1
|
Ye C, Cheng Y, Qian X, Zhong B, Ma J, Guo H. The CDK4/6 Inhibitor Palbociclib Induces Cell Senescence of High-grade Serous Ovarian Cancer Through Acetylation of p53. Biochem Genet 2024; 62:5115-5128. [PMID: 38388849 DOI: 10.1007/s10528-024-10704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Cell senescence is an anti-cancer strategy following DNA repair and apoptosis, which is associated with the initiation, progression, and treatment of ovarian cancer. The CDK4/6 inhibitor alters cell cycle and induces cell senescence dependent on retinoblastoma (RB) family proteins. Objective Herein, we aimed to explore the effects of Palbociclib (a CDK4/6 inhibitor) on cellular senescence of high-grade serous ovarian cancer (HGSOC). Cell viability and cell cycle were evaluated by cell counting kit-8 and flow cytometry. Cell senescence was analyzed using the SA-β-gal staining assay. The senescence-associated secretory phenotype was assessed using quantitative PCR (qPCR). Senescence-related markers were tested using western blot. The role of Palbociclib in vivo was clarified using xenograft tumor. Acetylation of p53 was evaluated by qPCR and western blot. The results showed that Palbociclib inhibited cell viability, blocked cell cycle at G0/G1 phase, and induced cell senescence. A rescue study indicated that knockdown of p53 reversed the effects on cell cycle and senescence induced by Palbociclib. Moreover, we found that Palbociclib promotes P300-mediated p53 acetylation, thus increasing p53 stability and transcription activity. Moreover, Palbociclib suppressed tumor growth in vivo with increased p53 and acetylated p53 levels. In conclusion, Palbociclib induced cell senescence of HGSOC through P300-mediated p53 acetylation, suggesting that Palbociclib may have the effect of treating HGSOC.
Collapse
Affiliation(s)
- Cong Ye
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Yan Cheng
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Xiaohong Qian
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Bo Zhong
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Jinchun Ma
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Hongling Guo
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China.
| |
Collapse
|
2
|
Gregory MD, Ofosu-Asante K, Lazarte JMS, Puente PE, Tawfeeq N, Belony N, Huang Y, Offringa IA, Lamango NS. Treatment of a mutant KRAS lung cancer cell line with polyisoprenylated cysteinyl amide inhibitors activates the MAPK pathway, inhibits cell migration and induces apoptosis. PLoS One 2024; 19:e0312563. [PMID: 39436906 PMCID: PMC11495567 DOI: 10.1371/journal.pone.0312563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
KRAS mutations are the most common oncogenic mutations in lung adenocarcinoma in Black Americans. Polyisoprenylated Cysteinyl amide Inhibitors (PCAIs) constitute a group of potential cancer therapy agents that we designed to specifically disrupt and suppress hyperactive G-protein signaling, such as that caused by mutated RAS proteins. Here we determine the effects of PCAIs on the viability, G-protein levels, downstream mediators, and apoptosis-related proteins on the KRAS-mutated, Black American-derived lung adenocarcinoma cell line, NCI-H23. Of the 17 PCAIs tested, compounds NSL-YHJ-2-27 and NSL-YHJ-2-46 showed the most potency with EC50 values of 2.7 and 3.3 μM, respectively. Western blotting was used to determine the effect of the PCAIs on the phosphorylation levels of MAPK pathway enzymes. After 48 h exposure to 5 μM of the PCAIs, NSL-YHJ-2-46, the MAPK proteins BRAF, MEK1/2, ERK1/2, and p90RSK were activated through phosphorylation by 90, 190, 150 and 120%, respectively. However, CRAF/RAF1 phosphorylation decreased by 40%, suggesting significant changes in the KRAS/MAPK signaling patterns. Furthermore, 5 μM of NSL-YHJ-2-27 depleted the singly polyisoprenylated monomeric G-proteins RAC 1/2/3 and CDC42 by 77 and 76%, respectively. The depletion of these key cytoskeletal proteins may account for the observed inhibition of cell migration and invasion, and spheroid invasion observed on exposure to NSL-YHJ-2-27 and NSL-YHJ-2-46. Treatment with 5 μM of NSL-YHJ-2-27 suppressed full-length inactive caspase 3 and 7 levels by 72 and 91%, respectively. An analysis of cells treated with the fluorescently labeled active caspase 3/7 irreversible inhibitor, CaspaTagTM Caspase-3/7 in situ reagent revealed a 124% increase in active caspase at 3 μM over controls. These findings clearly show the direct effects of the PCAIs on the RAS signaling pathway. Given the profound increases observed in RPS6KA1/p90RSK phosphorylation, future work will involve a determination whether the proapoptotic isoforms of RPS6KA1/p90RSK are phosphorylated due to the PCAIs treatments. These results support the potential use of the PCAIs as targeted therapies against cancers with KRAS mutations.
Collapse
Affiliation(s)
- Matthew D. Gregory
- Institute of Public Health, Florida A&M University College of Pharmacy Pharmaceutical Sciences, Tallahassee, FL, United States of America
| | - Kweku Ofosu-Asante
- Institute of Public Health, Florida A&M University College of Pharmacy Pharmaceutical Sciences, Tallahassee, FL, United States of America
| | - Jassy Mary S. Lazarte
- Institute of Public Health, Florida A&M University College of Pharmacy Pharmaceutical Sciences, Tallahassee, FL, United States of America
| | - Pablo E. Puente
- Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, United States of America
| | - Nada Tawfeeq
- Institute of Public Health, Florida A&M University College of Pharmacy Pharmaceutical Sciences, Tallahassee, FL, United States of America
| | - Nadine Belony
- University of Florida Department of Mechanical and Aerospace Engineering, Gainesville, FL, United States of America
| | - Yong Huang
- University of Florida Department of Mechanical and Aerospace Engineering, Gainesville, FL, United States of America
| | - Ite A. Offringa
- Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, United States of America
| | - Nazarius S. Lamango
- Institute of Public Health, Florida A&M University College of Pharmacy Pharmaceutical Sciences, Tallahassee, FL, United States of America
| |
Collapse
|
3
|
Cai X, Li Y, Zheng J, Liu L, Jiao Z, Lin J, Jiang S, Lin X, Sun Y. Modeling of senescence-related chemoresistance in ovarian cancer using data analysis and patient-derived organoids. Front Oncol 2024; 13:1291559. [PMID: 38370348 PMCID: PMC10869451 DOI: 10.3389/fonc.2023.1291559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024] Open
Abstract
Background Ovarian cancer (OC) is a malignant tumor associated with poor prognosis owing to its susceptibility to chemoresistance. Cellular senescence, an irreversible biological state, is intricately linked to chemoresistance in cancer treatment. We developed a senescence-related gene signature for prognostic prediction and evaluated personalized treatment in patients with OC. Methods We acquired the clinical and RNA-seq data of OC patients from The Cancer Genome Atlas and identified a senescence-related prognostic gene set through differential and cox regression analysis in distinct chemotherapy response groups. A prognostic senescence-related signature was developed and validated by OC patient-derived-organoids (PDOs). We leveraged gene set enrichment analysis (GSEA) and ESTIMATE to unravel the potential functions and immune landscape of the model. Moreover, we explored the correlation between risk scores and potential chemotherapeutic agents. After confirming the congruence between organoids and tumor tissues through immunohistochemistry, we measured the IC50 of cisplatin in PDOs using the ATP activity assay, categorized by resistance and sensitivity to the drug. We also investigated the expression patterns of model genes across different groups. Results We got 2740 differentially expressed genes between two chemotherapy response groups including 43 senescence-related genes. Model prognostic genes were yielded through univariate cox analysis, and multifactorial cox analysis. Our work culminated in a senescence-related prognostic model based on the expression of SGK1 and VEGFA. Simultaneously, we successfully constructed and propagated three OC PDOs for drug screening. PCR and WB from PDOs affirmed consistent expression trends as those of our model genes derived from comprehensive data analysis. Specifically, SGK1 exhibited heightened expression in cisplatin-resistant OC organoids, while VEGFA manifested elevated expression in the sensitive group (P<0.05). Intriguingly, GSEA results unveiled the enrichment of model genes in the PPAR signaling pathway, pivotal regulator in chemoresistance and tumorigenesis. This revelation prompted the identification of potential beneficial drugs for patients with a high-risk score, including gemcitabine, dabrafenib, epirubicin, oxaliplatin, olaparib, teniposide, ribociclib, topotecan, venetoclax. Conclusion Through the formulation of a senescence-related signature comprising SGK1 and VEGFA, we established a promising tool for prognosticating chemotherapy reactions, predicting outcomes, and steering therapeutic strategies. Patients with high VEGFA and low SGK1 expression levels exhibit heightened sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yanhong Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Li Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zicong Jiao
- Department of Translational Medicine, Scientific Research System, Geneplus -Beijing Institute, Beijing, China
| | - Jie Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Shan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xuefen Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Tan MM, Chen MH, Han F, Wang JW, Tu YX. Role of Bioactive Constituents of Panax notoginseng in the Modulation of Tumorigenesis: A Potential Review for the Treatment of Cancer. Front Pharmacol 2021; 12:738914. [PMID: 34776959 PMCID: PMC8578715 DOI: 10.3389/fphar.2021.738914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of death, affecting people in both developed and developing countries. It is a challenging disease due to its complicated pathophysiological mechanism. Many anti-cancer drugs are used to treat cancer and reduce mortality rates, but their toxicity limits their administration. Drugs made from natural products, which act as multi-targeted therapy, have the ability to target critical signaling proteins in different pathways. Natural compounds possess pharmacological activities such as anti-cancer activity, low toxicity, and minimum side effects. Panax notoginseng is a medicinal plant whose extracts and phytochemicals are used to treat cancer, cardiovascular disorders, blood stasis, easing inflammation, edema, and pain. P. notoginseng's secondary metabolites target cancer's dysregulated pathways, causing cancer cell death. In this review, we focused on several ginsenosides extracted from P. notoginseng that have been evaluated against various cancer cell lines, with the aim of cancer treatment. Furthermore, an in vivo investigation of these ginsenosides should be conducted to gain insight into the dysregulation of several pathways, followed by clinical trials for the potential and effective treatment of cancer.
