1
|
Hu N, Zhu L, Zhang L, Wang J, Wang Y, Luo J, He L, Hao Z, Zhang L. Immunomodulatory effect and safety of TNF-α RNAi mediated by oral yeast microcapsules in rheumatoid arthritis therapy. Mater Today Bio 2022; 16:100384. [PMID: 35991628 PMCID: PMC9386491 DOI: 10.1016/j.mtbio.2022.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 11/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that requires long-term treatment and monitoring. Inhibition of inflammatory gene expression by gene therapy is a significant breakthrough in RA treatment, but the lack of a safe and effective gene delivery system hinders its application. Since oral administration can significantly reduce wound infection caused by parenteral administration, it also has the advantages of high patient compliance and convenience. Therefore, oral administration may be the best option for the treatment of this chronic disease. In this study, we developed a novel oral drug system by delivering tumor necrosis factor-α (TNF-α) short hairpin RNA (shRNA) mediated by non-pathogenic yeast to evaluate its regulation of systemic immune inflammation and safety in RA. Non-pathogenic yeast can resist the destruction of the gastrointestinal acid-base environment and can be recognized by the intestinal macrophages and act on systemic inflammatory lesions. Oral administration of yeast-mediated TNF-α shRNA significantly reduced the expression of TNF-α predominant pro-inflammatory factors in intestinal macrophages and joint synovium, and up-regulated the expression of anti-inflammatory cytokine IL-10 and M2 macrophages, systematically regulating the inflammatory response. This yeast-mediated oral gene delivery system can not only significantly inhibit knee joint synovial inflammation, but also has no toxic effects on peripheral blood and major organs. Therefore, yeast-mediated oral delivery of TNF-α shRNA may be used as a novel gene therapy strategy to treat RA through immunomodulating the mononuclear phagocyte system from the intestine to the joint synovium, and ultimately regulating systemic and local immune inflammation, providing new ideas for the clinical treatment of RA.
Collapse
Affiliation(s)
- Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Zhu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Zhang
- Xi'an Fifth Hospital, Shaanxi Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Xi'an, 710082, China
| | - Jing Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanhua Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Luo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lan He
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Corresponding author.
| |
Collapse
|
2
|
Ivanova E. Yeasts in nanotechnology-enabled oral vaccine and gene delivery. Bioengineered 2021; 12:8325-8335. [PMID: 34592900 PMCID: PMC8806958 DOI: 10.1080/21655979.2021.1985816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Oral vaccine and gene delivery systems must be engineered to withstand several different physiological environments, such as those present in the oral cavity, stomach, and jejunum, each of which exhibits varying pH levels and enzyme distributions. Additionally, these systems must be designed to ensure appropriate gastrointestinal absorption and tissue/cellular targeting properties. Yeasts-based delivery vehicles are excellent candidates for oral vaccine and oral gene therapies as many species possess cellular characteristics resulting in enhanced resistance to the harsh gastrointestinal (GI) environment and facilitated passage across the mucosal barrier. Yeast capsules can stimulate and modulate host immune responses, which is beneficial for vaccine efficacy. In addition, recombinant modification of yeasts to express cell penetrating proteins and injection mechanisms along with efficient cell adhering capabilities can potentially improve transfection rates of genetic material. In this literature review, we present evidence supporting the beneficial role yeast-based delivery systems can play in increasing the efficacy of oral administration of vaccines and gene therapies.
