAGE A1, A3, and A10, NY-ESO-1, among others. Peptide-based vaccines provide some advantages, such as low cost, purity of the antigen, and the induction of humoral and cellular immune response. In this review, we explore the different types of vaccines against breast cancer with a specific focus on the description of peptide-based vaccines, their composition, immune response induction, and the description of new potential therapeutic targets.
Collapse
|
14
|
Moragon S, Hernando C, Martinez-Martinez MT, Tapia M, Ortega-Morillo B, Lluch A, Bermejo B, Cejalvo JM. Immunological Landscape of HER-2 Positive Breast Cancer. Cancers (Basel) 2022; 14:3167. [PMID: 35804943 PMCID: PMC9265068 DOI: 10.3390/cancers14133167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the biological aspects of immune response in HER2+ breast cancer is crucial to implementing new treatment strategies in these patients. It is well known that anti-HER2 therapy has improved survival in this population, yet a substantial percentage may relapse, creating a need within the scientific community to uncover resistance mechanisms and determine how to overcome them. This systematic review indicates the immunological mechanisms through which trastuzumab and other agents target cancer cells, also outlining the main trials studying immune checkpoint blockade. Finally, we report on anti-HER2 vaccines and include a figure exemplifying their mechanisms of action.
Collapse
Affiliation(s)
- Santiago Moragon
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Cristina Hernando
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Maria Teresa Martinez-Martinez
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Marta Tapia
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Belen Ortega-Morillo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
| | - Ana Lluch
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
- Instituto de Salud Carlos III, CIBERONC (Centro De Investigacion Biomedica En Red De Cancer), 28220 Madrid, Spain
| | - Begoña Bermejo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
- Instituto de Salud Carlos III, CIBERONC (Centro De Investigacion Biomedica En Red De Cancer), 28220 Madrid, Spain
| | - Juan Miguel Cejalvo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (S.M.); (C.H.); (M.T.M.-M.); (M.T.); (B.O.-M.); (A.L.); (B.B.)
- Instituto de Salud Carlos III, CIBERONC (Centro De Investigacion Biomedica En Red De Cancer), 28220 Madrid, Spain
| |
Collapse
|
15
|
Zhang L, Zhou X, Sha H, Xie L, Liu B. Recent Progress on Therapeutic Vaccines for Breast Cancer. Front Oncol 2022; 12:905832. [PMID: 35734599 PMCID: PMC9207208 DOI: 10.3389/fonc.2022.905832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed malignancy worldwide. Advanced breast cancer is still an incurable disease mainly because of its heterogeneity and limited immunogenicity. The great success of cancer immunotherapy is paving the way for a new era in cancer treatment, and therapeutic cancer vaccination is an area of interest. Vaccine targets include tumor-associated antigens and tumor-specific antigens. Immune responses differ in different vaccine delivery platforms. Next-generation sequencing technologies and computational analysis have recently made personalized vaccination possible. However, only a few cases benefiting from neoantigen-based treatment have been reported in breast cancer, and more attention has been given to overexpressed antigen-based treatment, especially human epidermal growth factor 2-derived peptide vaccines. Here, we discuss recent advancements in therapeutic vaccines for breast cancer and highlight near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Lianru Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xipeng Zhou
- Department of oncology, Yizheng People's Hospital, Yangzhou, China
| | - Huizi Sha
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Li Xie
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Potent anti-tumor immune response and tumor growth inhibition induced by HER2 subdomain fusion protein in a mouse tumor model. J Cancer Res Clin Oncol 2022; 149:2437-2450. [PMID: 35737089 DOI: 10.1007/s00432-022-04084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Several approaches have so far been employed to establish anti-tumor immunity by targeting HER2 protein. Active immunization with recombinant HER2 subdomains has previously been demonstrated to induce potent immune response and tumor growth inhibition. In the present study, we investigated the immunogenicity and tumor inhibitory effect of a fusion protein consisting of human HER2 extracellular subdomain (ECD-DI + II) together with T-helper cell epitopes of Tetanus toxin (p2 and p30). METHODS BALB/c mice were immunized with two recombinant proteins (DI + II and p2p30-DI + II) emulsified in 4 different adjuvants. Anti-DI + II antibody response, cytokine profile, frequency of splenic CD25+FOXP3+ regulatory T cells (Tregs) and CD8+CD107a+ cytotoxic T lymphocytes (CTLs) were assessed in the immunized mice. To assess the anti-tumor effect, the immunized mice were subcutaneously challenged with HER2-overexpressing tumor cells and the tumor growth was determined. RESULTS Both recombinant proteins were able to induce comparable levels of ECD-DI + II-specific antibodies. Immunization with p2p30-DI + II resulted in a significant increase in the level of Interferon-gamma (IFN-γ) secretion compared to DI + II protein and significantly higher frequency of CTLs and lower frequency of Tregs. The number of mice that remained tumor-free until day 120 was significantly higher in p2p30-DI + II vaccinated groups. CONCLUSIONS Our data suggest that the p2p30-DI + II fusion protein together with CpG adjuvant induces more potent anti-tumor immune responses in a mouse tumor model. Accordingly, this formulation might be considered as a potential immunotherapeutic approach in HER2+ cancers.
Collapse
|
17
|
Wei J, Hui AM. The paradigm shift in treatment from Covid-19 to oncology with mRNA vaccines. Cancer Treat Rev 2022; 107:102405. [PMID: 35576777 PMCID: PMC9068246 DOI: 10.1016/j.ctrv.2022.102405] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/08/2023]
Abstract
mRNA vaccines have gained popularity over the last decade as a versatile tool for developing novel therapeutics. The recent success of coronavirus disease (COVID-19) mRNA vaccine has unlocked the potential of mRNA technology as a powerful therapeutic platform. In this review, we apprise the literature on the various types of cancer vaccines, the novel platforms available for delivery of the vaccines, the recent progress in the RNA-based therapies and the evolving role of mRNA vaccines for various cancer indications, along with a future strategy to treat the patients. Literature reveals that despite multifaceted challenges in the development of mRNA vaccines, the promising and durable efficacy of the RNA in pre-clinical and clinical studies deserves consideration. The introduction of mRNA-transfected DC vaccine is an approach that has gained interest for cancer vaccine development due to its ability to circumvent the necessity of DC isolation, ex vivo cultivation and re-infusion. The selection of appropriate antigen of interest remains one of the major challenges for cancer vaccine development. The rapid development and large-scale production of mRNA platform has enabled for the development of both personalized vaccines (mRNA 4157, mRNA 4650 and RO7198457) and tetravalent vaccines (BNT111 and mRNA-5671). In addition, mRNA vaccines combined with checkpoint modulators and other novel medications that reverse immunosuppression show promise, however further research is needed to discover which combinations are most successful and the best dosing schedule for each component. Each delivery route (intradermal, subcutaneous, intra tumoral, intranodal, intranasal, intravenous) has its own set of challenges to overcome, and these challenges will decide the best delivery method. In other words, while developing a vaccine design, the underlying motivation should be a reasonable combination of delivery route and format. Exploring various administration routes and delivery route systems has boosted the development of mRNA vaccines.
Collapse
Affiliation(s)
- Jiao Wei
- Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., 1289 Yishan Road, Shanghai 200233, China; Fosun Pharma USA Inc, 91 Hartwell Avenue, Suite 305, Lexington, MA 02421, USA
| | - Ai-Min Hui
- Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., 1289 Yishan Road, Shanghai 200233, China; Fosun Pharma USA Inc, 91 Hartwell Avenue, Suite 305, Lexington, MA 02421, USA.
| |
Collapse
|
18
|
Abstract
Breast cancer has become the most commonly diagnosed cancer globally. The relapse and metastasis of breast cancer remain a great challenge despite advances in chemotherapy, endocrine therapy, and HER2 targeted therapy in the past decades. Innovative therapeutic strategies are still critically in need. Cancer vaccine is an attractive option as it aims to induce a durable immunologic response to eradicate tumor cells. Different types of breast cancer vaccines have been evaluated in clinical trials, but none has led to significant benefits. Despite the disappointing results at present, new promise from the latest study indicates the possibility of applying vaccines in combination with anti-HER2 monoclonal antibodies or immune checkpoint blockade. This review summarizes the principles and mechanisms underlying breast cancer vaccines, recapitulates the type and administration routes of vaccine, reviews the current results of relevant clinical trials, and addresses the potential reasons for the setbacks and future directions to explore.