Collapse
Affiliation(s)
- Ming-Ming Tan
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Min-Hua Chen
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jun-Wei Wang
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Yue-Xing Tu
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
Yadav P, Chatterjee K, Saini DK. Senescent cells in 3D culture show suppressed senescence signatures. Biomater Sci 2021; 9:6461-6473. [PMID: 34582533 DOI: 10.1039/d1bm00536g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular senescence, an irreversible proliferation arrested but viable cellular state, has been implicated in the progression of several age-associated pathologies. A vast amount of information about senescence has been acquired in cultured cells; however, senescence in living organisms (in vivo) remains poorly understood, mainly because of technical limitations. Furthermore, it is now widely recognized that three-dimensional (3D) culture systems are a better mimic of the in vivo physiology. Herein, senescence was induced in HeLa cells by irradiation. Non-senescent or senescent cells were cultured in soft 3D polymer scaffolds and compared with cells in conventional two-dimensional (2D) culture. This work shows that the morphology of the senescent cells markedly varies between substrates/culture platforms, driving the differences in the cytoskeletal organization, cellular division, and nanomechanical properties. One characteristic feature of senescent cells on 2D culture systems is the enlarged and flattened morphology; however, such drastic changes are not seen in vivo. This is an artificial effect of the substrate, which renders such non-physiological morphology to senescent cells. In the 3D scaffolds, this artifact is reduced. Hence, it serves as a better mimic of tissues, leading to reduced expression of senescence-associated genes, implying that the 3D scaffolds suppress the senescence in cells.
Collapse
Affiliation(s)
- Parul Yadav
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.,Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| | - Deepak Kumar Saini
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
6
|
Sussman MA. VAPIng into ARDS: Acute Respiratory Distress Syndrome and Cardiopulmonary Failure. Pharmacol Ther 2021; 232:108006. [PMID: 34582836 DOI: 10.1016/j.pharmthera.2021.108006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
"Modern" vaping involving battery-operated electronic devices began approximately one dozen years and has quickly evolved into a multibillion dollar industry providing products to an estimated 50 million users worldwide. Originally developed as an alternative to traditional cigarette smoking, vaping now appeals to a diverse demographic including substantial involvement of young people who often have never used cigarettes. The rapid rise of vaping fueled by multiple factors has understandably outpaced understanding of biological effects, made even more challenging due to wide ranging individual user habits and preferences. Consequently while vaping-related research gathers momentum, vaping-associated pathological injury (VAPI) has been established by clinical case reports with severe cases manifesting as acute respiratory distress syndrome (ARDS) with examples of right ventricular cardiac failure. Therefore, basic scientific studies are desperately needed to understand the impact of vaping upon the lungs as well as cardiopulmonary structure and function. Experimental models that capture fundamental characteristics of vaping-induced ARDS are essential to study pathogenesis and formulate recommendations to mitigate harmful effects attributable to ingredients or equipment. So too, treatment strategies to promote recovery from vaping-associated damage require development and testing at the preclinical level. This review summarizes the back story of vaping leading to present day conundrums with particular emphasis upon VAPI-associated ARDS and prioritization of research goals.
Collapse
Affiliation(s)
- Mark A Sussman
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
7
|
Zhang DY, Monteiro MJ, Liu JP, Gu WY. Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clin Exp Pharmacol Physiol 2021; 48:1185-1202. [PMID: 34046925 DOI: 10.1111/1440-1681.13528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Vic, Australia
- Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University Faculty of Medicine, Clayton, Vic, Australia
| | - Wen-Yi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
8
|
Bi H, Shang J, Zou X, Xu J, Han Y. Palbociclib induces cell senescence and apoptosis of gastric cancer cells by inhibiting the Notch pathway. Oncol Lett 2021; 22:603. [PMID: 34188705 PMCID: PMC8227472 DOI: 10.3892/ol.2021.12864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Palbociclib (PD0332991), a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has been reported to exert anticancer activity in some cancers, including gastric cancer (GC). However, the role of palbociclib in GC remains largely unknown. The present study aimed to investigate the effects of palbociclib on the progression of GC and the potential mechanisms underlying its effects. The colony formation, proliferation, senescence, as well as apoptosis and cell cycle progression of AGS and HGC-27 cells following treatment with palbociclib were analyzed using colony formation assays, MTT assays, senescence-associated β-galactosidase (SA-β-gal) staining and flow cytometry, respectively. The protein expression levels of Bax, Caspase-3, Bcl-2, p16, p21, p53, Notch1, Notch2 and hairy and enhancer of split 1 (Hes1) were measured in AGS and HGC-27 cells using western blotting. Moreover, the mRNA expression levels of Notch1, Notch2 and Hes1 in AGS and HGC-27 cells were determined by reverse transcription-quantitative PCR. In the present study, palbociclib significantly inhibited cell proliferation and induced cell senescence, cell cycle arrest and apoptosis in both cell lines in a dose-dependent manner. Additionally, palbociclib significantly increased the expression levels of Bax, Caspase-3, p16, p21 and p53, whilst decreasing the expression of Bcl-2, Notch1, Notch2 and Hes1 in AGS and HGC-27 cells. Furthermore, the Notch pathway activator Jagged-1/FC reversed the effects of palbociclib on cell proliferation, apoptosis, senescence and cell cycle progression. These findings demonstrated that palbociclib could inhibit proliferation and induce senescence, cell cycle arrest and apoptosis in GC cells by inhibiting the Notch pathway.
Collapse
Affiliation(s)
- Hengtai Bi
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Juan Shang
- Department of Pharmacy, The People's Hospital of Bin Zhou, Bin Zhou, Shandong 256600, P.R. China
| | - Xiao Zou
- Department of Oncology, The First People's Hospital of Tai'an, Tai'an, Shandong 271000, P.R. China
| | - Jing Xu
- Department of Neurology, The First People's Hospital of Tai'an, Tai'an, Shandong 271000, P.R. China
| | - Yumei Han
- Department of General Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
9
|
Doshida Y, Sano H, Iwabuchi S, Aigaki T, Yoshida M, Hashimoto S, Ishigami A. Age-associated changes in the transcriptomes of non-cultured adipose-derived stem cells from young and old mice assessed via single-cell transcriptome analysis. PLoS One 2020; 15:e0242171. [PMID: 33237970 PMCID: PMC7688117 DOI: 10.1371/journal.pone.0242171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) exhibit self-renewal and pluripotency. The differentiation potency of ASCs has been reported to deteriorate with aging; however, relevant studies used ASCs that were isolated and subcultured several times. It is still unclear whether subcultured ASCs accurately reflect the in vivo state. To address this question, we used freshly isolated stromal vascular fractions (SVFs) and performed comprehensive single-cell transcriptome analysis. In this study, we identified three cell populations as putative ASC candidates in SVFs and three novel ASC-related genes: Adamts7, Snai2, and Tgfbr1, that are reported to be negative regulators of cell differentiation. Moreover, we identified age-associated high gene expression levels of Adamts7, Egfr, and Igfbp4 in the earliest differentiation stage of ASCs. These results suggest that aging may make it impossible to maintain the stringency of the regulation of the expression of some genes related to ASC differentiation.
Collapse
Affiliation(s)
- Yuta Doshida
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Haruka Sano
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
10
|
Wang W, Guo X, Dan H. α2A-Adrenergic Receptor Inhibits the Progression of Cervical Cancer Through Blocking PI3K/AKT/mTOR Pathway. Onco Targets Ther 2020; 13:10535-10546. [PMID: 33116632 PMCID: PMC7574911 DOI: 10.2147/ott.s264409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Objective The study aimed to investigate the effect of α2A-adrenergic receptor (ADRA2A) on cervical cancer and the potential mechanisms of ADRA2A on phosphatidylinositol 3′-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in cervical cancer cells. Methods In our study, ADRA2A expression was evaluated by analyzing cervical cancer RNA sequencing dataset from the GEPIA. The prognostic values of ADRA2A were evaluated by Kaplan–Meier method using the Cancer Genome Atlas (TCGA) database data. In addition, the expression of ADRA2A in cervical cancer cell lines was detected by qRT-PCR and Western blot. Subsequently, the roles of ADRA2A on cell proliferation, apoptosis, migration, invasion and senescence in HeLa and SiHa cells were evaluated. Moreover, tumorigenesis in nude mice was used to investigate the role of ADRA2A in vivo. We also detected the expression changes of key factors in PI3K/Akt/mTOR pathway after overexpression and silencing of ADRA2A in HeLa and SiHa cells. Results ADRA2A expression was significantly downregulated in cervical cancer tissues and cell lines. The high expression of ADRA2A was significantly associated with a better prognosis in cervical cancer patients. ADRA2A overexpression significantly suppressed cell proliferation, migration and invasion, and promoted cell senescence and apoptosis in cervical cancer cells. On the contrary, silencing ADRA2A dramatically facilitated cell proliferation, migration and invasion, and inhibited cell senescence and apoptosis in cervical cancer cells. The expressions of p-PI3K, p-AKT and p-mTOR in cervical cancer cells were notably decreased by ADRA2A overexpression and increased by silencing ADRA2A. In addition, we also confirmed that ADRA2A overexpression could suppress the xenograft tumor growth in vivo. Conclusion Our study demonstrated that ADRA2A could suppress cell proliferation, migration and invasion, as well as promote cell senescence and apoptosis through inhibiting PI3K/Akt/mTOR pathway in cervical cancer.