Collapse
Affiliation(s)
- Elena Ivanova
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Oral Gene Therapy of HFD-Obesity via Nonpathogenic Yeast Microcapsules Mediated shRNA Delivery. Pharmaceutics 2021; 13:pharmaceutics13101536. [PMID: 34683827 PMCID: PMC8539367 DOI: 10.3390/pharmaceutics13101536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/14/2023] Open
Abstract
Obesity is a chronic systemic inflammatory disease, which occurs when energy intake exceeds the energy consumption. Therefore, controlling energy intake or increasing physical consumption can effectively control obesity. However, in reality, it is very difficult for the majority of obese patients to lose weight by autonomously controlling diet. In this study, oral shRNA/yeast microcapsules were constructed with non-virus-mediated IL-1β shRNA interference vectors and non-pathogenic Saccharomyces cerevisiae. Moreover, high-fat diet induced obese mice were established to assess the weight loss effect of IL-1β shRNA/yeast microcapsules via the oral route. After IL-1β shRNA/yeast treatment, body weight and fat weight was reduced. Compared with the control group, higher average food intake but lower energy conversion rate was observed in IL-1β shRNA/yeast group. In addition, lipid metabolism related cytokines and blood glucose concentration in the circulating blood was improved after IL-1β shRNA/yeast treatment. Yeast microcapsules mediated IL-1β shRNA delivery can effectively improve obesity. Noteworthy, this kind of non-diet-controlled weight loss strategy does not need diet control, and shows good biocompatibility. It is good news to obese patients who need to lose weight but cannot control their diet.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Mutations in kirsten rat sarcoma viral oncogene homolog (KRAS) are the most frequently observed genomic alterations in human cancers. No KRAS targeting therapy has been approved despite more than three decades of efforts. Encouraging progress has been made in targeting KRASG12C with KRASG12C specific covalent inhibitors in the past few years. Herein, we review the recent breakthroughs in KRAS targeting. RECENT FINDINGS KRASG12C mutation was found in 14% of non-small cell lung cancer (NSCLC) and 3% of colorectal cancer. Recently, highly potent KRASG12C specific inhibitors have been developed and demonstrated potent activity in preclinical models. Early results from phase 1 clinical trials with sotorasib and MRTX849 show promising antitumor activity in NSCLC, colorectal cancer and other solid tumors harboring KRASG12C mutation. For the first time, the preclinical success of targeting KRAS has translated into clinical benefits, which holds the potential of transforming clinical management of KRAS mutated solid tumors. Additional efforts are needed to identify biomarkers that predict response to KRAS inhibition in patients with KRASG12C as well as to develop strategies to overcome resistance.
Collapse
Affiliation(s)
- Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA, 91010, USA.
| |
Collapse
|
5
|
Zhang L, Peng H, Feng M, Zhang W, Li Y. Yeast microcapsule-mediated oral delivery of IL-1β shRNA for post-traumatic osteoarthritis therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:336-346. [PMID: 33425491 PMCID: PMC7779538 DOI: 10.1016/j.omtn.2020.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
Post-traumatic osteoarthritis is a prevalent debilitating joint disease. However, there is no FDA-approved disease-modifying osteoarthritis drug currently. Gene therapy can improve disease progression but lacks an effective delivery system. Here, we constructed an oral drug delivery system by non-virus-mediated interleukin-1β (IL-1β) short hairpin RNA (shRNA) and non-pathogenic yeast to evaluate its effect on osteoarthritis therapy. After recombinant IL-1β shRNA/yeast therapy, yeast microcapsule-mediated oral delivery of IL-1β shRNA greatly reduced the IL-1β expression in intestine macrophage, bone marrow macrophage, and articular cartilage, systematically regulate the inflammatory response. The degeneration of articular cartilage was significantly inhibited in the medial femoral condyle and medial tibial plateau of the knee joint. And the expression of osteoarthritis markers Col X and MMP13 was reduced in the knee joint. Thus, yeast microcapsule-mediated oral delivery of IL-1β shRNA may serve as a novel gene therapy strategy for treating joint degeneration through immunomodulation of the mononuclear phagocyte system from the intestine to subchondral bone marrow and ultimately preserving the articular cartilage joint.
Collapse
Affiliation(s)
- Long Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, PR China
| | - Hang Peng
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Meng Feng
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wan Zhang
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yankun Li
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| |
Collapse
|
6
|
Shahnazari M, Samadi P, Pourjafar M, Jalali A. Therapeutic vaccines for colorectal cancer: The progress and future prospect. Int Immunopharmacol 2020; 88:106944. [PMID: 33182032 DOI: 10.1016/j.intimp.2020.106944] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Cancer vaccines are usually derived from the patient's tumor cells or the antigens found on their surface, which may help the immune system to identify and kill these malignant cells. Current focus of many researches is designing vaccines with the hope of triggering the immune system to attack cancer cells in a more effective, reliable and safe manner. Although colorectal cancer (CRC) is recognized as the third leading cause of death by cancer, but significant advances in therapy strategies have been made in recent years, including cancer vaccine. In this review, we present various vaccine platforms that have been used in the border battle against CRC, some of which have been approved for clinical use and some are in late-stage clinical trials. Until September 2020 there is approximately 1940 clinical trials of cancer vaccines on patients with different cancer types, and also many more trials are in the planning stages, which makes it the most important period of therapeutic cancer vaccines studies in the history of the immunotherapy. In cancer vaccines clinical trials, there are several considerations that must be taken into account including engineering of antigen-presenting cells, potential toxicity of antigenic areas, pharmacokinetics and pharmacodynamics of vaccines, and monitoring of the patients' immune response. Therefore, the need to overcome immunosuppression mechanisms/immune tolerance is a critical step for the success of introducing therapeutic vaccines into the widely used drugs on market. In this way, better understanding of neoantigens, tumor immune surveillance escape mechanisms and host-tumor interactions are required to develop more effective and safe cancer vaccines.