Collapse
Affiliation(s)
- Si-Yuan Zhu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Abbaspour M, Akbari V. Cancer vaccines as a targeted immunotherapy approach for breast cancer: an update of clinical evidence. Expert Rev Vaccines 2021; 21:337-353. [PMID: 34932427 DOI: 10.1080/14760584.2022.2021884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the first common neoplastic malignancy and the second leading cause of death in women worldwide. Conventional treatments for BC are often associated with severe side effects and may even lead to late recurrence. For this reason, in recent years, cancer immunotherapy (e.g., cancer vaccines), a novel approach based on the specificity and amplification of acquired immune responses, has been considered as a potential candidate in particular to treat metastatic BC. AREAS COVERED In this review, we summarize and discuss the recent development of therapeutic vaccines for BC, use of specific BC cellular antigens, antigen selection, and probable causes for their insufficient effectiveness. EXPERT OPINION Despite development of several different BC vaccines strategies including protein/peptide, dendritic cell, and genetic vaccines, until now, no BC vaccine has been approved for clinical use. Most of the current BC vaccines themselves fail to bring clinical benefit to BC patients and are applied in combination with radiotherapy, chemotherapy, or targeted therapy. It is hoped that with advances in our knowledge about tumor microenvironment and the development of novel combination strategies, the tumor immunosuppressive mechanisms can be overcome and prolonged immunologic and effective anti-tumor response can be developed in patients.
Collapse
Affiliation(s)
- Maryam Abbaspour
- Department of pharmaceutical biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of pharmaceutical biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Tilli TM. Precision Medicine: Technological Impact into Breast Cancer Diagnosis, Treatment and Decision Making. J Pers Med 2021; 11:jpm11121348. [PMID: 34945820 PMCID: PMC8703478 DOI: 10.3390/jpm11121348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common cancer in women, impacting 2.1 million women each year. The number of publications on BC is much higher than for any other type of tumor, as well as the number of clinical trials. One of the consequences of all this information is reflected in the number of approved drugs. This review aims to discuss the impact of technological advances in the diagnosis, treatment and decision making of breast cancer and the prospects for the next 10 years. Currently, the literature has described personalized medicine, but what will the treatment be called for in the coming years?
Collapse
Affiliation(s)
- Tatiana Martins Tilli
- Translational Oncology Platform, Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
21
|
Schmidt M, Heimes AS. Immunomodulating Therapies in Breast Cancer-From Prognosis to Clinical Practice. Cancers (Basel) 2021; 13:4883. [PMID: 34638367 PMCID: PMC8507771 DOI: 10.3390/cancers13194883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
The role of the immune system in breast cancer has been debated for decades. The advent of technologies such as next generation sequencing (NGS) has elucidated the crucial interplay between somatic mutations in tumors leading to neoantigens and immune responses with increased tumor-infiltrating lymphocytes and improved prognosis of breast cancer patients. In particular, triple-negative breast cancer (TNBC) has a higher mutational burden compared to other breast cancer subtypes. In addition, higher levels of tumor-associated antigens suggest that immunotherapies are a promising treatment option, specifically for TNBC. Indeed, higher concentrations of tumor-infiltrating lymphocytes are associated with better prognosis and response to chemotherapy in TNBC. An important target within the cancer immune cell cycle is the "immune checkpoint". Immune checkpoint inhibitors (ICPis) block the interaction of certain cell surface proteins that act as "brakes" on immune responses. Recent studies have shown that ICPis improve survival in both early and advanced TNBC. However, this comes at the price of increased toxicity, particularly immune-mediated toxicity. As an alternative approach, individualized mRNA vaccination strategies against tumor-associated neoantigens represent another promising approach leading to neoantigen-specific immune responses. These novel strategies should help to improve treatment outcomes, especially for patients with triple negative breast cancer.
Collapse
Affiliation(s)
- Marcus Schmidt
- Department of Obstetrics and Gynecology, University Medical Center Mainz, 55131 Mainz, Germany;
| | | |
Collapse
|
22
|
You Z, Zhou W, Weng J, Feng H, Liang P, Li Y, Shi F. Application of HER2 peptide vaccines in patients with breast cancer: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:489. [PMID: 34526020 PMCID: PMC8442296 DOI: 10.1186/s12935-021-02187-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background The E75 and GP2 vaccines are the few therapeutic vaccines targeting HER2 currently under clinical research for patients with breast cancer. Methods Databases, including the Cochrane Library, PubMed, Medline, Embase, and Web of Science, were used to retrieve clinical studies on E75 and GP2 vaccines. Retrieval time was from the beginning of database construction until May 31st, 2021. Results A total of 24 clinical studies were included in this analysis, including 1704 patients in the vaccinated group and 1248 patients in the control group. For the E75 vaccine, there were significant differences between the vaccinated group and the control group in the delayed-type hypersensitivity reaction (SMD = 0.685 95% CI 0.52–0.85, PHeterogeneity = 0.186, PDTH < 0.05) and the change in CD8+ T-cell numbers (SMD = − 0.864, 95% CI − 1.02 to − 0.709, PHeterogeneity = 0.085, PCD8+ T cell < 0.05) before and after injection. For the GP2 vaccine, there was a significant difference between the vaccinated group and the control group in the change in CD8+ T-cell numbers (SMD = − 0.584, 95% CI − 0.803 to − 0.294, PHeterogeneity = 0.397, PCD8+ T cell < 0.05) before and after injection. In addition, the clinical outcomes, including recurrence rate (RR = 0.568, 95% CI 0.444–0.727, PHeterogeneity = 0.955, PRecurrence < 0.05) and disease-free survival rate (RR = 1.149, 95% CI 1.050–1.256, PHeterogeneity = 0.003, PDFS < 0.05), of the E75-vaccinated group were different from those of the control group. However, we found that the overall survival rate with the E75 vaccine (RR = 1.032, 95% CI 0.998–1.067, PHeterogeneity = 0.476, POS > 0.05) was not different between the two groups. Local and systemic toxicity assessments of the two vaccines showed minimal side effects. Conclusions The E75 vaccine was effective and safe in patients with breast cancer. The GP2 vaccine could elicit a strong immune response, but more trials are needed to confirm its clinical efficacy.
Collapse
Affiliation(s)
- Zicong You
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China.,Department of Thoracic and Breast Surgery, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No.6,Qinren Road,Chancheng District, Foshan, 528000, China
| | - Weijun Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Junyan Weng
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Haizhan Feng
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Peiqiao Liang
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China.
| | - Fujun Shi
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China.
| |
Collapse
|
23
|
[Tumor vaccination-strategies and time points]. Internist (Berl) 2021; 62:991-997. [PMID: 34398265 DOI: 10.1007/s00108-021-01138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Immunotherapies have gained increasing importance in the treatment of cancer in recent years. This also includes tumor vaccines, which are used therapeutically to direct the immune system specifically against tumor cells. OBJECTIVES Different strategies of tumor vaccination, their current state of development, the optimal timing and possible combinations of cancer vaccines in the treatment of cancer are discussed. METHODS Scientific publications on various tumor vaccination strategies based on ongoing studies that are listed on clinicaltrials.gov are summarized. CONCLUSIONS For effective tumor vaccination, the selection of suitable tumor antigens present on the cell surface via human leukocyte antigen (HLA) molecules is essential. Suitable antigens should be present exclusively on tumor cells and able to induce a specific anti-tumor immune response, i.e. activate cytotoxic and T helper cells. For this purpose, neoepitopes derived from tumor-specific mutations or tumor-associated antigens (TAAs), which are present exclusively in tumor tissue due to altered gene expression or processing, can be used. For the application of the antigens, various strategies combined with suitable adjuvants are available, including peptide vaccines, DNA- or RNA-based vaccines, approaches with dendritic cells or whole tumor cell vaccines. Currently, numerous vaccination approaches as well as combination protocols are being evaluated in clinical trials with the aim to establish specific and low side effect immunotherapies to combat malignancies and enable long-term protection from disease recurrence via the induction of long-lasting antitumor immune responses.