Collapse
Affiliation(s)
- Weina Wang
- Health Management Center, Qingdao Sixth People's Hospital, Qingdao, Shandong 266011, People's Republic of China
| | - Xin Guo
- Department of Gynecology and Obstetrics, The People's Liberation Army Navy, The 971th Hospital, Qingdao, Shandong 266071, People's Republic of China
| | - Huiwen Dan
- Department of Gynecology and Obstetrics, The People's Liberation Army Navy, The 971th Hospital, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
11
|
You J, Dong R, Ying M, He Q, Cao J, Yang B. Cellular Senescence and Anti-Cancer Therapy. Curr Drug Targets 2020; 20:705-715. [PMID: 30556499 DOI: 10.2174/1389450120666181217100833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cellular senescence is generally understood as a permanent cell cycle arrest stemming from different causes. The mechanism of cellular senescence-induced cell cycle arrest is complex, involving interactions between telomere shortening, inflammations and cellular stresses. In recent years, a growing number of studies have revealed that cellular senescence could mediate the cancer progression of neighboring cells, but this idea is controversial and contradictory evidence argues that cellular senescence also contributes to tumor suppression. OBJECTIVE Given that the complicated role of senescence in various physiological and pathological scenarios, we try to clarify the precise contribution role of cellular senescence to tumor progression. METHODS Search for the information in a large array of relevant articles to support our opinion. RESULTS We discuss the relatively widespread occurrence of cellular senescence in cancer treatment and identify the positive and negative side of senescence contributed to tumor progression. CONCLUSION We argue that the availability of pro-senescence therapy could represent as a promising regimen for managing cancer disease, particularly with regard to the poor clinical outcome obtained with other anticancer therapies.
Collapse
Affiliation(s)
- Jieqiong You
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rong Dong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Mohamad Kamal NS, Safuan S, Shamsuddin S, Foroozandeh P. Aging of the cells: Insight into cellular senescence and detection Methods. Eur J Cell Biol 2020; 99:151108. [PMID: 32800277 DOI: 10.1016/j.ejcb.2020.151108] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular theory of aging states that human aging is the result of cellular aging, in which an increasing proportion of cells reach senescence. Senescence, from the Latin word senex, means "growing old," is an irreversible growth arrest which occurs in response to damaging stimuli, such as DNA damage, telomere shortening, telomere dysfunction and oncogenic stress leading to suppression of potentially dysfunctional, transformed, or aged cells. Cellular senescence is characterized by irreversible cell cycle arrest, flattened and enlarged morphology, resistance to apoptosis, alteration in gene expression and chromatin structure, expression of senescence associated- β-galactosidase (SA-β-gal) and acquisition of senescence associated secretory phenotype (SASP). In this review paper, different types of cellular senescence including replicative senescence (RS) which occurs due to telomere shortening and stress induced premature senescence (SIPS) which occurs in response to different types of stress in cells, are discussed. Biomarkers of cellular senescence and senescent assays including BrdU incorporation assay, senescence associated- β-galactosidase (SA-β-gal) and senescence-associated heterochromatin foci assays to detect senescent cells are also addressed.
Collapse
Affiliation(s)
- Nor Shaheera Mohamad Kamal
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sabreena Safuan
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia
| | - Parisa Foroozandeh
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia.
| |
Collapse
|
13
|
Bao Y, He X, Wu W, Wang S, Dai J, Zhang Z, Jin W, Yan J, Mao G. Sulfated galactofucan from Sargassum thunbergii induces senescence in human lung cancer A549 cells. Food Funct 2020; 11:4785-4792. [PMID: 32421130 DOI: 10.1039/d0fo00699h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isolated compounds from Sargassum thunbergii (S. thunbergii) have shown to exhibit diverse biological activities, including anti-cancer activity. In this study, we examined the effect of sulfated galactofucan (SWZ-4-H), which was successfully isolated from S. thunbergii, and its underlying mechanism on human lung cancer (LC) A549 cell growth in vitro and in vivo. In vitro experiment indicated that SWZ-4-H decreased cell growth and number in a dose-dependent manner (P < 0.05 vs. control). Besides, cells treated with SWZ-4-H had irregular morphology, including increased cell volumes, and large nuclei, which suggested senescence-like changes. Moreover, SWZ-4-H increased senescence-related β-galactosidase (SA-β-Gal) staining in a dose-dependent manner; however, while lower (1 mg mL-1) concentration induced mainly senescence without causing cell death, higher dosage (3 mg mL-1) induced both senescence and cell death. The effect of SWZ-4-H was further confirmed by analyzing the expression of p53, p21, p16, and Rb (p-RB); SWZ-4-H significantly increased the expression of p53, p21, and p16 and decreased phosphorylated Rb (p-RB) in a dose-dependent manner. Moreover, in vivo experiment showed that SWZ-4-H significantly reduced the tumor volume without affecting the body weight. To sum up, our data indicated that SWZ-4-H could induce lung cancer senescence by regulating p53, p21, p16, and p-Rb, thus providing a novel perspective on anti-cancer mechanisms of SWZ-4-H in human lung cancer A549 cells.
Collapse
Affiliation(s)
- Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fan Z, Li L, Li X, Zhang M, Dou M, Zhao J, Cao J, Deng X, Zhang M, Li H, Suo Z. Anti-senescence role of heterozygous fumarate hydratase gene knockout in rat lung fibroblasts in vitro. Aging (Albany NY) 2020; 11:573-589. [PMID: 30668541 PMCID: PMC6366963 DOI: 10.18632/aging.101761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/05/2019] [Indexed: 12/21/2022]
Abstract
Abnormalities in tricarboxylic acid (TCA) cycle function were related to a variety of pathological processes. Fumarate hydratase (FH) is a required enzyme in the TCA cycle. To explore the general influence of FH knockout, we isolated FH+/- rat and normal rat lung fibroblasts and cultured these cells in vitro. The isolated fibroblasts with the current method were rather homogeneous and were confirmed spindle in morphology, positive for vimentin and negative for α-SMA (α-smooth muscle actin). Sequencing of the PCR (polymerase chain reaction) products flanking the FH gene mutation verified the FH+/- status, and the FH gene and protein expression were confirmed to be reduced in the FH+/- cells. No sign of ageing for the FH+/- cells after 61 passages was observed, but the controls died out at this stage. Flow cytometry revealed increased S-phase and decreased G1/G0 proportions with significantly less early apoptosis in FH+/- cells compared to that in control cells. At the same time, increased glucose consumption, intracellular fumarate production and extracellular lactate secretion were verified in the FH+/- cells. Correspondingly, FH+/- cells showed a lower basal oxygen consumption rate (OCR) but a higher level of reactive oxygen species (ROS) production. Single cell cloning and cell line establishment were successfully performed with the FH+/- cells at the 84th passage. All the above results indicate an important role for FH+/- in the longevity or immortality of the FH+/- cells, in which increased p53 and TERT (telomerase reverse transcriptase) protein expression, decreased p21 and p16 protein expression and negative SA-β-Gal (senescence-associated beta-galactosidase) were verified along with metabolic reprogramming.
Collapse
Affiliation(s)
- Zhirui Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lifeng Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Meng Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengmeng Dou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Cao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoming Deng
- Department of Chinese and Western Integrative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Montebello, Oslo, Norway
| |
Collapse
|
15
|
Rocca MS, Foresta C, Ferlin A. Telomere length: lights and shadows on their role in human reproduction. Biol Reprod 2020; 100:305-317. [PMID: 30277496 DOI: 10.1093/biolre/ioy208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Telomeres are repeated DNA sequences whose main function is to preserve genome stability, protecting chromosomes ends from shortening caused by progressive loss during each cell replication or DNA damage. Telomere length regulation is normally achieved by telomerase enzyme, whose activity is progressively shut off during embryonic differentiation in somatic tissues, whereas it is maintained in germ cells, activated lymphocytes, and certain types of stem cell populations. The maintenance of telomerase activity for a longer time is necessary for germ cells to delay telomere erosion, thus avoiding chromosome segregation defects that could contribute to aneuploid or unbalanced gametes. Over the last few years, telomere biology has become an important topic in the field of human reproduction, encouraging several studies to focus on the relation between telomere length and spermatogenesis and male fertility, embryo development and quality during assisted reproductive treatment, and female pathologies as polycystic ovary, premature ovarian insufficiency, and endometriosis. This review analyzes whether telomere length in germ cells is related to reproduction fitness, whether telomere length is related to pathologies associated with male and female fertility, and whether measurement of telomere length could represent a biomarker of germ cell and embryo quality. Telomere length could be considered a molecular marker of spermatogenesis and sperm quality and is somewhat related to male fertility potential. Fewer evidence, although promising, is available for oocytes, female (in)fertility, and embryo quality. The increasing evidence for a role of telomeres and telomere length in human reproduction, indeed, has expanded the historical view of considering them just a marker of aging. Telomere length might have in the future a prognostic potential in couple infertility, especially useful to select best germ cells with the greatest potential of fertilization.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, Unit of Endocrinology, University of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Wang Z, Gao J, Ohno Y, Liu H, Xu C. Rosiglitazone ameliorates senescence and promotes apoptosis in ovarian cancer induced by olaparib. Cancer Chemother Pharmacol 2020; 85:273-284. [PMID: 31907647 DOI: 10.1007/s00280-019-04025-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Senescence mechanisms are vital to resistance to long-term olaparib maintenance treatment. Recently, peroxisome proliferator-activated receptor-γ agonists (e.g., rosiglitazone) have been reported to ameliorate the senescence-like phenotype by modulating inflammatory mediator production. This study examined synergistic effects on the anti-tumor activity of rosiglitazone combined with olaparib in ovarian cancer treatment. METHODS A2780 and SKOV3 mouse subcutaneous xenograft models were established for observing anti-tumor effects in living organisms and were randomly split into combination (both olaparib and rosiglitazone), rosiglitazone (10 mg/kg), olaparib (10 mg/kg), control (solvent) groups that received treatment once every 2 or 3 days (n = 6 per group). Cell counting kit-8 (CCK-8) assays were used to test the influences of rosiglitazone and olaparib on cell proliferation. PI and Annexin-V-FITC staining was used with flow cytometry to assess the cell cycle distribution and cell apoptosis. Senescence-associated β-galactosidase (SA-β-Gal) staining was used to observe cellular senescence. We performed quantitative real-time polymerase chain reaction assays to study the senescence-related secretory phenotype (SASP). RESULTS Olaparib and rosiglitazone were observed to synergistically retard subcutaneous ovarian cancer growth in vivo, and synergistically suppress ovarian cancer cell proliferation in vitro. Compared with olaparib alone, the percentage of positive cells expressed SA-β-gal and SASP were significantly decreased in the treatment of combination of olaparib and rosiglitazone. Furthermore, olaparib plus rosiglitazone increased the percentage of apoptosis in ovarian cancer cell compared with olaparib alone. In A2780 cells, it showed lower expression of P53, phospho-p53 (Ser15), P21, and P18 protein in combination treatment compared with olaparib alone. While, in SKOV3 cells, it showed lower expression of phosphor-retinoblastoma protein (Rb) (Ser807/811), and higher expression of cyclin D1, P21, and P16 protein in combination treatment compared with olaparib alone. CONCLUSIONS Rosiglitazone combined with olaparib can help manage ovarian cancer by ameliorating olaparib-induced senescence and improving anti-tumor effects.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jianwen Gao
- Department of Health Science, Graduate School of Medical, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Major of Biotechnological Pharmaceutics, Shanghai Pharmaceutical School, Shanghai, 200135, China
| | - Yuko Ohno
- Department of Health Science, Graduate School of Medical, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haiou Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| | - Congjian Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China. .,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Smigiel JM, Taylor SE, Bryson BL, Tamagno I, Polak K, Jackson MW. Cellular plasticity and metastasis in breast cancer: a pre- and post-malignant problem. JOURNAL OF CANCER METASTASIS AND TREATMENT 2019; 5:47. [PMID: 32355893 PMCID: PMC7192216 DOI: 10.20517/2394-4722.2019.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As a field we have made tremendous strides in treating breast cancer, with a decline in the past 30 years of overall breast cancer mortality. However, this progress is met with little affect once the disease spreads beyond the primary site. With a 5-year survival rate of 22%, 10-year of 13%, for those patients with metastatic breast cancer (mBC), our ability to effectively treat wide spread disease is minimal. A major contributing factor to this ineffectiveness is the complex make-up, or heterogeneity, of the primary site. Within a primary tumor, secreted factors, malignant and pre-malignant epithelial cells, immune cells, stromal fibroblasts and many others all reside alongside each other creating a dynamic environment contributing to metastasis. Furthermore, heterogeneity contributes to our lack of understanding regarding the cells' remarkable ability to undergo epithelial/non-cancer stem cell (CSC) to mesenchymal/CSC (E-M/CSC) plasticity. The enhanced invasion & motility, tumor-initiating potential, and acquired therapeutic resistance which accompanies E-M/CSC plasticity implicates a significant role in metastasis. While most work trying to understand E-M/CSC plasticity has been done on malignant cells, recent evidence is emerging concerning the ability for pre-malignant cells to undergo E-M/CSC plasticity and contribute to the metastatic process. Here we will discuss the importance of E-M/CSC plasticity within malignant and pre-malignant populations of the tumor. Moreover, we will discuss how one may potentially target these populations, ultimately disrupting the metastatic cascade and increasing patient survival for those with mBC.
