1
|
Pellegrino S, Ronda L, Annoni C, Contini A, Erba E, Gelmi ML, Piano R, Paredi G, Mozzarelli A, Bettati S. Molecular insights into dimerization inhibition of c-Maf transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2108-15. [PMID: 25220806 DOI: 10.1016/j.bbapap.2014.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/01/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Abstract
The Maf protein family belongs to the activator protein 1 (AP-1) superfamily of transcription factors that bind specific DNA target sequences through a basic region and exploit a leucine zipper (LZ) motif for protein-protein interactions leading to homo- or hetero-dimerization. Mafs unique DNA-binding domain contains a highly conserved extended homology region (EHR) that allows to recognize longer DNA sequences than other basic leucine zipper (bZIP) transcription factors. Inspired by the fact that overexpression of Mafs is observed in about 50% of cases of multiple myeloma, a hematological malignant disorder, we undertook a peptide inhibitor approach. The LZ domain of c-Maf, one of large Mafs, was produced by solid phase peptide synthesis. We characterized its secondary structure and dimerization properties, and found that dimerization and folding events are strictly coupled. Moreover, potential peptidic c-Maf dimerization inhibitors were computationally designed and synthesized. These compounds were demonstrated by circular dichroism (CD) spectroscopy and MALDI-TOF mass spectrometry to bind to c-Maf LZ monomers, to drive folding of their partially disordered structure and to efficiently compete with dimerization, suggesting a way for interfering with the function of c-Maf and, more generally, of intrinsically disordered proteins, till now considered undruggable targets.
Collapse
Affiliation(s)
- Sara Pellegrino
- DISFARM - Section of General and Organic Chemistry "A. Marchesini", University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Luca Ronda
- Department of Neurosciences, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Chiara Annoni
- DISFARM - Section of General and Organic Chemistry "A. Marchesini", University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Alessandro Contini
- DISFARM - Section of General and Organic Chemistry "A. Marchesini", University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Emanuela Erba
- DISFARM - Section of General and Organic Chemistry "A. Marchesini", University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Maria Luisa Gelmi
- DISFARM - Section of General and Organic Chemistry "A. Marchesini", University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Riccardo Piano
- Department of Neurosciences, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Gianluca Paredi
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy; SITEIA.PARMA Interdepartmental Center, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy; National Institute of Biostructures and Biosystems, Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Stefano Bettati
- Department of Neurosciences, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy; National Institute of Biostructures and Biosystems, Viale Medaglie d'Oro 305, 00136 Rome, Italy.
| |
Collapse
|
3
|
Hussein M, Berenson JR, Niesvizky R, Munshi N, Matous J, Sobecks R, Harrop K, Drachman JG, Whiting N. A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica 2010; 95:845-8. [PMID: 20133895 DOI: 10.3324/haematol.2009.008003] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This first-in-human, phase I study evaluated the safety, maximum-tolerated dose, pharmacokinetics, and antitumor activity of dacetuzumab in 44 patients with advanced multiple myeloma. Patients received intravenous dacetuzumab, either in 4 uniform weekly doses (first 4 cohorts) or using a 5-week intrapatient dose escalation schedule (7 subsequent cohorts; the last 3 cohorts received steroid pre-medication). An initial dose of 4 mg/kg dacetuzumab exceeded the maximum-tolerated dose for uniform weekly dosing. Intrapatient dose escalation with steroid pre-medication appeared effective in reducing symptoms of cytokine release syndrome and the maximum-tolerated dose with this dosing schema was 12 mg/kg/week. Adverse events potentially related to dacetuzumab included cytokine release syndrome symptoms, non-infectious ocular inflammation, and elevated hepatic enzymes. Peak dacetuzumab blood levels increased with dose. Nine patients (20%) had a best clinical response of stable disease. The observed safety profile suggested that dacetuzumab may be combined with other multiple myeloma therapies. Two combination trials are ongoing. Clinical trials gov identifier: NCT00079716.
Collapse
|