Collapse
|
24
|
Tarantino P, Morganti S, Curigliano G. Targeting HER2 in breast cancer: new drugs and paradigms on the horizon. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:139-155. [PMID: 36046143 PMCID: PMC9400740 DOI: 10.37349/etat.2021.00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
About 15-20% of all breast cancers (BCs) are defined human epidermal growth factor receptor 2 (HER2)-positive, based on the overexpression of HER2 protein and/or amplification of ERBB2 gene. Such alterations lead to a more aggressive behavior of the disease, but also predict response to treatments targeting HER2. Indeed, several anti-HER2 compounds have been developed and approved in the last two decades, significantly improving our ability to cure patients in the early setting, and greatly extending their survival in the advanced setting. However, recent evolutions in this field promise to improve outcomes even further, through advancements in established HER2-targeting strategies, as well as the exploration of novel strategies. In particular, the engineering of new antibody-drug conjugates, with higher drug-to-antibody ratios (DARs) and cleavable linkers, has already led to the development of a highly effective drug, namely trastuzumab deruxtecan, recently approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of advanced HER2-positive (HER2+) BC, and currently in study in the early setting. Moreover, the novel tyrosine kinase inhibitor tucatinib was recently approved by FDA and EMA, showing to improve survival of HER2+ advanced BC patients, particularly in those with brain metastasis. Immunotherapy is also being investigated in the HER2+ subtype, through immune-checkpoint inhibition, cancer vaccines and adoptive-cell therapies. Overall, the enlarging arsenal of promising anti-HER2 compounds is expected to deliver significant improvements in the prognosis of both early and advanced HER2+ BC in the years to come. Moreover, some of such agents are showing encouraging activity in the much wider population of HER2-low advanced BC patients, challenging current BC classifications. If confirmed, this new paradigm would potentially expand the population deriving benefit from HER2-targeted treatments to up to 70% of all advanced BC patients, leading to a revolution in current treatment algorithms, and possibly to a redefinition of HER2 classification.
Collapse
Affiliation(s)
- Paolo Tarantino
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Stefania Morganti
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
25
|
Singh K, Yadav D, Jain M, Singh PK, Jin JO. Immunotherapy for the Breast Cancer treatment: Current Evidence and Therapeutic Options. Endocr Metab Immune Disord Drug Targets 2021; 22:212-224. [PMID: 33902424 DOI: 10.2174/1871530321666210426125904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
Breast cancer (BC) stands at the first position among all forms of malignancies found in women globally. The available therapeutic approaches for breast cancer includes chemotherapy, radiation therapy, hormonal therapy and finally surgery. Despite the conventional therapies, in recent years the advance immunology based therapeutics emerge a potential in breast cancer treatment, including immune checkpoint blockades, vaccines and in combination with other treatment strategies. Although, commonly used treatments like trastuzumab/pertuzumab for human epidermal growth factor receptor 2 (Her2) positive and hormone therapy for estrogen receptor (ER) positive and/or progesterone receptor (PR) positive BC are specific but triple negative breast cancer (TNBC) cases remain a great challenge for treatment measures. Immune checkpoint inhibitors (anti-PD-1/ anti-CTLA-4) and anti-cancer vaccines (NeuVax, Muc-1, AVX901, INO-1400 and CEA), either alone or in combination with other therapies have created new paradigm in therapeutic world. In this review, we highlighted the current immunotherapeutic aspects and their ongoing trials towards the better treatment regimen for BC.
Collapse
Affiliation(s)
- Kavita Singh
- Centre for Translational Research, School of Studies in Biochemistry, Jiwaji University, Gwalior-474011, Madhya Pradesh, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Meenu Jain
- ICMR-AMR Diagnostics Taskforce, ECD Division, Indian Council of Medical research, Ansari Nagar, New Delhi-110029, India
| | - Pramod Kumar Singh
- Department of Biosciences, Christian Eminent College, Indore, (MP), India
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| |
Collapse
|
26
|
Subgroup analysis of nelipepimut-S plus GM-CSF combined with trastuzumab versus trastuzumab alone to prevent recurrences in patients with high-risk, HER2 low-expressing breast cancer. Clin Immunol 2021; 225:108679. [PMID: 33485895 DOI: 10.1016/j.clim.2021.108679] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
HER2-targeted therapy has not benefited patients with low levels of HER2 expression; however, combination therapy may be effective. Primary analysis of a phase IIb trial investigating the HER2-derived vaccine nelipepimut-S (NPS) did not benefit the intention-to-treat population, but subset analysis showed a benefit in triple-negative breast cancer (TNBC) patients. The subset analysis of this multicenter, randomized, single-blind, phase IIb trial identified significant improvement in 36-month disease-free survival (DFS) between NPS (n = 55) and placebo (n = 44) in TNBC (HR 0.25, p = 0.01) and those who express HLA-A24 (HR 0.41, p = 0.05). The TNBC cohort demonstrated improved 36-month DFS in those with HER2 1+ expression (HR 0.17, p = 0.01), HLA-A24 positivity (HR 0.08, p < 0.01), or in those who received neoadjuvant chemotherapy (HR 0.21, p < 0.01). NPS vaccination with trastuzumab was associated with improved 36-month DFS among patients with TNBC. The observed benefit to this high-risk subgroup warrants confirmation in a phase III trial.
Collapse
|
27
|
Dillon PM, Brenin CM, Slingluff CL. Evaluating Nelipepimut-S in the Treatment of Breast Cancer: A Short Report on the Emerging Data. BREAST CANCER-TARGETS AND THERAPY 2020; 12:69-75. [PMID: 32308474 PMCID: PMC7138626 DOI: 10.2147/bctt.s224758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023]
Abstract
Vaccine therapies for treatment and prevention of cancer have seen modest degrees of efficacy with wide variation related to the tumor type, vaccine type, adjuvants and clinical setting for their study. Over the course of the last two decades, various peptide vaccines for breast cancer have been studied. The current leading peptide vaccine for human application is a HER2-based vaccine known as Nelipepimut-S, which has demonstrated immune activity and promising clinical activity in some settings. This review covers the development of this newer peptide vaccine for both HER2 amplified and non-amplified breast cancer.
Collapse
Affiliation(s)
- Patrick M Dillon
- University of Virginia, Division of Hematology/Oncology, Charlottesville, VA 22908, USA
| | - Christiana M Brenin
- University of Virginia, Division of Hematology/Oncology, Charlottesville, VA 22908, USA
| | - Craig L Slingluff
- University of Virginia, Department of Surgery, Charlottesville, VA 22908, USA
| |
Collapse
|
28
|
Costa RLB, Czerniecki BJ. Clinical development of immunotherapies for HER2 + breast cancer: a review of HER2-directed monoclonal antibodies and beyond. NPJ Breast Cancer 2020; 6:10. [PMID: 32195333 PMCID: PMC7067811 DOI: 10.1038/s41523-020-0153-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Human epidermal growth factor receptor 2-positive (HER2+) breast cancer accounts for ~25% of breast cancer cases. Monoclonal antibodies (mAbs) against HER2 have led to unparalleled clinical benefit for a subset of patients with HER2+ breast cancer. In this narrative review, we summarize advances in the understanding of immune system interactions, examine clinical developments, and suggest rationales for future investigation of immunotherapies for HER2+ breast cancer. Complex interactions have been found between different branches of the immune system, HER2+ breast cancer, and targeted treatments (approved and under investigation). A new wave of immunotherapies, such as novel HER2-directed mAbs, antibody drug conjugates, vaccines, and adoptive T-cell therapies, are being studied in a broad population of patients with HER2-expressing tumors. The development of immunotherapies for HER2+ breast cancer represents an evolving field that should take into account interactions between different components of the immune system.
Collapse
Affiliation(s)
- Ricardo L B Costa
- Departments of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Brian J Czerniecki
- Departments of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|
29
|
Integrating context of tumor biology and vaccine design to shape multidimensional immunotherapies. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2019-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Advances in cancer therapy have offered great promise but only modest clinical benefits as monotherapies to date. Patients usually respond well to therapies targeted at specific mutations, but only for a short time. Conversely, immunotherapies help fewer patients, but increase survival. Combination therapies, which could offer the best of both worlds, are currently limited by substantial toxicity. While recent advances in genomics and proteomics have yielded an unprecedented depth of enabling datasets, it has also shifted the focus toward in silico predictions. Designing the next wave of multidimensional immunotherapies will require leveraging this knowledge while providing a renewed emphasis on tumor biology and vaccine design. This includes careful selection of tumor clinical stage in the context of pre-existing tumor microenvironments, target antigen and technology platform selections to maximize their effect, and treatment staging. Here, we review strategies on how to approach an increasingly complex landscape of immunotherapeutic agents for use in combination therapies.