Collapse
Affiliation(s)
- Mina Shahnazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Liu DQ, Lu S, Zhang LX, Ji M, Liu SY, Wang SW, Liu RT. An indoleamine 2, 3-dioxygenase siRNA nanoparticle-coated and Trp2-displayed recombinant yeast vaccine inhibits melanoma tumor growth in mice. J Control Release 2018; 273:1-12. [DOI: 10.1016/j.jconrel.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/15/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
|
8
|
McCormick KA, Coveler AL, Rossi GR, Vahanian NN, Link C, Chiorean EG. Pancreatic cancer: Update on immunotherapies and algenpantucel-L. Hum Vaccin Immunother 2016; 12:563-75. [PMID: 26619245 PMCID: PMC4964650 DOI: 10.1080/21645515.2015.1093264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022] Open
Abstract
Pancreatic adenocarcinoma is notoriously lethal, and despite improvements in systemic chemotherapy approaches bringing survival rates for metastatic disease to almost 1 year, by 2030 it is expected to become the second leading cause of cancer death. Pancreatic cancer (PC) prognosis has been associated with both the presence of intratumoral helper and cytotoxic T lymphocytes, as well as humoral immune responses to tumor associated antigens like mesothelin. It is well described that the PC microenvironment is characterized by a fibroinflammatory and immunosuppressive stroma. On these premises several immune-targeted strategies have been developed to harness the adaptable immune system with a goal of improving survival with little toxicity. Cancer vaccines involve the administration of tumor-associated antigens with the goal of inducing an endogenous anti-tumor response. Among several strategies discussed, we will focus on the algenpantucel-L (HyperAcute™ Pancreas) immunotherapy. Algenpantucel-L is a whole cell immunotherapy consisting of irradiated allogeneic PC cells genetically engineered to express the murine enzyme α(1,3)-galactosyltransferase (αGT), which ultimately leads to hyperacute rejection with complement- and antibody-dependent cytotoxicity. While phase III data in the adjuvant treatment of pancreatic cancer are pending, phase II results have been encouraging, particularly for patients who demonstrated humoral immunologic responses. Novel strategies using immune checkpoint inhibitors, costimulatory antibodies, and combinations with cancer vaccines may overcome immunotolerance and improve treatment success.
Collapse
|
9
|
Hartley ML, Bade NA, Prins PA, Ampie L, Marshall JL. Pancreatic cancer, treatment options, and GI-4000. Hum Vaccin Immunother 2016; 11:931-7. [PMID: 25933185 DOI: 10.1080/21645515.2015.1011017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although pancreatic cancer is but the eleventh most prevalent cancer in the US, it is predicted that of all the patients newly diagnosed with this disease in 2014, only 27% will still be alive at the end of the first year, which is reduced to 6% after 5 years. The choice of chemotherapy in the treatment of pancreatic cancer is dependent on disease stage and patient performance status but, in general, the most widely used approved regimens include 5-fluorouracil (5-FU) combinations and gemcitabine combinations. Recent therapeutic strategies have resulted in an improvement in survival of patients with pancreatic cancer but the magnitude of change is disappointing and vast improvements are still needed. The goal of immunotherapy is to enhance and guide the body's immune system to recognize tumor-specific antigens and mount an attack against the disease. Among newer immune therapies, GI-4000 consists of 4 different targeted molecular immunogens, each containing a different Ras protein (antigen) encoded by the most commonly found mutant RAS genes in solid tumors-RAS mutations exist in over 90% of pancreatic ductal adenocarcinomas. We will review pancreatic cancer epidemiology and its current treatment options, and consider the prospects of immunotherapy, focusing on GI-4000. We discuss the potential mechanism of action of GI-4000, and the performance of this vaccination series thus far in early phase clinical trials.