Collapse
Affiliation(s)
- Jacob M. Smigiel
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sarah E. Taylor
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Benjamin L. Bryson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kelsey Polak
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mark W. Jackson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Abstract
Objective This review aimed to update the research and development of cellular senescence in the treatment of ovarian cancer. We discussed the current mechanisms of senescence and the major biomarkers of senescence, especially the methods of cellular senescence in the treatment of ovarian cancer. Materials and Methods We collected all relevant studies in PubMed from 1995 to 2017. The search terms included senescence and cancer, senescence and ovarian cancer, senescence-associated secretory phenotype, ovarian cancer and chemotherapy, radiotherapy, or biotherapy. PubMed search with the key words senescence and ovarian cancer lists approximately 85 publications. After excluding the duplicated articles, we selected 68 articles most relevant to senescence and ovarian cancer in this review. Results Cellular senescence plays a key role in various biological processes of ovarian cancer, which is closely related with the occurrence, development, and treatment of ovarian cancer. Cellular senescence on the one hand can reduce the dose of chemotherapy in ovarian cancer; on the other hand, it also can solve the problem of tumor resistance to apoptosis. Therefore, cellular senescence has been shown to be the third intracellular mechanism of ovarian cancer prevention followed by cellular DNA repair and apoptosis. Conclusions In the near future, cellular senescence therapy could be a powerful tool for ovarian cancer treatment.
Collapse
|
19
|
Wang Z, Gao J, Zhou J, Liu H, Xu C. Olaparib induced senescence under P16 or P53 dependent manner in ovarian cancer. J Gynecol Oncol 2018; 30:e26. [PMID: 30740957 PMCID: PMC6393639 DOI: 10.3802/jgo.2019.30.e26] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023] Open
Abstract
Objective Poly (ADP-ribose) polymerase (PARP) is an important molecule in the early stress response of DNA damage, which is involved in DNA damage repair and cellular senescence. Olaparib, as PARP inhibitor, has an anti-tumor effect on high grade serous ovarian cancer, but its effects on cellular senescence have not been reported. This study intends to explore the role of olaparib in the regulation of senescence in ovarian cancer cells. Methods The effects of olaparib on the senescence of ovarian cancer cells were detected by using the senescence-associated β-galactosidase (SA-β-Gal) and senescence-associated heterochromatin aggregation (SAHF). Quantitative real-time polymerase chain reaction was used to analyze the senescence-associated secretory phenotype (SASP). Cell cycle and apoptosis were detected by flow cytometry. The effect of olaparib on tumor growth was analyzed in a nude mouse xenograft transplantation model. Results Long-term (6 days) treatment with olaparib (5 μM) significantly inhibited the growth of ovarian cancer cells, leading to arrest the cell cycle at G0/G1 phase, significant increase the number of positive SA-β-Gal stained cells and positive SAHF cells. The expression of P16 and retinoblastoma protein (p-RB) were significantly enhanced in SKOV3 cells under olaparib treated, meanwhile, the expression of P53 and p-RB were upregulated in A2780 cells. In OVCAR-3 cells, the expression of P53 was downregulated and p-RB was upregulated. Mice with SKOV3 xenograft transplantation was given olaparib (10 mg/kg/day) via abdominal cavity administration, the tumor volume was reduced (p<0.01). Conclusion Continuous low dosage administration of olaparib induced senescence under P16 or P53 dependent manner in ovarian cancer.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jianwen Gao
- Department of Health Science, Graduate School of Medical, Osaka University, Osaka, Japan.,Major of Biotechnological Pharmaceutics, Shanghai Pharmaceutical School, Shanghai, China
| | - Jiabing Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Haiou Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| | - Congjian Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,Department of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
20
|
Dai W, Jiang Y, Chen K, Qiu J, Sun J, Zhang W, Zhou X, Huang N, Li Y, Li W. Effect of etoposide-induced alteration of the Mdm2-Rb signaling pathway on cellular senescence in A549 lung adenocarcinoma cells. Oncol Lett 2017; 14:3935-3940. [PMID: 28959361 PMCID: PMC5607649 DOI: 10.3892/ol.2017.6684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of various concentrations of etoposide (VP-16) on the E3 ubiquitin-protein ligase Mdm2 (Mdm2)-retinoblastoma (Rb) signaling pathway in the cellular senescence of A549 lung adenocarcinoma cells. A549 cells were randomly divided into the following four groups: Control group (no treatment), group 1 (1 µmol/l VP-16), group 2 (5 µmol/l VP-16) and group 3 (25 µmol/l VP-16). Each group was cultured for 48 h after treatment prior to observation of the alterations to cellular morphology. The cell cycle distribution of each group was also detected by flow cytometry. In addition, the activity of cellular senescence-associated β-galactosidase, and the expression of Mdm2 and phosphorylated (p-) Rb protein, was measured. The percentage of senescent cells was significantly higher following VP-16 treatment compared with the control group. The percentage of G1 phase cells, and p-Rb protein and Mdm2 protein expression were also significantly different following VP-16 treatment compared with the control group. VP-16 increased the activity of β-galactosidase in the A459 cells. VP-16 also decreased the expression level of Mdm2 and p-Rb protein and inhibited cell cycle progression in G1. These results indicate that VP-16 induces the cellular senescence of A549 cells via the Mdm2-Rb signaling pathway. However, further investigations are required to validate the mechanisms underlying these effects of VP-16.
Collapse
Affiliation(s)
- Wenjing Dai
- Department of Respiration, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yi Jiang
- Department of Respiration, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Kairong Chen
- Department of Respiration, People's Hospital of Meishan, Meishan, Sichuan 620000, P.R. China
| | - Jing Qiu
- Department of Respiration, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jian Sun
- Department of Respiration, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wei Zhang
- Department of Respiration, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Xiafei Zhou
- Department of Respiration, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Na Huang
- Department of Respiration, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yunhui Li
- Department of Respiration, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wancheng Li
- Department of Respiration, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
21
|
Zheng YR, Suntharalingam K, Bruno PM, Lin W, Wang W, Hemann MT, Lippard SJ. Mechanistic Studies of the Anticancer Activity of An Octahedral Hexanuclear Pt(II) Cage. Inorganica Chim Acta 2016; 452:125-129. [PMID: 27818526 PMCID: PMC5094802 DOI: 10.1016/j.ica.2016.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cellular response evoked by a hexanuclear platinum complex, Pt6L4 (1), is reported. Compound 1, a 3-nm octahedral cage formed by self-assembly of six Pt(II) centers and four 2,4,6-tris(4-pyridyl)-1,3,5-triazine ligands (L), exhibits promising in vitro potency against a panel of human cancer cell lines. Unlike classical platinum-based anticancer agents, 1 interacts with DNA in a non-covalent, intercalative manner and promotes DNA condensation. In cancer cells, 1 induces DNA damage, upregulates p53, its phosphorylated form phospho-p53 and its downstream effector, p21, as well as both apoptosis and senescence.