Collapse
|
30
|
Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and the immune system: Challenges for prognosis and clinical benefit from immunotherapies. Semin Cancer Biol 2019; 72:76-89. [PMID: 31881337 DOI: 10.1016/j.semcancer.2019.12.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Cancer evolution is a complex process influenced by genetic factors and extracellular stimuli that trigger signaling pathways to coordinate the continuous and dynamic interaction between tumor cells and the elements of the immune system. For over 20 years now, the immune mechanisms controlling cancer progression have been the focus of intensive research. It is well established that the immune system conveys protective antitumor immunity by destroying immunogenic tumor variants, but also facilitates tumor progression by shaping tumor immunogenicity in a process called "immunoediting". It is also clear that immune-guided tumor editing is associated with tumor evasion from immune surveillance and therefore reinforcing the endogenous antitumor immunity is a desired goal in the context of cancer therapies. The tumor microenvironment (TME) is a complex network which consists of various cell types and factors having important roles regarding tumor development and progression. Tumor infiltrating lymphocytes (TILs) and other tumor infiltrating immune cells (TIICs) are key to our understanding of tumor immune surveillance based on tumor immunogenicity, whereby the densities and location of TILs and TIICs in the tumor regions, as well as their functional programs (comprising the "immunoscore") have a prominent role for prognosis and prediction for several cancers. The presence of tertiary lymphoid structures (TLS) in the TME or in peritumoral areas has an influence on the locally produced antitumor immune response, and therefore also has a significant prognostic impact. The cross-talk between elements of the immune system with tumor cells in the TME is greatly influenced by hypoxia, the gut and/or the local microbiota, and several metabolic elements, which, in a dynamic interplay, have a crucial role for tumor cell heterogeneity and reprogramming of immune cells along their activation and differentiation pathways. Taking into consideration the recent clinical success with the application immunotherapies for the treatment of several cancer types, increasing endeavors have been made to gain better insights into the mechanisms underlying phenotypic and metabolic profiles in the context of tumor progression and immunotherapy. In this review we will address (i) the role of TILs, TIICs and TLS in breast cancer (BCa); (ii) the different metabolic-based pathways used by immune and breast cancer cells; and (iii) implications for immunotherapy-based strategies in BCa.
Collapse
Affiliation(s)
- Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece.
| | - Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| |
Collapse
|
31
|
Krasniqi E, Barchiesi G, Pizzuti L, Mazzotta M, Venuti A, Maugeri-Saccà M, Sanguineti G, Massimiani G, Sergi D, Carpano S, Marchetti P, Tomao S, Gamucci T, De Maria R, Tomao F, Natoli C, Tinari N, Ciliberto G, Barba M, Vici P. Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. J Hematol Oncol 2019; 12:111. [PMID: 31665051 PMCID: PMC6820969 DOI: 10.1186/s13045-019-0798-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is a complex disease with primary or acquired incurability characteristics in a significant part of patients. Immunotherapeutical agents represent an emerging option for breast cancer treatment, including the human epidermal growth factor 2 positive (HER2+) subtype. The immune system holds the ability to spontaneously implement a defensive response against HER2+ BC cells through complex mechanisms which can be exploited to modulate this response for obtaining a clinical benefit. Initial immune system modulating strategies consisted mostly in vaccine therapies, which are still being investigated and improved. However, the entrance of trastuzumab into the scenery of HER2+ BC treatment was the real game changing event, which embodied a dominant immune-mediated mechanism. More recently, the advent of the immune checkpoint inhibitors has caused a new paradigm shift for immuno-oncology, with promising initial results also for HER2+ BC. Breast cancer has been traditionally considered poorly immunogenic, being characterized by relatively low tumor mutation burden (TMB). Nevertheless, recent evidence has revealed high tumor infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in a considerable proportion of HER2+ BC patients. This may translate into a higher potential to elicit anti-cancer response and, therefore, wider possibilities for the use and implementation of immunotherapy in this subset of BC patients. We are herein presenting and critically discussing the most representative evidence concerning immunotherapy in HER2+ BC cancer, both singularly and in combination with therapeutic agents acting throughout HER2-block, immune checkpoint inhibition and anti-cancer vaccines. The reader will be also provided with hints concerning potential future projection of the most promising immutherapeutic agents and approaches for the disease of interest.
Collapse
Affiliation(s)
- E Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - G Barchiesi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - L Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - M Mazzotta
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - A Venuti
- HPV-UNIT, UOSD Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostic and Technological Innovation (RIDAIT), Translational Research Functional Departmental Area, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - M Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - G Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - G Massimiani
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - D Sergi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - S Carpano
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - P Marchetti
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy.,Medical Oncology Unit B, Policlinico Umberto I, Rome, Italy
| | - S Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Policlinico Umberto I, 'Sapienza' University of Rome, Rome, Italy
| | - T Gamucci
- Medical Oncology, Sandro Pertini Hospital, Rome, Italy
| | - R De Maria
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy.,Department of Medical Oncology, Policlinico Universitario "A. Gemelli", Rome, Italy
| | - F Tomao
- Department of Gynecology-Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - C Natoli
- Department of Medical, Oral and Biotechnological Sciences and Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - N Tinari
- Department of Medical, Oral and Biotechnological Sciences and Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - G Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - M Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy.
| | - P Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| |
Collapse
|
32
|
Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther 2019; 4:34. [PMID: 31637013 PMCID: PMC6799843 DOI: 10.1038/s41392-019-0069-2] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past 2 decades, there has been an extraordinary progress in the regimens developed for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Trastuzumab, pertuzumab, lapatinib, and ado-trastuzumab emtansine (T-DM1) are commonly recommended anti-HER2 target agents by the U.S. Food and Drug Administration. This review summarizes the most significant and updated research on clinical scenarios related to HER2-positive breast cancer management in order to revise the guidelines of everyday clinical practices. In this article, we present the data on anti-HER2 clinical research of neoadjuvant, adjuvant, and metastatic studies from the past 2 decades. We also highlight some of the promising strategies that should be critically considered. Lastly, this review lists some of the ongoing clinical trials, findings of which may soon be available.
Collapse
Affiliation(s)
- Jiani Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, 100021 Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, 100021 Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, 100021 Beijing, China
| |
Collapse
|
33
|
Viale G, Morganti S, Ferraro E, Zagami P, Marra A, Curigliano G. What therapies are on the horizon for HER2 positive breast cancer? Expert Rev Anticancer Ther 2019; 19:811-822. [PMID: 31448640 DOI: 10.1080/14737140.2019.1660164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Despite dramatic improvements in survival achieved with currently available anti-HER2 agents, HER2-positive metastatic breast cancer remains an almost invariably deadly disease, with primary or acquired resistance to HER2-directed agents developing during treatment. Many efforts are focused on identifying new agents that may more effectively inhibit HER2 signaling and on possible combination strategies. Areas covered: This review summarizes the landscape of drugs under development for HER2-positive metastatic breast cancer, as antibody-drug conjugates, monoclonal anti-HER2 antibodies, bispecific antibodies, or novel tyrosine kinase inhibitors. Moreover, available data for possible combination of anti-HER2 drugs and different agents, as immunotherapy, PI3K/mTOR inhibitors, CDK4/6 inhibitors currently under evaluation are reviewed. These strategies may overcome mechanisms of resistance and further improve patient outcomes. Expert opinion: Identification of valuable predictive biomarkers is needed to better inform choice of treatment sequence for the individual patient and limit the financial toxicity of these agents.