Collapse
Affiliation(s)
- Marion L Hartley
- a The Ruesch Center for the Cure of GI Cancers at the Georgetown Lombardi Comprehensive Cancer Center ; Georgetown University ; Washington , DC USA
| | | | | | | | | |
Collapse
|
10
|
Hartley ML, Bade NA, Prins PA, Ampie L, Marshall JL. Pancreatic cancer, treatment options, and GI-4000. Hum Vaccin Immunother 2014; 10:3347-53. [PMID: 25585100 PMCID: PMC4514054 DOI: 10.1080/21645515.2014.1004017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 12/13/2022] Open
Abstract
Although pancreatic cancer is but the eleventh most prevalent cancer in the US, it is predicted that of all the patients newly diagnosed with this disease in 2014, only 27% will still be alive at the end of the first year and only 6% will make it past 5 years. The choice of chemotherapy in the treatment of pancreatic cancer is dependent on disease stage and patient performance status but, in general, the most widely used approved regimens include 5-fluorouracil (5-FU) combinations and gemcitabine combinations. Recent therapeutic strategies have resulted in an improvement in survival of patients with pancreatic cancer but the magnitude of change is disappointing and vast improvements are still needed. The goal of immunotherapy is to enhance and guide the body's immune system to recognize tumor-specific antigens and mount an attack against the disease. Among newer immune therapies, GI-4000 consists of 4 different targeted molecular immunogens, each containing a different Ras protein (antigen) encoded by the most commonly found mutant RAS genes in solid tumors--RAS mutations exist in over 90% of pancreatic ductal adenocarcinomas. We will review pancreatic cancer epidemiology and its current treatment options, and consider the prospects of immunotherapy, focusing on GI-4000. We discuss the potential mechanism of action of GI-4000, and the performance of this vaccination series thus far in early phase clinical trials.
Collapse
Affiliation(s)
- Marion L Hartley
- The Ruesch Center for the Cure of GI Cancers at the Georgetown Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington DC USA
| | - Najeebah A Bade
- The Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington DC USA
| | - Petra A Prins
- The Ruesch Center for the Cure of GI Cancers at the Georgetown Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington DC USA
| | - Leonel Ampie
- The Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington DC USA
| | - John L Marshall
- The Ruesch Center for the Cure of GI Cancers at the Georgetown Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington DC USA
| |
Collapse
|
11
|
Abstract
INTRODUCTION Cancer develops mainly as a result of accumulating mutations in genes controlling cell growth regulation. RAS is one of the most commonly mutated genes in cancer. While agents targeting the signaling aspects of RAS have met with some success, resistance to therapy remains a major issue. Another focus of drug development has been to harness the immune system to target cells harboring mutated proteins, which can appear 'foreign' to the immune system. It has been observed that cancer is able to avoid regular immune surveillance through local and systemic mechanisms leading to immune tolerance. One potential way of breaking immune tolerance is through vaccine therapy. AREAS COVERED The authors review the current but limited available literature on KRAS vaccine therapy. The research reviewed was identified from PubMed and presentations from national oncology meetings related to KRAS vaccines in general and GI-4000 series specifically. EXPERT OPINION While targeting KRAS has proven difficulties, developing novel vaccine approaches such as 'tarmogens' appear to be safe with early efficacy in subset of patients with KRAS mutations. However, further research is crucial to identify this group of patients and develop biomarkers.
Collapse
Affiliation(s)
- Safi Shahda
- Indiana University School of Medicine, Department of Medicine , 535 Barnhill Dr RT 473, Indianapolis, IN 46202 , USA
| | | |
Collapse
|
12
|
Wadle A, Held G, Neumann F, Kleber S, Wuellner B, Asemissen AM, Kubuschok B, Scheibenbogen C, Breinig T, Meyerhans A, Renner C. Cross-presentation of HLA class I epitopes from influenza matrix protein produced in Saccharomyces cerevisiae. Vaccine 2006; 24:6272-81. [PMID: 16860448 DOI: 10.1016/j.vaccine.2006.05.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 05/18/2006] [Accepted: 05/23/2006] [Indexed: 02/02/2023]
Abstract
Here we report that genetically engineered yeast of the strain Saccharomyces cerevisiae expressing full-length influenza matrix protein (IMP) attached to the yeast cell wall are a very versatile host for antigen delivery. Feeding of dendritic cells with either intact yeast expressing IMP protein or soluble IMP protein cleaved off the cell wall resulted in protein uptake, processing and cross-presentation of IMP-derived peptides. This process was analysed using previously established T-cell lines recognizing the immuno-dominant 58-66 peptide when presented by HLA-A2*0201 complexes. In addition, IMP(58-66)/HLA-A2*0201-specific antibodies were selected from a naive phage library which confirmed that peptide presentation was an active process of endocellular uptake and not just a result of external peptide loading. Moreover, MHC peptide antibodies could block the recognition of peptide-presenting dendritic cells by IMP(58-66)-specific T-cells in a dose dependent manner. There was no difference in T-cell recognition when either intact yeast or yeast cell extracts were used for DC feeding. Together, these data demonstrate that yeast derived proteins either in their soluble form or as part of a whole yeast vaccine are taken up, processed and presented by dendritic cells in HLA class I context.
Collapse
Affiliation(s)
- Andreas Wadle
- Klinik und Poliklinik für Onkologie, Rämistr. 100, UniversitätsSpital Zürich, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|