Collapse
Affiliation(s)
- Yao-Rong Zheng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | - Peter M. Bruno
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Wei Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Weixue Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Michael T. Hemann
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
22
|
|
23
|
Weng JH, Yu CC, Lee YC, Lin CW, Chang WW, Kuo YL. miR-494-3p Induces Cellular Senescence and Enhances Radiosensitivity in Human Oral Squamous Carcinoma Cells. Int J Mol Sci 2016; 17:ijms17071092. [PMID: 27399693 PMCID: PMC4964468 DOI: 10.3390/ijms17071092] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of head and neck. Although radiotherapy is used for OSCC treatment, the occurrence of radioresistant cancer cells limits its efficiency. MicroRNAs (miRNAs) are non-coding RNAs with lengths of 18–25 base pairs and known to be involved in carcinogenesis. We previously demonstrated that by targeting B lymphoma Mo-MLV insertion region 1 homolog (Bmi1), miR-494-3p functions as a putative tumor suppressor miRNA in OSCC. In this study, we further discovered that miR-494-3p could enhance the radiosensitivity of SAS OSCC cells and induce cellular senescence. The overexpression of miR-494-3p in SAS cells increased the population of senescence-associated β-galactosidase positive cells, the expression of p16INK4a and retinoblastoma 1 (RB1), as well as downregulated Bmi1. The knockdown of Bmi1 by lentiviral-mediated delivery of specific short hairpin RNAs (shRNAs) also enhanced the radiosensitivity of SAS cells and the activation of the senescence pathway. Furthermore, the inverse correlation between Bmi1 and miR-494-3p expression was observed among OSCC tissues. Results suggest that miR-494-3p could increase the radiosensitivity of OSCC cells through the induction of cellular senescence caused by the downregulation of Bmi1.
Collapse
Affiliation(s)
- Jui-Hung Weng
- Department of Nuclear Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Yueh-Chun Lee
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Cheng-Wei Lin
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Wen-Wei Chang
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Yu-Liang Kuo
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
24
|
Zhou Y, Li GY, Ren JP, Wang L, Zhao J, Ning SB, Zhang Y, Lian JQ, Huang CX, Jia ZS, Moorman JP, Yao ZQ. Protection of CD4+ T cells from hepatitis C virus infection-associated senescence via ΔNp63-miR-181a-Sirt1 pathway. J Leukoc Biol 2016; 100:1201-1211. [PMID: 27354409 DOI: 10.1189/jlb.5a0316-119rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age- and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ΔNp63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ΔNp63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated β-galactosidase (SA-β-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ΔNp63-miR-181a-Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3- effector T (Teff) cells upon manipulating the ΔNp63-miR-181a-Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection.
Collapse
Affiliation(s)
- Yun Zhou
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA.,Center of Diagnosis and Treatment for Infectious Diseases of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Guang Y Li
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; and
| | - Jun P Ren
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; and
| | - Ling Wang
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; and
| | - Juan Zhao
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; and
| | - Shun B Ning
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; and
| | - Ying Zhang
- Center of Diagnosis and Treatment for Infectious Diseases of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Jian Q Lian
- Center of Diagnosis and Treatment for Infectious Diseases of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Chang X Huang
- Center of Diagnosis and Treatment for Infectious Diseases of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Zhan S Jia
- Center of Diagnosis and Treatment for Infectious Diseases of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xian, China;
| | - Jonathan P Moorman
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; and.,Hepatitis/AIDS (HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, Tennessee, USA
| | - Zhi Q Yao
- Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; .,Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; and.,Hepatitis/AIDS (HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, Tennessee, USA
| |
Collapse
|
25
|
Chen Y, Pan K, Wang P, Cao Z, Wang W, Wang S, Hu N, Xue J, Li H, Jiang W, Li G, Zhang X. HBP1-mediated Regulation of p21 Protein through the Mdm2/p53 and TCF4/EZH2 Pathways and Its Impact on Cell Senescence and Tumorigenesis. J Biol Chem 2016; 291:12688-12705. [PMID: 27129219 PMCID: PMC4933444 DOI: 10.1074/jbc.m116.714147] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 01/09/2023] Open
Abstract
The activity of the CDK inhibitor p21 is associated with diverse biological activities, including cell proliferation, senescence, and tumorigenesis. However, the mechanisms governing transcription of p21 need to be extensively studied. In this study, we demonstrate that the high-mobility group box-containing protein 1 (HBP1) transcription factor is a novel activator of p21 that works as part of a complex mechanism during senescence and tumorigenesis. We found that HBP1 activates the p21 gene through enhancing p53 stability by inhibiting Mdm2-mediated ubiquitination of p53, a well known positive regulator of p21. HBP1 was also found to enhance p21 transcription by inhibiting Wnt/β-catenin signaling. We identified histone methyltransferase EZH2, the catalytic subunit of polycomb repressive complex 2, as a target of Wnt/β-catenin signaling. HBP1-mediated repression of EZH2 through Wnt/β-catenin signaling decreased the level of trimethylation of histone H3 at lysine 27 of overall and specific histone on the p21 promoter, resulting in p21 transactivation. Although intricate, the reciprocal partnership of HBP1 and p21 has exceptional importance. HBP1-mediated elevation of p21 through the Mdm2/p53 and TCF4/EZH2 pathways contributes to both cellular senescence and tumor inhibition. Together, our results suggest that the HBP1 transcription factor orchestrates a complex regulation of key genes during cellular senescence and tumorigenesis with an impact on protein ubiquitination and overall histone methylation state.
Collapse
Affiliation(s)
- Yifan Chen
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Kewu Pan
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Pingzhang Wang
- the Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhengyi Cao
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Weibin Wang
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Shuya Wang
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Ningguang Hu
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Junhui Xue
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Hui Li
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Wei Jiang
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Gang Li
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and
| | - Xiaowei Zhang
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191 and.
| |
Collapse
|
26
|
Foerster F, Chen T, Altmann KH, Vollmar AM. Actin-binding doliculide causes premature senescence in p53 wild type cells. Bioorg Med Chem 2015; 24:123-9. [PMID: 26692350 DOI: 10.1016/j.bmc.2015.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/26/2015] [Accepted: 11/28/2015] [Indexed: 12/22/2022]
Abstract
Addressing the actin cytoskeleton as future anticancer target can be an innovative chemotherapeutic approach to combat malignancies. Doliculide is a potent stabilizer of actin filaments and can be used as tool and therapeutic lead in cancer research. Though a variety of molecules are known to bind to actin and lead to either its over- or depolymerization little is known about the pharmacological consequences of these effects within the cancer cell. In this work we used p53 wild-type cells to dissect the reaction of these cells towards subtoxic doses of doliculide. We could show that doliculide leads to a transient change in actin cytoskeleton dynamics that are reversible. The cells react towards the treatment with the induction of premature senescence, an established anti-cancer mechanism, in concentrations that are not cytotoxic. Furthermore, we investigated the signaling pathways that are involved in the induction and maintenance of senescence by a pathway directed mRNA PCR-array. This analysis revealed that under doliculide treatment up to 13% of senescence related genes are altered. Taken together, our data provide evidence for an antitumoral potential of actin binding agents in p53 wild type cells and brings the strategy of targeting the actin cytoskeleton closer to clinical application.
Collapse
Affiliation(s)
- Florian Foerster
- Department of Pharmacy-Center for Drug Research, Pharmaceutical Biology, University of Munich, Butenandtstrasse 5-13, 81377 Munich, Germany.
| | - Tao Chen
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Karl-Heinz Altmann
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Angelika M Vollmar
- Department of Pharmacy-Center for Drug Research, Pharmaceutical Biology, University of Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
27
|
Jeon HY, Kim JK, Ham SW, Oh SY, Kim J, Park JB, Lee JY, Kim SC, Kim H. Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype. Tumour Biol 2015; 37:5857-67. [PMID: 26586398 DOI: 10.1007/s13277-015-4439-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/12/2015] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and fatal primary brain tumors in humans. The standard therapy for the treatment of GBM is surgical resection, followed by radiotherapy and/or chemotherapy. However, the frequency of tumor recurrence in GBM patients is very high, and the survival rate remains poor. Delineating the mechanisms of GBM recurrence is essential for therapeutic advances. Here, we demonstrate that irradiation rendered 17-20 % of GBM cells dead, but resulted in 60-80 % of GBM cells growth-arrested with increases in senescence markers, such as senescence-associated beta-galactosidase-positive cells, H3K9me3-positive cells, and p53-p21(CIP1)-positive cells. Moreover, irradiation induced expression of senescence-associated secretory phenotype (SASP) mRNAs and NFκB transcriptional activity in GBM cells. Strikingly, compared to injection of non-irradiated GBM cells into immune-deficient mice, the co-injection of irradiated and non-irradiated GBM cells resulted in faster growth of tumors with the histological features of human GBM. Taken together, our findings suggest that the increases in senescent cells and SASP in GBM cells after irradiation is likely one of main reasons for tumor recurrence in post-radiotherapy GBM patients.
Collapse
Affiliation(s)
- Hee-Young Jeon
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jun-Kyum Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seok Won Ham
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Se-Yeong Oh
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Yong Lee
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Chan Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea.
| | - Hyunggee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Pan HC, Jiang Q, Yu Y, Mei JP, Cui YK, Zhao WJ. Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signalling pathways in human glioma cells. Neurochem Int 2015; 80:60-71. [PMID: 25481090 DOI: 10.1016/j.neuint.2014.12.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023]
Abstract
Gliomas are the most common and malignant primary brain tumours and are associated with a poor prognosis despite the availability of multiple therapeutic options. Quercetin, a traditional Chinese medicinal herb, is an important flavonoid and has anti-cancer activity. Here, we evaluated whether quercetin could inhibit glioma cell viability and migration and promote apoptosis. The treatment of U87-MG glioblastoma and U251 and SHG44 glioma cell lines with different concentrations of quercetin inhibited cell viability in a dose-dependent manner. Wound healing assays indicated that quercetin significantly decreased glioma cell migration. β-galactosidase staining, DNA staining and Annexin V-EGF/PI double staining assays demonstrated that quercetin promoted cell senescence and apoptosis. In addition, the protein levels of p-AKT, p-ERK, Bcl-2, matrix metallopeptidase 9 (MMP-9) and fibronectin (FN) were significantly reduced following quercetin treatment. Therefore, we conclude that quercetin might inhibit the viability and migration and promote the senescence and apoptosis of glioma cells by suppressing the Ras/MAPK/ERK and PI3K/AKT signalling pathways. Quercetin might be a potential candidate for the clinical treatment of glioma.