Collapse
Affiliation(s)
- Giulia Viale
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology IRCCS , Milan , Italy.,Department of Oncology and Haematology, University of Milan , Milan , Italy
| | - Stefania Morganti
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology IRCCS , Milan , Italy.,Department of Oncology and Haematology, University of Milan , Milan , Italy
| | - Emanuela Ferraro
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology IRCCS , Milan , Italy.,Department of Oncology and Haematology, University of Milan , Milan , Italy
| | - Paola Zagami
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology IRCCS , Milan , Italy.,Department of Oncology and Haematology, University of Milan , Milan , Italy
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology IRCCS , Milan , Italy.,Department of Oncology and Haematology, University of Milan , Milan , Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology IRCCS , Milan , Italy.,Department of Oncology and Haematology, University of Milan , Milan , Italy
| |
Collapse
|
34
|
Burke EE, Kodumudi K, Ramamoorthi G, Czerniecki BJ. Vaccine Therapies for Breast Cancer. Surg Oncol Clin N Am 2019; 28:353-367. [DOI: 10.1016/j.soc.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Basu A, Ramamoorthi G, Jia Y, Faughn J, Wiener D, Awshah S, Kodumudi K, Czerniecki BJ. Immunotherapy in breast cancer: Current status and future directions. Adv Cancer Res 2019; 143:295-349. [PMID: 31202361 DOI: 10.1016/bs.acr.2019.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer, one of the leading causes of death in women in the United States, challenges therapeutic success in patients due to tumor heterogeneity, treatment resistance, metastasis and disease recurrence. Knowledge of immune system involvement in normal breast development and breast cancer has led to extensive research into the immune landscape of breast cancer and multiple immunotherapy clinical trials in breast cancer patients. However, poor immunogenicity and T-cell infiltration along with heightened immunosuppression in the tumor microenvironment have been identified as potential challenges to the success of immunotherapy in breast cancer. Oncodrivers, owing to their enhanced expression and stimulation of tumor cell proliferation and survival, present an excellent choice for targeted immunotherapy development in breast cancer. Loss of anti-tumor immune response specific to oncodrivers has been reported in breast cancer patients as well. Dendritic cell vaccines have been tested for their efficacy in generating anti-tumor T-cell response against specific tumor-associated antigens and oncodrivers and have shown improved survival outcome in patients. Here, we review the current status of immunotherapy in breast cancer, focusing on dendritic cell vaccines and their therapeutic application in breast cancer. We further discuss future directions of breast cancer immunotherapy and potential combination strategies involving dendritic cell vaccines and existing chemotherapeutics for improved efficacy and better survival outcome in breast cancer.
Collapse
Affiliation(s)
- Amrita Basu
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Yongsheng Jia
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jon Faughn
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Doris Wiener
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Sabrina Awshah
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States.
| | - Brian J Czerniecki
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States.
| |
Collapse
|
36
|
Crosby EJ, Gwin W, Blackwell K, Marcom PK, Chang S, Maecker HT, Broadwater G, Hyslop T, Kim S, Rogatko A, Lubkov V, Snyder JC, Osada T, Hobeika AC, Morse MA, Lyerly HK, Hartman ZC. Vaccine-Induced Memory CD8 + T Cells Provide Clinical Benefit in HER2 Expressing Breast Cancer: A Mouse to Human Translational Study. Clin Cancer Res 2019; 25:2725-2736. [PMID: 30635338 PMCID: PMC6497539 DOI: 10.1158/1078-0432.ccr-18-3102] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 01/23/2023]
Abstract
PURPOSE Immune-based therapy for metastatic breast cancer has had limited success, particularly in molecular subtypes with low somatic mutations rates. Strategies to augment T-cell infiltration of tumors include vaccines targeting established oncogenic drivers such as the genomic amplification of HER2. We constructed a vaccine based on a novel alphaviral vector encoding a portion of HER2 (VRP-HER2). PATIENTS AND METHODS In preclinical studies, mice were immunized with VRP-HER2 before or after implantation of hHER2+ tumor cells and HER2-specific immune responses and antitumor function were evaluated. We tested VRP-HER2 in a phase I clinical trial where subjects with advanced HER2-overexpressing malignancies in cohort 1 received VRP-HER2 every 2 weeks for a total of 3 doses. In cohort 2, subjects received the same schedule concurrently with a HER2-targeted therapy. RESULTS Vaccination in preclinical models with VRP-HER2 induced HER2-specific T cells and antibodies while inhibiting tumor growth. VRP-HER2 was well tolerated in patients and vaccination induced HER2-specific T cells and antibodies. Although a phase I study, there was 1 partial response and 2 patients with continued stable disease. Median OS was 50.2 months in cohort 1 (n = 4) and 32.7 months in cohort 2 (n = 18). Perforin expression by memory CD8 T cells post-vaccination significantly correlated with improved PFS. CONCLUSIONS VRP-HER2 increased HER2-specific memory CD8 T cells and had antitumor effects in preclinical and clinical studies. The expansion of HER2-specific memory CD8 T cells in vaccinated patients was significantly correlated with increased PFS. Subsequent studies will seek to enhance T-cell activity by combining with anti-PD-1.
Collapse
Affiliation(s)
- Erika J Crosby
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - William Gwin
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Kimberly Blackwell
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Paul K Marcom
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Serena Chang
- Department of Microbiology and Immunology, Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Holden T Maecker
- Department of Microbiology and Immunology, Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Gloria Broadwater
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Terry Hyslop
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Sungjin Kim
- Department of Biomedical Sciences, Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andre Rogatko
- Department of Biomedical Sciences, Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Veronica Lubkov
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Joshua C Snyder
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Takuya Osada
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Amy C Hobeika
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Michael A Morse
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - H Kim Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina.
| | - Zachary C Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
37
|
Mittendorf EA, Lu B, Melisko M, Price Hiller J, Bondarenko I, Brunt AM, Sergii G, Petrakova K, Peoples GE. Efficacy and Safety Analysis of Nelipepimut-S Vaccine to Prevent Breast Cancer Recurrence: A Randomized, Multicenter, Phase III Clinical Trial. Clin Cancer Res 2019; 25:4248-4254. [PMID: 31036542 DOI: 10.1158/1078-0432.ccr-18-2867] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/31/2018] [Accepted: 04/19/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE In phase I/II studies, nelipepimut-S (NP-S) plus GM-CSF vaccine was well tolerated and effectively raised HER2-specific immunity in patients with breast cancer. Results from a prespecified interim analysis of a phase III trial assessing NP-S + GM-CSF are reported. PATIENTS AND METHODS This multicenter, randomized, double-blind phase III study enrolled females ≥18 years with T1-T3, HER2 low-expressing (IHC 1+/2+), node-positive breast cancer in the adjuvant setting. Patients received 1,000 μg NP-S + 250 μg GM-CSF or placebo + GM-CSF monthly for 6 months, then every 6 months through 36 months. The primary objective was disease-free survival (DFS). Protocol-specified imaging occurred annually. New abnormalities were categorized as recurrence events; biopsy confirmation was not mandated. The interim analysis was conducted as specified in the protocol after 73 DFS events. RESULTS A total of 758 patients (mean age 51.8 years) were randomized. Adverse events were similar between groups; most common were injection-associated: erythema (84.3%), induration (55.8%), and pruritus (54.9%). There was no significant between-arms difference in DFS events at interim analysis at median follow-up (16.8 months). In the NP-S arm, imaging detected 54.1% of recurrence events in asymptomatic patients versus 29.2% in the placebo arm (P = 0.069). CONCLUSIONS NP-S was well tolerated. There was no significant difference in DFS events between NP-S and placebo. Use of mandated annual scans and image-detected recurrence events hastened the interim analysis contributing to early trial termination.
Collapse
Affiliation(s)
- Elizabeth A Mittendorf
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts. .,Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | - Biao Lu
- Independent Statistical Contractor, San Ramon, California
| | - Michelle Melisko
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Julie Price Hiller
- Division of Medical Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Igor Bondarenko
- Department of Oncology and Medical Radiology, Dnipropetrovsk State Medical Academy, Dnipropetrovsk, Ukraine
| | - Adrian Murray Brunt
- Cancer Centre, University Hospitals of North Midlands and Keele University, Stoke-on-Trent, United Kingdom
| | | | | | | |
Collapse
|
38
|
Criscitiello C, Viale G, Curigliano G. Peptide vaccines in early breast cancer. Breast 2019; 44:128-134. [PMID: 30769238 DOI: 10.1016/j.breast.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 01/21/2023] Open
Abstract
The immune system plays a dual role of host-protecting and tumor-promoting, as elegantly expressed by the 'cancer immunoediting' hypothesis. Although breast cancer has not been traditionally considered to be immunogenic, recently there is accumulating and solid evidence on the association between immune system and breast cancer. To mount an effective anti-tumor response, host immunosurveillance must recognize tumor-specific epitopes, thus defining the antigenicity of a tumor. Neoantigens are mutant cancer peptides that arise as terminal products of the expression of somatic cancer mutations. Neoantigens and major histocompatibility complex (MHC) proteins present together to effector cells of the immune system. Neoantigen vaccines have shown promising results in inducing neoantigen-specific T-cell responses. Currently, cancer vaccines are under evaluation in breast cancer to avoid recurrences in patients at high risk despite optimal standard therapy. Given the promise of a very specific long-term antitumor immune response, the development of cancer vaccines continues is of great interest. Combinations of neoantigen vaccines and other immunotherapies are also studied to evade cancer immune escape.