Collapse
Affiliation(s)
- Hong-Chao Pan
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China; Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Jiang
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yang Yu
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jin-Ping Mei
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yu-Kun Cui
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
29
|
Dong Y, Yin S, Jiang C, Luo X, Guo X, Zhao C, Fan L, Meng Y, Lu J, Song X, Zhang X, Chen N, Hu H. Involvement of autophagy induction in penta-1,2,3,4,6-O-galloyl-β-D-glucose-induced senescence-like growth arrest in human cancer cells. Autophagy 2013; 10:296-310. [PMID: 24389959 DOI: 10.4161/auto.27210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Growing evidence has demonstrated that autophagy plays important and paradoxical roles in carcinogenesis, while senescence is considered to be a crucial tumor-suppressor mechanism in cancer prevention and treatment. In the present study we demonstrated that both autophagy and senescence were induced in response to penta-1,2,3,4,6-O-galloyl-β-D-glucose (PGG), a chemopreventive polyphonolic compound, in multiple types of cancer cells. Analysis of these 2 events over the experimental time course indicated that autophagy and senescence occurred in parallel early in the process and dissociated later. The long-term culture study suggested that a subpopulation of senescent cells may have the capacity to reenter the cell cycle. Inhibition of autophagy by either a chemical inhibitor or RNA interference led to a significant reduction of PGG-induced senescence, followed by induction of apoptosis. These results suggested that autophagy promoted senescence induction by PGG and that PGG might exert its anticancer activity through autophagy-mediated senescence. For the first time, these findings uncovered the relationships among autophagy, senescence, and apoptosis induced by PGG. In addition, we identified that unfolded protein response signaling played a pivotal role in the autophagy-mediated senescence phenotype. Furthermore, our data showed that activation of MAPK8/9/10 (mitogen-activated protein kinase 8/9/10/c-Jun N-terminal kinases) was an essential upstream signal for PGG-induced autophagy. Finally, the key in vitro results were validated in vivo in a xenograft mouse model of human HepG2 liver cancer. Our findings provided novel insights into understanding the mechanisms and functions of PGG-induced autophagy and senescence in human cancer cells.
Collapse
Affiliation(s)
- Yinhui Dong
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; Beijing Key Laboratory of Functional Food from Plant Resources; China Agricultural University; Beijing, China; Department of Biomedical Sciences; Texas Tech University School of Pharmacy; Amarillo, TX USA
| | - Shutao Yin
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; Beijing Key Laboratory of Functional Food from Plant Resources; China Agricultural University; Beijing, China
| | - Cheng Jiang
- Department of Biomedical Sciences; Texas Tech University School of Pharmacy; Amarillo, TX USA
| | - Xiaohe Luo
- Department of Hepatobiliary Surgery; The First Affiliated Hospital; Harbin Medical University; Harbin, Heilongjiang China
| | - Xiao Guo
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; Beijing Key Laboratory of Functional Food from Plant Resources; China Agricultural University; Beijing, China
| | - Chong Zhao
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; Beijing Key Laboratory of Functional Food from Plant Resources; China Agricultural University; Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine; China Agricultural University; Beijing, China
| | - Yubing Meng
- Nanyang Administration of Traditional Chinese Medicine; Nanyang, Henan China
| | - Junxuan Lu
- Department of Biomedical Sciences; Texas Tech University School of Pharmacy; Amarillo, TX USA
| | - Xinhua Song
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; Beijing Key Laboratory of Functional Food from Plant Resources; China Agricultural University; Beijing, China
| | - Xudong Zhang
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; Beijing Key Laboratory of Functional Food from Plant Resources; China Agricultural University; Beijing, China
| | - Ni Chen
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; Beijing Key Laboratory of Functional Food from Plant Resources; China Agricultural University; Beijing, China
| | - Hongbo Hu
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; Beijing Key Laboratory of Functional Food from Plant Resources; China Agricultural University; Beijing, China
| |
Collapse
|
30
|
HBP1-mediated transcriptional regulation of DNA methyltransferase 1 and its impact on cell senescence. Mol Cell Biol 2012; 33:887-903. [PMID: 23249948 DOI: 10.1128/mcb.00637-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of DNA methyltransferase 1 (DNMT1) is associated with diverse biological activities, including cell proliferation, senescence, and cancer development. In this study, we demonstrated that the HMG box-containing protein 1 (HBP1) transcription factor is a new repressor of DNMT1 in a complex mechanism during senescence. The DNMT1 gene contains an HBP1-binding site at bp -115 to -134 from the transcriptional start site. HBP1 repressed the endogenous DNMT1 gene through sequence-specific binding, resulting in both gene-specific (e.g., p16(INK4)) and global DNA hypomethylation changes. The HBP1-mediated repression by DNMT1 contributed to replicative and premature senescence, the latter of which could be induced by Ras and HBP1 itself. A detailed investigation unexpectedly revealed that HBP1 has dual and complex transcriptional functions, both of which contribute to premature senescence. HBP1 both repressed the DNMT1 gene and activated the p16 gene in premature senescence. The opposite transcriptional functions proceeded through different DNA sequences and differential protein acetylation. While intricate, the reciprocal partnership between HBP1 and DNMT1 has exceptional importance, since its abrogation compromises senescence and promotes tumorigenesis. Together, our results suggest that the HBP1 transcription factor orchestrates a complex regulation of key genes during cellular senescence, with an impact on overall DNA methylation state.
Collapse
|
31
|
SIN SEONG, KIM SUNGYOUNG, KIM SUNGSU. Chronic treatment with ginsenoside Rg3 induces Akt-dependent senescence in human glioma cells. Int J Oncol 2012; 41:1669-74. [DOI: 10.3892/ijo.2012.1604] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/14/2012] [Indexed: 11/05/2022] Open
|
32
|
Gupta P, Bansal MP, Koul A. Spectroscopic characterization of lycopene extract from Lycopersicum esculentum (Tomato) and its evaluation as a chemopreventive agent against experimental hepatocarcinogenesis in mice. Phytother Res 2012; 27:448-56. [PMID: 22628278 DOI: 10.1002/ptr.4741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 12/15/2022]
Abstract
The present study was designed to characterize the lycopene extract (LycT) prepared from tomatoes (Lycopersicum esculentum) and then to evaluate its chemopreventive efficacy in N-diethylnitrosamine (NDEA)-induced experimental hepatocarcinogenesis in female Balb/c mice. The extraction of lycopene was carried out using hexane/acetone/ethanol as an extracting medium and then characterized by ultraviolet-visible, nuclear magnetic resonance and Fourier transform infrared spectroscopy. Chemopreventive efficacy of characterized LycT in vivo was evaluated in terms of hepatic tumour incidence, multiplicity, burden, hepatosomatic index and animal survival rate. Results indicated that average lycopene content of the tomato was 11.6-14 mg/kg tomato weight. Spectroscopic data confirmed the structural characteristics of lycopene in the extract. In the animal study, reduction in tumour incidence (42.05%), tumour burden (1.39) and tumour multiplicity (3.42) was observed upon LycT pretreatment to NDEA-treated animals. Histopathological analysis unravelled that the increased survival rate in LycT + NDEA-treated animals was due to the delay in the formation of aggressive tumour nodules. These observations indicate that lycopene seems to be an able candidate for chemoprevention in hepatocarcinogenesis resulting from NDEA insults.
Collapse
Affiliation(s)
- Prachi Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | | | | |
Collapse
|
33
|
Expression of the Newly Identified Gene CAC1 in the Hippocampus of Alzheimer’s Disease Patients. J Mol Neurosci 2012; 47:207-18. [DOI: 10.1007/s12031-012-9717-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/31/2012] [Indexed: 12/23/2022]
|
34
|
Liu J, Xu K, Chase M, Ji Y, Logan JK, Buchsbaum RJ. Tiam1-regulated osteopontin in senescent fibroblasts contributes to the migration and invasion of associated epithelial cells. J Cell Sci 2012; 125:376-86. [PMID: 22302986 DOI: 10.1242/jcs.089466] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tumor microenvironment undergoes changes concurrent with neoplastic progression. Cancer incidence increases with aging and is associated with tissue accumulation of senescent cells. Senescent fibroblasts are thought to contribute to tumor development in aging tissues. We have shown that fibroblasts deficient in the Rac exchange factor Tiam1 promote invasion and metastasis of associated epithelial tumor cells. Here, we use a three-dimensional culture model of cellular invasiveness to outline several steps underlying this effect. We find that stress-induced senescence induces decreased fibroblast Tiam1 protein levels and increased osteopontin levels, and that senescent fibroblast lysates induce Tiam1 protein degradation in a calcium- and calpain-dependent fashion. Changes in fibroblast Tiam1 protein levels induce converse changes in osteopontin mRNA and protein. Senescent fibroblasts induce increased invasion and migration in co-cultured mammary epithelial cells. These effects in epithelial cells are ameliorated by either increasing fibroblast Tiam1 or decreasing fibroblast osteopontin. Finally, in seeded cell migration assays we find that either senescent or Tiam1-deficient fibroblasts induce increased epithelial cell migration that is dependent on fibroblast secretion of osteopontin. These findings indicate that one mechanism by which senescent fibroblasts promote neoplastic progression in associated tumors is through degradation of fibroblast Tiam1 protein and the consequent increase in secretion of osteopontin by fibroblasts.
Collapse
Affiliation(s)
- Jiewei Liu
- Molecular Oncology Research Institute, Tufts Medical Center Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
35
|
Vandenberk B, Brouwers B, Hatse S, Wildiers H. p16INK4a: A central player in cellular senescence and a promising aging biomarker in elderly cancer patients. J Geriatr Oncol 2011. [DOI: 10.1016/j.jgo.2011.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Huang M, Whang P, Lewicki P, Mitchell BS. Cyclopentenyl cytosine induces senescence in breast cancer cells through the nucleolar stress response and activation of p53. Mol Pharmacol 2011; 80:40-8. [PMID: 21464199 DOI: 10.1124/mol.110.070284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The induction of senescence has emerged as a potentially important contributor to the effects of chemotherapeutic agents against tumors. We have demonstrated that depletion of CTP induced by cyclopentenyl cytosine (CPEC; NSC 375575), a specific inhibitor of the enzyme CTP synthetase, induces irreversible growth arrest and senescence characterized by altered morphology and expression of senescence-associated β-galactosidase activity in MCF-7 breast cancer cells expressing wild-type p53. In contrast, differentiation in the absence of senescence resulted from CPEC treatment in MDA-MB-231 breast cancer cells that express a mutated p53. Both senescence of MCF-7 cells and differentiation of MDA-MB-231 cells were prevented by repletion of CTP through the cytidine salvage pathway. Senescence in MCF-7 cells was associated with a G(2)- and S-phase arrest, whereas differentiation in MDA-MB-231 cells was associated with arrest in G(1) phase at 5 days. Mechanistic studies revealed that CTP depletion induced a rapid translocation of nucleolar proteins, including nucleostemin and nucleolin into the nucleoplasm. This nucleolar stress response resulted in a sustained elevation of p53 and the p53 target genes, p21 and Mdm2, in cells with wild-type p53. Furthermore, short interfering RNA-induced knockdown of p53 in MCF-7 cells treated with CPEC prevented cellular senescence and increased apoptotic cell death. We conclude that CTP depletion and the resulting nucleolar stress response results in a senescence-like growth arrest through activation of p53, whereas cells with mutated p53 undergo differentiation or apoptotic cell death.
Collapse
Affiliation(s)
- Min Huang
- Department of Medicine, Divisions of Oncology and Hematology, and the Stanford Cancer Center, Stanford University School of Medicine, Stanford, California 94305-5458, USA
| | | | | | | |
Collapse
|
37
|
Yin S, Dong Y, Li J, Lü J, Hu H. Penta-1,2,3,4,6-O
-galloyl-beta-D
-glucose induces senescence-like terminal S-phase arrest in human hepatoma and breast cancer cells. Mol Carcinog 2011; 50:592-600. [DOI: 10.1002/mc.20743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/16/2010] [Accepted: 01/04/2011] [Indexed: 12/29/2022]
|
38
|
Lee JJ, Kim BC, Park MJ, Lee YS, Kim YN, Lee BL, Lee JS. PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Differ 2010; 18:666-77. [PMID: 21072054 DOI: 10.1038/cdd.2010.139] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homolog (PTEN) has frequently been observed in human gliomas, conferring AKT activation and resistance to ionizing radiation (IR) and drug treatments. Recent reports have shown that PTEN loss or AKT activation induces premature senescence, but many details regarding this effect remain obscure. In this study, we tested whether the status of PTEN determined fate of the cell by examining PTEN-deficient U87, U251, and U373, and PTEN-proficient LN18 and LN428 glioma cells after exposure to IR. These cells exhibited different cellular responses, senescence or apoptosis, depending on the PTEN status. We further observed that PTEN-deficient U87 cells with high levels of both AKT activation and intracellular reactive oxygen species (ROS) underwent senescence, whereas PTEN-proficient LN18 cells entered apoptosis. ROS were indispensable for inducing senescence in PTEN-deficient cells, but not for apoptosis in PTEN-proficient cells. Furthermore, transfection with wild-type (wt) PTEN or AKT small interfering RNA induced a change from premature senescence to apoptosis and depletion of p53 or p21 prevented IR-induced premature senescence in U87 cells. Our data indicate that PTEN acts as a pivotal determinant of cell fate, regarding senescence and apoptosis in IR-exposed glioma cells. We conclude that premature senescence could have a compensatory role for apoptosis in the absence of the tumor suppressor PTEN through the AKT/ROS/p53/p21 signaling pathway.
Collapse
Affiliation(s)
- J-J Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Cellular aging and cancer. Crit Rev Oncol Hematol 2010; 79:189-95. [PMID: 20705476 DOI: 10.1016/j.critrevonc.2010.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 06/19/2010] [Accepted: 07/13/2010] [Indexed: 11/21/2022] Open
Abstract
Aging is manifest in a variety of changes over time, including changes at the cellular level. Cellular aging acts primarily as a tumor suppressor mechanism, but also may enhance cancer development under certain circumstances. One important process of cellular aging is oncogene-induced senescence, which acts as a significant anti-cancer mechanism. Cellular senescence resulting from damage caused by activated oncogenes prevents the growth of potentially neoplastic cells. Moreover, cells that have entered senescence appear to be targets for elimination by the innate immune system. In another aspect of cellular aging, the absence of telomerase activity in normal tissues results in such cells lacking a telomere maintenance mechanism. One consequence is that in aging there is an increase in cells with shortened telomeres. In the presence of active oncogenes that cause expansion of a neoplastic clone, shortening of telomeres, leading to telomere dysfunction, prevents the indefinite expansion of the clone, because the cells enter crisis. Crisis results from chromosome fusions and other defects caused by dysfunctional telomeres and is a terminal state of the neoplastic clone. In this way the absence of telomerase in human cells, while one cause of cellular aging, also acts as an anti-cancer mechanism.
Collapse
|
40
|
Liang S, Mele J, Wu Y, Buffenstein R, Hornsby PJ. Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell 2010; 9:626-35. [PMID: 20550519 DOI: 10.1111/j.1474-9726.2010.00588.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The naked mole-rat (NMR, Heterocephalus glaber) is a long-lived mammal in which spontaneous cancer has not been observed. To investigate possible mechanisms for cancer resistance in this species, we studied the properties of skin fibroblasts from the NMR following transduction with oncogenes that cause cells of other mammalian species to form malignant tumors. Naked mole-rat fibroblasts were transduced with a retrovirus encoding SV40 large T antigen and oncogenic Ras(G12V). Following transplantation of transduced cells into immunodeficient mice, cells rapidly entered crisis, as evidenced by the presence of anaphase bridges, giant cells with enlarged nuclei, multinucleated cells, and cells with large number of chromosomes or abnormal chromatin material. In contrast, similarly transduced mouse and rat fibroblasts formed tumors that grew rapidly without crisis. Crisis was also observed after > 40 population doublings in SV40 TAg/Ras-expressing NMR cells in culture. Crisis in culture was prevented by additional infection of the cells with a retrovirus encoding hTERT (telomerase reverse transcriptase). SV40 TAg/Ras/hTERT-expressing NMR cells formed tumors that grew rapidly in immunodeficient mice without evidence of crisis. Crisis could also be induced in SV40 TAg/Ras-expressing NMR cells by loss of anchorage, but after hTERT transduction, cells were able to proliferate normally following loss of anchorage. Thus, rapid crisis is a response of oncogene-expressing NMR cells to growth in an in vivo environment, which requires anchorage independence, and hTERT permits cells to avoid crisis and to achieve malignant tumor growth. The unique reaction of NMR cells to oncogene expression may form part of the cancer resistance of this species.
Collapse
Affiliation(s)
- Sitai Liang
- Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | | | | | | | | |
Collapse
|
41
|
Li H, Wang W, Liu X, Paulson KE, Yee AS, Zhang X. Transcriptional factor HBP1 targets P16(INK4A), upregulating its expression and consequently is involved in Ras-induced premature senescence. Oncogene 2010; 29:5083-94. [PMID: 20581871 DOI: 10.1038/onc.2010.252] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Oncogene-mediated premature senescence has emerged as a potential tumor-suppressive mechanism in early cancer transitions. Many studies showed that Ras and p38 mitogen-activated protein kinase (MAPK) participate in premature senescence. Our previous work indicated that the HMG box-containing protein 1 (HBP1) transcription factor is involved in Ras- and p38 MAPK-induced premature senescence, but the mechanism of which has not yet been identified. Here, we showed that the p16(INK4A) cyclin-dependent kinase inhibitor is a novel target of HBP1 participating in Ras-induced premature senescence. The promoter of the p16(INK4A) gene contains an HBP1-binding site at position -426 to -433 bp from the transcriptional start site. HBP1 regulates the expression of the endogenous p16(INK4A) gene through direct sequence-specific binding. With HBP1 expression and the subsequent increase of p16(INK4A) gene expression, Ras induces premature senescence in primary cells. The data suggest a model in which Ras and p38 MAPK signaling engage HBP1 and p16(INK4A) to trigger premature senescence. In addition, we report that HBP1 knockdown is also required for Ras-induced transformation. All the data indicate that the mechanism of HBP1-mediated transcriptional regulation is important for not only premature senescence but also tumorigenesis.
Collapse
Affiliation(s)
- H Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
42
|
Bravo-Cuellar A, Ortiz-Lazareno PC, Lerma-Diaz JM, Dominguez-Rodriguez JR, Jave-Suarez LF, Aguilar-Lemarroy A, del Toro-Arreola S, de Celis-Carrillo R, Sahagun-Flores JE, de Alba-Garcia JEG, Hernandez-Flores G. Sensitization of cervix cancer cells to Adriamycin by Pentoxifylline induces an increase in apoptosis and decrease senescence. Mol Cancer 2010; 9:114. [PMID: 20482878 PMCID: PMC2890603 DOI: 10.1186/1476-4598-9-114] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 05/19/2010] [Indexed: 01/03/2023] Open
Abstract
Background Chemotherapeutic drugs like Adriamycin (ADR) induces apoptosis or senescence in cancer cells but these cells often develop resistance and generate responses of short duration or complete failure. The methylxantine drug Pentoxifylline (PTX) used routinely in the clinics setting for circulatory diseases has been recently described to have antitumor properties. We evaluated whether pretreatment with PTX modifies apoptosis and senescence induced by ADR in cervix cancer cells. Methods HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, ADR or PTX + ADR. The cellular toxicity of PTX and survival fraction were determinated by WST-1 and clonogenic assay respectively. Apoptosis, caspase activation and ADR efflux rate were measured by flow cytometry, senescence by microscopy. IκBα and DNA fragmentation were determinated by ELISA. Proapoptotic, antiapoptotic and senescence genes, as well as HPV-E6/E7 mRNA expression, were detected by time real RT-PCR. p53 protein levels were assayed by Western blot. Results PTX is toxic (WST-1), affects survival (clonogenic assay) and induces apoptosis in cervix cancer cells. Additionally, the combination of this drug with ADR diminished the survival fraction and significantly increased apoptosis of HeLa and SiHa cervix cancer cells. Treatments were less effective in HaCaT cells. We found caspase participation in the induction of apoptosis by PTX, ADR or its combination. Surprisingly, in spite of the antitumor activity displayed by PTX, our results indicate that methylxantine, per se does not induce senescence; however it inhibits senescence induced by ADR and at the same time increases apoptosis. PTX elevates IκBα levels. Such sensitization is achieved through the up-regulation of proapoptotic factors such as caspase and bcl family gene expression. PTX and PTX + ADR also decrease E6 and E7 expression in SiHa cells, but not in HeLa cells. p53 was detected only in SiHa cells treated with ADR. Conclusion PTX is a good inducer of apoptosis but does not induce senescence. Furthermore, PTX reduced the ADR-induced senescence and increased apoptosis in cervix cancer cells.