Collapse
Affiliation(s)
| | - Giulia Viale
- IEO, European Institute of Oncology IRCCS, Milan Italy
| | - Giuseppe Curigliano
- IEO, European Institute of Oncology IRCCS, Milan Italy; University of Milan, Italy.
| |
Collapse
|
39
|
Ayoub NM, Al-Shami KM, Yaghan RJ. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. BREAST CANCER-TARGETS AND THERAPY 2019; 11:53-69. [PMID: 30697064 PMCID: PMC6340364 DOI: 10.2147/bctt.s175360] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer immunotherapy has evolved dramatically with improved understanding of immune microenvironment and immunosurveillance. The immunogenicity of breast cancer is rather heterogeneous. Specific subtypes of breast cancer such as estrogen receptor (ER)-negative, human EGF receptor 2 (HER2)-positive, and triple-negative breast cancer (TNBC) have shown evidence of immunogenicity based on tumor–immune interactions. Several preclinical and clinical studies have explored the potential for immunotherapy to improve the clinical outcomes for different subtypes of breast cancer. This review describes the immune microenvironment of HER2-positive breast cancer and summarizes recent clinical advances of immunotherapeutic treatments in this breast cancer subtype. The review provides rationale and ongoing clinical evidence to the use of immune checkpoint inhibitors, therapeutic vaccines, and adoptive T cell immunotherapy in breast cancer. In addition, the present paper describes the most relevant clinical progress of strategies for the combination of immunotherapy with standard treatment modalities in HER2-positive breast cancer including chemotherapy, targeted therapy, and radiotherapy.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan,
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Rami J Yaghan
- Department of General Surgery and Urology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
40
|
Allahverdiyev A, Tari G, Bagirova M, Abamor ES. Current Approaches in Development of Immunotherapeutic Vaccines for Breast Cancer. J Breast Cancer 2018; 21:343-353. [PMID: 30607155 PMCID: PMC6310717 DOI: 10.4048/jbc.2018.21.e47] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 01/12/2023] Open
Abstract
Cancer is the leading cause of death worldwide. In developed as well as developing countries, breast cancer is the most common cancer found among women. Currently, treatment of breast cancer consists mainly of surgery, chemotherapy, hormone therapy, and radiotherapy. In recent years, because of increased understanding of the therapeutic potential of immunotherapy in cancer prevention, cancer vaccines have gained importance. Here, we review various immunotherapeutic breast cancer vaccines including peptide-based vaccines, whole tumor cell vaccines, gene-based vaccines, and dendritic cell vaccines. We also discuss novel nanotechnology-based approaches to improving breast cancer vaccine efficiency.
Collapse
Affiliation(s)
- Adil Allahverdiyev
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gamze Tari
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Melahat Bagirova
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Emrah Sefik Abamor
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
41
|
Application of E75 peptide vaccine in breast cancer patients: A systematic review and meta-analysis. Eur J Pharmacol 2018; 831:87-93. [DOI: 10.1016/j.ejphar.2018.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022]
|
42
|
Meng Y, Sun J, Hu T, Ma Y, Du T, Kong C, Zhang G, Yu T, Piao H. Rapid expansion in the WAVE bioreactor of clinical scale cells for tumor immunotherapy. Hum Vaccin Immunother 2018; 14:2516-2526. [PMID: 29847223 DOI: 10.1080/21645515.2018.1480241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell-based immunotherapy using natural killer (NK) cells, cytokine-induced killer (CIK) cells and dendritic cells (DCs) is emerging as a potential novel approach in the auxiliary treatment of a tumor. However, non-standard operation procedure, small-scale cell number, or human error may limit the clinical development of cell-based immunotherapy. To simplify clinical scale NK cells, CIK cells and DCs expansions, we investigated the use of the WAVE bioreactor, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. We developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant number of cells for our adoptive cell transfer clinical protocols. The high proliferative rate, surface phenotypes, and cytotoxicity of these immune cells, as well as the safety of cultivation were analyzed to illuminate the effect of WAVE bioreactor. The results demonstrated that the benefit of utilizing modern WAVE bioreactors in cancer immunotherapy was simple, safe, and flexible production.
Collapse
Affiliation(s)
- Yiming Meng
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Jing Sun
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Tingting Hu
- b Department of Blood Bank , Cancer hospital of China medical university , Shenyang , China
| | - Yushu Ma
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Tiaozhao Du
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Cuicui Kong
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Guirong Zhang
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China
| | - Tao Yu
- c Department of Medical Image , Cancer hospital of China medical university , Shenyang , China
| | - Haozhe Piao
- a Central laboratory, Cancer hospital of China medical university , Shenyang , China.,d Department of Neurosurgery , Cancer hospital of China medical university , Shenyang , China
| |
Collapse
|
43
|
Ruan QZ, Fu JQ, Wu XX, Huang LP, Ruan RS. Rational combinations of in vivo cancer antigen priming and adoptive T-cell therapy mobilize immune and clinical responses in terminal cancers. Cancer Immunol Immunother 2018; 67:907-915. [PMID: 29511794 PMCID: PMC11028218 DOI: 10.1007/s00262-018-2142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE It is now recognized that solid tumors encroach on the host's immune microenvironment to favor its own proliferation. Strategies to enhance the specificity of the endogenous T-cell population against tumors have been met with limited clinical success. We aimed to devise a two-tier protocol coupling in vivo whole antigen priming with ex vivo cellular expansion to clinically evaluate survival in patients following re-infusion of primed, autologous T cells, thereby determining treatment efficacy. EXPERIMENTAL DESIGN Treatment commenced with the acquisition of whole tumor antigens from tumor cell lines corresponding with patients' primary malignancy. Lysate mixture was inoculated intradermally, while peripheral blood mononuclear cells (PBMCs) were periodically extracted via phlebotomy and expanded in culture ex vivo for re-infusion. Post-treatment tumor-specific T-cell response and cytotoxicity was confirmed via Elispot and real-time cell analyzing (RTCA) assay. Serum cytokine levels and cytotoxicity scores were evaluated for associations with survival status and duration. RESULTS There was a significant increase in cytotoxicity exhibited by T cells measured using both Elispot and RTCA following treatment. Correlation analysis determined significant association between higher post-treatment cytotoxicity scores and survival status (R = 0.52, p = 0.0028) as well as longer survival duration in months (R = 0.59, p = 0.005). CONCLUSIONS Our treatment protocol successfully demonstrated significant correlation between tumor-associated antigen-specific immune response and objective prolongation of survival. Whole-cell cancer antigen priming and adoptive T-cell therapy is, therefore, a highly feasible clinical model which can be easily replicated to positively influence outcome in end-stage malignancy.
Collapse
Affiliation(s)
- Qing Zhao Ruan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jian Qian Fu
- Department of Oncology, Xiamen 5th Hospital, Xiamen, China
| | - Xiao Xuan Wu
- Xiamen Key Laboratory for Translational Medicine of Cancer Theranostics, School of Pharmaceutical Sciences, Xiamen University, #246-248, Xiangan Nanlu, Xiangan District, Xiamen, China
| | - Li Ping Huang
- Xiamen Key Laboratory for Translational Medicine of Cancer Theranostics, School of Pharmaceutical Sciences, Xiamen University, #246-248, Xiangan Nanlu, Xiangan District, Xiamen, China
| | - Run Sheng Ruan
- Xiamen Key Laboratory for Translational Medicine of Cancer Theranostics, School of Pharmaceutical Sciences, Xiamen University, #246-248, Xiangan Nanlu, Xiangan District, Xiamen, China.
- Zhang Zhou Xing Pu Hospital, Zhang Zhou, China.
| |
Collapse
|
44
|
Costa RLB, Soliman H, Czerniecki BJ. The clinical development of vaccines for HER2 + breast cancer: Current landscape and future perspectives. Cancer Treat Rev 2017; 61:107-115. [PMID: 29125981 DOI: 10.1016/j.ctrv.2017.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 11/28/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a tumor associated antigen over-expressed in 20-30% of cases of breast cancer. Passive immune therapy with HER2-directed monoclonal antibodies (mabs) has changed the natural history of this subset of breast tumors both in the localized and metastatic settings. The safety and efficacy of HER2 vaccines have been assessed in early phase clinical trials but to date clinically relevant results in late phase trials remain an elusive target. Here, we review the recent translational discoveries related to the interactions between the adaptive immune system and the HER2 antigen in breast cancer, results of published clinical trials, and future directions in the field of HER2 vaccine treatment development.
Collapse
Affiliation(s)
- R L B Costa
- Lee Moffitt Cancer Center, Department of Breast Cancer, Tampa, United States.
| | - H Soliman
- Lee Moffitt Cancer Center, Department of Breast Cancer, Tampa, United States
| | - B J Czerniecki
- Lee Moffitt Cancer Center, Department of Breast Cancer, Tampa, United States
| |
Collapse
|
45
|
Jackson DO, Byrd K, Vreeland TJ, Hale DF, Herbert GS, Greene JM, Schneble EJ, Berry JS, Trappey AF, Clifton GT, Hardin MO, Martin J, Elkas JC, Conrads TP, Darcy KM, Hamilton CA, Maxwell GL, Peoples GE. Interim analysis of a phase I/IIa trial assessing E39+GM-CSF, a folate binding protein vaccine, to prevent recurrence in ovarian and endometrial cancer patients. Oncotarget 2017; 8:15912-15923. [PMID: 27852036 PMCID: PMC5362533 DOI: 10.18632/oncotarget.13305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/19/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Folate binding protein(FBP) is an immunogenic protein over-expressed in endometrial(EC) and ovarian cancer(OC). We are conducting a phase I/IIa trial of E39 (GALE 301)+GM-CSF, an HLA-A2-restricted, FBP-derived peptide vaccine to prevent recurrences in disease-free EC and OC patients. This interim analysis summarizes toxicity, immunologic responses, and clinical outcomes to date. METHODS HLA-A2+ patients were vaccinated(VG), and HLA-A2- or -A2+ patients were followed as controls(CG). Six monthly intradermal inoculations of E39+250mcg GM-CSF were administered to VG. Demographic, safety, immunologic, and recurrence rate(RR) data were collected and evaluated. RESULTS This trial enrolled 51 patients; 29 in the VG and 22 in the CG. Fifteen patients received 1000mcg E39, and 14 received <1000mcg. There were no clinicopathologic differences between groups(all p ≥ 0.1). E39 was well-tolerated regardless of dose. DTH increased pre- to post-vaccination (5.7±1.5 mm vs 10.3±3.0 mm, p = 0.06) in the VG, and increased more in the 1000mcg group (3.8±2.0 mm vs 9.5±3.5 mm, p = 0.03). With 12 months median follow-up, the RR was 41% (VG) vs 55% (CG), p = 0.41. Among the 1000mcg patients, the RR was 13.3% vs 55% CG, p = 0.01. Estimated 2-year DFS was 85.7% in the 1000mcg group vs 33.6% in the CG (p = 0.021). CONCLUSIONS This phase I/IIa trial reveals that E39+GM-CSF is well-tolerated and elicits a strong, dose-dependent in vivo immune response. Early efficacy results are promising in the 1000 mcg dose cohort. This study proves the safety and establishes the dose of E39 for a larger prospective, randomized, controlled trial in HLA-A2+ EC and OC patients to prevent recurrence.
Collapse
Affiliation(s)
- Doreen O Jackson
- Department of Surgery, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Kevin Byrd
- National Capital Consortium Fellowship in Gynecologic Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA.,Gynecologic Cancer Center of Excellence, Annandale, VA, USA
| | - Timothy J Vreeland
- Department of Surgery, Womack Army Medical Center, Fayetteville, NC, USA
| | - Diane F Hale
- Department of Surgery, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Garth S Herbert
- Department of Surgery, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Julia M Greene
- Department of Surgery, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Erika J Schneble
- Department of Surgery, San Antonio Military Medical Center, San Antonio, TX, USA
| | - John S Berry
- Department of Surgery, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Alfred F Trappey
- Department of Surgery, San Antonio Military Medical Center, San Antonio, TX, USA
| | - G T Clifton
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark O Hardin
- Department of Surgery, Madigan Army Medical Center, Tacoma, WA, USA
| | | | - John C Elkas
- Department of Obstetrics and Gynecology, Inova Fairfax Hospital, Annandale, VA, USA.,Mid-Atlantic Gynecologic Oncology and Pelvic Surgical Associates, Annandale, VA, USA
| | - Thomas P Conrads
- National Capital Consortium Fellowship in Gynecologic Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA.,Gynecologic Cancer Center of Excellence, Annandale, VA, USA.,Department of Obstetrics and Gynecology, Inova Fairfax Hospital, Annandale, VA, USA.,Inova Schar Cancer Institute, Inova Health System, Annandale, VA, USA
| | - Kathleen M Darcy
- National Capital Consortium Fellowship in Gynecologic Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA.,Gynecologic Cancer Center of Excellence, Annandale, VA, USA
| | - Chad A Hamilton
- National Capital Consortium Fellowship in Gynecologic Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA.,Gynecologic Cancer Center of Excellence, Annandale, VA, USA
| | - George L Maxwell
- National Capital Consortium Fellowship in Gynecologic Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA.,Gynecologic Cancer Center of Excellence, Annandale, VA, USA.,Department of Obstetrics and Gynecology, Inova Fairfax Hospital Annandale, VA, USA.,Inova Schar Cancer Institute, Inova Health System, Annandale, VA, USA
| | | |
Collapse
|
46
|
Caballero I, Aira LE, Lavastida A, Popa X, Rivero J, González J, Mesa M, González N, Coba K, Lorenzo-Luaces P, Wilkinson B, Santiesteban Y, Santiesteban Y, Troche M, Suarez E, Crombet T, Sánchez B, Casacó A, Macías A, Mazorra Z. Safety and Immunogenicity of a Human Epidermal Growth Factor Receptor 1 (HER1)-Based Vaccine in Prostate Castration-Resistant Carcinoma Patients: A Dose-Escalation Phase I Study Trial. Front Pharmacol 2017; 8:263. [PMID: 28539888 PMCID: PMC5423955 DOI: 10.3389/fphar.2017.00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (CRPC) remains incurable due to the lack of effective therapies. Activation of the human epidermal growth factor receptor 1 (HER1) in prostate cancer contributes to metastatic progression as well as to disease relapse. Here, we determined the toxicity and immunogenicity of a HER1-based cancer vaccine in CRPC patients included in a phase I clinical trial. CRPC patients (n = 24) were intramuscularly vaccinated with HER1 vaccine consisting of the extracellular domain of HER1 molecule (ECD) and very small size proteoliposome from Neisseria meningitidis (VSSP) and Montanide ISA-51 VG as adjuvants. Patients were included in five groups according to the vaccine dose (100, 200, 400, 600, and 800 μg). The primary endpoints were safety and immunogenicity. The anti-HER1 antibodies were measured by an ELISA, the recognition of an HER1 positive tumor cell line and the inhibition of HER1 phosphorylation by sera were determined by flow cytometry and western blot analysis, respectively. The HER1-specific T cell response was assessed by determination of IFN-γ-producing T cells using ELISpot assay. The vaccine was well tolerated. No grade III or IV adverse events were reported. High titers of anti-HER1 antibodies were observed in most of the evaluated patients. There were no significant differences regarding the geometric means of the anti-HER1 titers among the dose groups except the group of 100 μg in which antibody titers were significantly lower. A Th1-type IgG subclasses pattern was predominant in most patients. Only patients receiving the higher doses of vaccine showed significant tumor cell recognition and HER1 phosphorylation inhibition by hyperimmune sera. Forty two percent of the patients showed a specific T cell response against HER1 peptides pool in post-treatment samples. There was a trend toward survival benefit in those patients showing high anti-HER1 specific antibody titers and a significant association between cellular immune response and clinical outcome.