Collapse
Affiliation(s)
- Alejandro Bravo-Cuellar
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Colonia Independencia, Guadalajara, Jalisco, CP 44340, México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Grillari J, Hackl M, Grillari-Voglauer R. miR-17-92 cluster: ups and downs in cancer and aging. Biogerontology 2010; 11:501-6. [PMID: 20437201 PMCID: PMC2899009 DOI: 10.1007/s10522-010-9272-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/06/2010] [Indexed: 01/07/2023]
Abstract
The miR-17–92 cluster encoding 6 single mature miRNAs was identified a couple of years ago to contain the first oncogenic miRNAs. Now, one of these 6 miRNAs, miR-19 has been identified as the key responsible for this oncogenic activity. This in turn reduces PTEN levels and in consequence activates the AKT/mTOR pathway that is also prominently involved in modulation of organismal life spans. In contrast, miR-19 and other members of the miR-17–92 cluster are found to be commonly downregulated in several human replicative and organismal aging models. Taken together, these findings suggest that miR-19 and the other members of the miR-17–92 cluster might be important regulators on the cross-roads between aging and cancer. Therefore, we here briefly summarize how this cluster is transcriptionally regulated, which target mRNAs have been confirmed so far and how this might be linked to modulation of organismal life-spans.
Collapse
Affiliation(s)
- Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences Vienna, Austria.
| | | | | |
Collapse
|
44
|
Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol 2010; 26:553-67. [PMID: 20397042 DOI: 10.1007/s10565-010-9163-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 03/24/2010] [Indexed: 01/14/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.
Collapse
|
45
|
Zhu J, Zhao Y, Wang S. Chromatin and epigenetic regulation of the telomerase reverse transcriptase gene. Protein Cell 2010; 1:22-32. [PMID: 21203995 DOI: 10.1007/s13238-010-0014-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 12/03/2009] [Indexed: 01/30/2023] Open
Abstract
Telomerase expression and telomere maintenance are critical for long-term cell proliferation and survival, and they play important roles in development, aging, and cancer. Cumulating evidence has indicated that regulation of the rate-limiting subunit of human telomerase reverse transcriptase gene (hTERT) is a complex process in normal cells and many cancer cells. In addition to a number of transcriptional activators and repressors, the chromatin environment and epigenetic status of the endogenous hTERT locus are also pivotal for its regulation in normal human somatic cells and in tumorigenesis.
Collapse
Affiliation(s)
- Jiyue Zhu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
46
|
Zhao Y, Wang S, Popova EY, Grigoryev SA, Zhu J. Rearrangement of upstream sequences of the hTERT gene during cellular immortalization. Genes Chromosomes Cancer 2010; 48:963-74. [PMID: 19672873 DOI: 10.1002/gcc.20698] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomerase expression, resulting from transcriptional activation of the hTERT gene, allows cells to acquire indefinite proliferative potential during cellular immortalization and tumorigenesis. However, mechanisms of hTERT gene activation in many immortal cell lines and cancer cells are poorly understood. Here, we report our studies on hTERT activation using genetically related pairs of telomerase-negative (Tel(-)) and -positive (Tel(+)) fibroblast lines. First, whereas transiently transfected plasmid reporters did not recapitulate the endogenous hTERT promoter, the promoter in chromosomally integrated bacterial artificial chromosome (BAC) reporters was activated in a subset of Tel(+) cells, indicating that activation of the hTERT promoter required native chromatin context and/or distal regulatory elements. Second, the hTERT gene, located near the telomere of chromosome 5p, was translocated in all three Tel(+) cell lines but not in their parental precrisis cells and Tel(-) immortal siblings. The breakage points were mapped to regions upstream of the hTERT promoter, indicating that the hTERT gene was the target of these chromosomal rearrangements. In two Tel(+) cell lines, translocation of the endogenous hTERT gene appeared to be the major mechanism of its activation as the activity of hTERT promoter in many chromosomally integrated BAC reporters, with intact upstream and downstream neighboring loci, remained relatively low. Therefore, our results suggest that rearrangement of upstream sequences is an important new mechanism of hTERT promoter activation during cellular immortalization. The chromosomal rearrangements likely occurred during cellular crisis and facilitated by telomere dysfunction. Such translocations allowed the hTERT promoter to escape from the native condensed chromatin environment.
Collapse
Affiliation(s)
- Yuanjun Zhao
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
47
|
Worthley DL, Whitehall VLJ, Buttenshaw RL, Irahara N, Greco SA, Ramsnes I, Mallitt KA, Le Leu RK, Winter J, Hu Y, Ogino S, Young GP, Leggett BA. DNA methylation within the normal colorectal mucosa is associated with pathway-specific predisposition to cancer. Oncogene 2009; 29:1653-62. [DOI: 10.1038/onc.2009.449] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Ikeda H, Sasaki M, Sato Y, Harada K, Zen Y, Mitsui T, Nakanuma Y. Bile ductular cell reaction with senescent hepatocytes in chronic viral hepatitis is lost during hepatocarcinogenesis. Pathol Int 2009; 59:471-8. [PMID: 19563410 DOI: 10.1111/j.1440-1827.2009.02395.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular senescence is defined as irreversible cell arrest and could work as a safeguard against tumorigenesis. This mechanism was examined in chronic viral hepatitis-related hepatocarcinogenesis. By using surgical resected or wedge biopsied liver specimens from 87 chronic viral hepatitis patients in whom 35 neoplastic nodules (dysplastic nodules and hepatocellular carcinoma) were complicated, P21 expression and senescence-associated beta galactosidase activity, a marker of senescence, were examined. All of these neoplastic nodules harbored portal tracts within the tumors. Hepatocytes expressing senescence markers and cytokeratin (CK)7-positive bile ductules including hepatic progenitor-like cells were increased in periseptal areas in cirrhosis. Interestingly, these cells appeared to form an anatomical complex that was completely lost in the periportal areas within the neoplastic nodules. In one-third of the neoplastic nodules, CK7-positive small neoplastic hepatocytes resembling hepatic progenitor cells proliferated zonally around the portal tracts. In conclusion, loss of a complex of senescent hepatocytes and ductular cell including hepatic progenitor-like cells in the periportal or periseptal areas may be associated with emergence of neoplastic hepatocytes and their proliferation followed by neoplastic nodules arising in liver cirrhosis. Zonal proliferation of CK7-positive small neoplastic hepatocytes resembling hepatic progenitor cells may develop during early hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hiroko Ikeda
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Fukui, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Senescence is a general cellular process that occurs as a response to stress and damage. It forms an alternative response of cells to damage that might otherwise cause programmed cell death. Whereas telomere shortening leading to telomere dysfunction was the first described cause of senescence, it is now known that senescence can result from many sources of damage. Senescent cells are found in tissues in vivo, but the cause of senescence in these cells is mostly unknown. In many cases, senescence may be the result of the action of activated oncogenes in cells. By preventing activated oncogenes from initiating a clone of neoplastic cells, senescence acts as a protective mechanism against cancer development. Until recently, the fate of senescent cells in vivo was unknown, but new evidence indicates that they are cleared by components of the innate immune system. In this way, senescence and apoptosis act as parallel pathways by which severely damaged cells are eliminated from the body. Some senescent cells persist in tissues, in some cases increasing in frequency as a function of age. It is hypothesized that these persistent senescent cells have adverse effects on tissue function. If so, senescence may be an example of antagonistic pleiotropy, providing an anticancer mechanism in early life but having adverse effects on tissue function in late life. Much more research is needed to address the broader question of the overall impact of senescence on life span.
Collapse
|
50
|
Kaminker PG, Kim SH, Desprez PY, Campisi J. A novel form of the telomere-associated protein TIN2 localizes to the nuclear matrix. Cell Cycle 2009; 8:931-9. [PMID: 19229133 PMCID: PMC2751576 DOI: 10.4161/cc.8.6.7941] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Telomeres are specialized heterochromatin at the ends of linear chromosomes. Telomeres are crucial for maintaining genome stability and play important roles in cellular senescence and tumor biology. Six core proteins-TRF1, TRF2, TIN2, POT1, TPP1 and Rap1 (termed the telosome or shelterin complex)-regulate telomere structure and function. One of these proteins, TIN2, regulates telomere length and structure indirectly by interacting with TRF1, TRF2 and TPP1, but no direct function has been attributed to TIN2. Here we present evidence for a TIN2 isoform (TIN2L) that differs from the originally described TIN2 isoform (TIN2S) in two ways: TIN2L contains an additional 97 amino acids, and TIN2L associates strongly with the nuclear matrix. Stringent salt and detergent conditions failed to extract TIN2L from the nuclear matrix, despite removing other telomere components, including TIN2S. In human mammary epithelial cells, each isoform showed a distinct nuclear distribution both as a function of cell cycle position and telomere length. Our results suggest a dual role for TIN2 in mediating the function of the shelterin complex and tethering telomeres to the nuclear matrix.
Collapse
Affiliation(s)
- Patrick G. Kaminker
- Buck Institute for Age Research; Novato, California USA
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley, California USA
| | - Sahn-Ho Kim
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley, California USA
| | - Pierre-Yves Desprez
- Buck Institute for Age Research; Novato, California USA
- California Pacific Medical Center; Cancer Research Institute; San Francisco, California USA
| | - Judith Campisi
- Buck Institute for Age Research; Novato, California USA
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley, California USA
| |
Collapse
|