Collapse
Affiliation(s)
- Iraida Caballero
- Department of Oncology, Hermanos Ameijeiras HospitalHavana, Cuba
| | - Lazaro E Aira
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| | - Anabel Lavastida
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| | - Xitlally Popa
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| | | | - Joaquín González
- Department of Oncology, Hermanos Ameijeiras HospitalHavana, Cuba
| | - Mónica Mesa
- Tumor Immunology Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Narjara González
- Tumor Immunology Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Kelly Coba
- Faculty of Medicine "Victoria de Girón"Havana, Cuba
| | | | - Barbara Wilkinson
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | | | | | - Mayelin Troche
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Eduardo Suarez
- Department of Innovation, Center of Molecular ImmunologyHavana, Cuba
| | - Tania Crombet
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Belinda Sánchez
- Tumor Immunology Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Angel Casacó
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Amparo Macías
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Zaima Mazorra
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| |
Collapse
|
47
|
Liu Y, Mu Y, Zhang A, Ren S, Wang W, Xie J, Zhang Y, Zhou C. Cytokine-induced killer cells/dendritic cells and cytokine-induced killer cells immunotherapy for the treatment of esophageal cancer in China: a meta-analysis. Onco Targets Ther 2017; 10:1897-1908. [PMID: 28408841 PMCID: PMC5384723 DOI: 10.2147/ott.s132507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Immunotherapy based on cytokine-induced killer cells or combination of dendritic cells and cytokine-induced killer cells (CIK/DC-CIK) showed promising clinical outcomes for treating esophageal cancer (EC). However, the clinical benefit varies among previous studies. Therefore, it is necessary to systematically evaluate the curative efficacy and safety of CIK/DC-CIK immunotherapy as an adjuvant therapy for conventional therapeutic strategies in the treatment of EC. MATERIALS AND METHODS Clinical trials published before October 2016 and reporting CIK/DC-CIK immunotherapy treatment responses or safety for EC were searched in Cochrane Library, EMBASE, PubMed, Wanfang and China National Knowledge Internet databases. Research quality and heterogeneity were evaluated before analysis, and pooled analyses were performed using random- or fixed-effect models. RESULTS This research covered 11 trials including 994 EC patients. Results of this meta-analysis indicated that compared with conventional therapy, the combination of conventional therapy with CIK/DC-CIK immunotherapy significantly prolonged the 1-year overall survival (OS) rate, overall response rate (ORR) and disease control rate (DCR) (1-year OS: P=0.0005; ORR and DCR: P<0.00001). Patients with combination therapy also showed significantly improved quality of life (QoL) (P=0.02). After CIK/DC-CIK immunotherapy, lymphocyte percentages of CD3+ and CD3-CD56+ subsets (P<0.01) and cytokines levels of IFN-γ, -2, TNF-α and IL-12 (P<0.00001) were significantly increased, and the percentage of cluster of differentiation (CD)4+CD25+CD127- subset was significantly decreased, whereas analysis of CD4+, CD8+, CD4+/CD8+ and CD3+CD56+ did not show significant difference (P>0.05). CONCLUSION The combination of CIK/DC-CIK immunotherapy and conventional therapy is safe and markedly prolongs survival time, enhances immune function and improves the treatment efficacy for EC.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastroenterology, Weifang People's Hospital, Weifang
| | - Ying Mu
- Department of Gastroenterology
| | - Anqi Zhang
- Central Laboratory, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong Province, People's Republic of China
| | - Shaoda Ren
- Central Laboratory, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong Province, People's Republic of China
| | - Weihua Wang
- Central Laboratory, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong Province, People's Republic of China
| | | | - Yingxin Zhang
- Central Laboratory, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong Province, People's Republic of China
| | - Changhui Zhou
- Central Laboratory, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong Province, People's Republic of China
| |
Collapse
|
48
|
Benedetti R, Dell’Aversana C, Giorgio C, Astorri R, Altucci L. Breast Cancer Vaccines: New Insights. Front Endocrinol (Lausanne) 2017; 8:270. [PMID: 29081765 PMCID: PMC5645504 DOI: 10.3389/fendo.2017.00270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023] Open
Abstract
Breast cancer (BC) is a persistent global challenge for its high frequency in women (although it seldom occurs in men), due to the large diffusion of risk factors and gene mutations, and for its peculiar biology and microenvironment. To date, BC can benefit from different therapeutic strategies involving surgery, ablation, chemotherapy, radiotherapy, and more specific approaches such as hormone therapy and the administration of various substances impairing cancer growth, aggressivity, and recurrence with different modalities. Despite these relatively wide chances, also used in combinatory protocols, relevant mortality and relapse rates, often associated with resistant phenotypes, stress the need for a personalized-medicine based on prompting the patient's immune system (IS) against cancer cells. BC immunogenicity was latterly proven, so the whole immunotherapy field for BC is still at a very early stage. This immunotherapeutic approach exploits both the high specificity of adaptive immune response and the immunological memory. This review is focused on some of the majorly relevant BC vaccines available (NeuVax, AVX901, and INO-1400), providing a description of the more promising clinical trials. The efficacy of cancer vaccines highly depends on the patient's IS, and a wide optimization is needed in terms of targets' selection, drug design and combinations, dose finding, protocol structuring, and patients' recruitment; moreover, new standards are being discussed for the outcome evaluation. However, early-phases excellent results suggest that the manipulation of the IS via specific vaccines is a highly attractive approach for BC.
Collapse
Affiliation(s)
- Rosaria Benedetti
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
- *Correspondence: Rosaria Benedetti, ; Lucia Altucci,
| | - Carmela Dell’Aversana
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
| | - Cristina Giorgio
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
| | - Roberta Astorri
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
- Dipartimento di Medicina e Scienze della Salute “Vincenzo Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
- *Correspondence: Rosaria Benedetti, ; Lucia Altucci,
| |
Collapse
|
49
|
Voutsas IF, Anastasopoulou EA, Tzonis P, Papamichail M, Perez SA, Baxevanis CN. Unraveling the role of preexisting immunity in prostate cancer patients vaccinated with a HER-2/neu hybrid peptide. J Immunother Cancer 2016; 4:75. [PMID: 27891225 PMCID: PMC5109671 DOI: 10.1186/s40425-016-0183-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023] Open
Abstract
Background Cancer vaccines aim at eliciting not only an immune response against specific tumor antigens, but also at enhancing a preexisting immunity against the tumor. In this context, we recently reported on the levels of preexisting immunity in prostate cancer patients vaccinated with the HER-2 hybrid peptide (AE37), during a phase I clinical trial. The purpose of the current study was to correlate between preexisting immunity to the native HER-2 peptide, AE36, and expression of HLA-A2 and -A24 molecules with the clinical outcome. Additionally, we investigated the ability of the AE37 vaccine to induce an antitumor immune response against other tumor associated antigens, not integrated in the vaccine formulation, with respect to the clinical response. Methods We analyzed prostate cancer patients who were vaccinated with the AE37 vaccine [Ii-Key-HER-2/neu(776–790) hybrid peptide vaccine (AE37), which is a MHC class II long peptide vaccine encompassing MHC class I epitopes, during a phase I clinical trial. Preexisting immunity to the native HER-2/neu(776–790) (AE36) peptide was assessed by IFNγ response or dermal reaction at the inoculation site. Antigen specificity against other tumor antigens was defined using multimer analysis. Progression free survival (PFS) was considered as the patients’ clinical outcome. Two-tailed Wilcoxon signed rank test at 95 % confidence interval was used for statistical evaluation at different time points and Kaplan–Meier curves with log-rank (Mantel-Cox) test were used for the evaluation of PFS. Results Preexisting immunity to AE36, irrespectively of HLA expression, was correlated with longer PFS. Specific CD8+ T cell immunity against E75 and PSA146–151 (HLA-A2 restricted), as well as, PSA153–161 (HLA-A24 restricted) was detected at relatively high frequencies which were further enhanced during vaccinations. Specific immunity against PSA153–161 correlated with longer PFS in HLA-A24+ patients. However, HLA-A2+ patients with high preexisting or vaccine-induced immunity to E75, showed a trend for shorter PFS. Conclusions Our data cast doubt on whether preexisting immunity or epitope spreading specific for HLA-class I-restricted peptides can actually predict a favorable clinical outcome. They also impose that preexisting immunity to long vaccine peptides, encompassing both HLA class II and I epitopes should be considered as an important prerequisite for the improvement of future immunotherapeutic protocols. Protocol ID Code: Generex-06-07 National Organization for Medicines (EOF) ID Code: IS-107-01-06 NEC Study Code: EED107/1/06 EudraCT Number: 2006-003299-37 Date of registration: 07/06/2006 Date of enrolment of the first participant to the trial: Nov 1st, 2007 Electronic supplementary material The online version of this article (doi:10.1186/s40425-016-0183-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | | - Panagiotis Tzonis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | |
Collapse
|
50
|
Janssen N, Fortis SP, Speigl L, Haritos C, Sotiriadou NN, Sofopoulos M, Arnogiannaki N, Stavropoulos-Giokas C, Dinou A, Perez S, Pawelec G, Baxevanis CN, Shipp C. Peripheral T cell responses to tumour antigens are associated with molecular, immunogenetic and cellular features of breast cancer patients. Breast Cancer Res Treat 2016; 161:51-62. [DOI: 10.1007/s10549-016-4037-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/22/2016] [Indexed: 12/31/2022]
|