1
|
De Paolis E, Paris I, Tilocca B, Roncada P, Foca L, Tiberi G, D’Angelo T, Pavese F, Muratore M, Carbognin L, Garganese G, Masetti R, Di Leone A, Fabi A, Scambia G, Urbani A, Generali D, Minucci A, Santonocito C. Assessing the pathogenicity of BRCA1/2 variants of unknown significance: Relevance and challenges for breast cancer precision medicine. Front Oncol 2023; 12:1053035. [PMID: 36741700 PMCID: PMC9891372 DOI: 10.3389/fonc.2022.1053035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Breast cancer (BC) is the leading cause of cancer-related death in women worldwide. Pathogenic variants in BRCA1 and BRCA2 genes account for approximately 50% of all hereditary BC, with 60-80% of patients characterized by Triple Negative Breast Cancer (TNBC) at an early stage phenotype. The identification of a pathogenic BRCA1/2 variant has important and expanding roles in risk-reducing surgeries, treatment planning, and familial surveillance. Otherwise, finding unclassified Variants of Unknown Significance (VUS) limits the clinical utility of the molecular test, leading to an "imprecise medicine". Methods We reported the explanatory example of the BRCA1 c.5057A>C, p.(His1686Pro) VUS identified in a patient with TNBC. We integrated data from family history and clinic-pathological evaluations, genetic analyses, and bioinformatics in silico investigations to evaluate the VUS classification. Results Our evaluation posed evidences for the pathogenicity significance of the investigated VUS: 1) association of the BRCA1 variant to cancer-affected members of the family; 2) absence of another high-risk mutation; 3) multiple indirect evidences derived from gene and protein structural analysis. Discussion In line with the ongoing efforts to uncertain variants classification, we speculated about the relevance of an in-depth assessment of pathogenicity of BRCA1/2 VUS for a personalized management of patients with BC. We underlined that the efficient integration of clinical data with the widest number of supporting molecular evidences should be adopted for the proper management of patients, with the final aim of effectively guide the best prognostic and therapeutic paths.
Collapse
Affiliation(s)
- Elisa De Paolis
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
| | - Ida Paris
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,*Correspondence: Ida Paris,
| | - Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Laura Foca
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giordana Tiberi
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tatiana D’Angelo
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Pavese
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Margherita Muratore
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luisa Carbognin
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgia Garganese
- Gynaecology and Breast Care Center, Mater Olbia Hospital, Olbia, Italy,Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Masetti
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alba Di Leone
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandra Fabi
- Unit of Precision Medicine in Breast Cancer, Scientific Directorate, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Giovanni Scambia
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Urbani
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Concetta Santonocito
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
2
|
Barua S, Goswami N, Mishra N, Sawant UU, Varma AK. In Silico and Structure-Based Assessment of Similar Variants Discovered in Tandem Repeats of BRCT Domains of BRCA1 and BARD1 To Characterize the Folding Pattern. ACS OMEGA 2022; 7:44772-44785. [PMID: 36530327 PMCID: PMC9753114 DOI: 10.1021/acsomega.2c04782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BRCA1 and BARD1 are important proteins in the homologous DNA damage repair pathways. Different genetic variants identified in these proteins have been clinically correlated with the occurrence of hereditary breast and ovarian cancer (HBOC). Variants of unknown significance (VUS) reported in the BRCT domains of BRCA1 and BARD1 substantiate the importance of BRCT domain-containing proteins for genomic integrity. To classify the pathogenicity of variants, in silico, structural and molecular dynamics (MD)-based approaches were explored. Different variants reported in the BRCT region were retrieved from cBioPortal, LOVD3, BRCA Exchange, and COSMIC databases to evaluate the pathogenicity. Multiple sequence alignment and superimposition of the structures of BRCA1 BRCT and BARD1 BRCT domains were performed to compare alterations in folding patterns. From 11 in silico predictions servers, variants reported to be pathogenic by 70% of the servers were considered for structural analysis. To our observations, four residue pairs of both the proteins were reported, harboring 11 variants, H1686Y, W1718L, P1749L, P1749S, and W1837L variants for BRCA1 BRCT and H606D, H606N, W635L, P657L, P657S, and W762F for BARD1 BRCT. MD simulations of the BRCT repeat regions of these variants and wild-type proteins were performed to evaluate the differences of folding patterns. Root mean square deviation (RMSD), R g, solvent-accessible surface area (SASA), and root mean square fluctuation (RMSF) of variants showed slight differences in the folding patterns from the wild-type proteins. Furthermore, principal components analysis of H1686Y, P1749S, and W1718L variants of BRCA1 showed less flexibility than the wild type, whereas that of H606D, W635L, and W762F of BARD1 showed more flexibility than the wild type. Normal mode analysis of the energy minima from the simulation trajectories revealed that most of the variants do not show much differences in the flexibility compared to the wild-type proteins, except for the discrete regions in the BRCT repeats, most prominently in the 1798-1801 amino acid region of BRCA1 and at the residue 744 in BARD1.
Collapse
Affiliation(s)
- Siddhartha
A. Barua
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Nabajyoti Goswami
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Neha Mishra
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Ulka U. Sawant
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Ashok K. Varma
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| |
Collapse
|
3
|
Nicolussi A, Belardinilli F, Mahdavian Y, Colicchia V, D'Inzeo S, Petroni M, Zani M, Ferraro S, Valentini V, Ottini L, Giannini G, Capalbo C, Coppa A. Next-generation sequencing of BRCA1 and BRCA2 genes for rapid detection of germline mutations in hereditary breast/ovarian cancer. PeerJ 2019; 7:e6661. [PMID: 31065452 PMCID: PMC6482939 DOI: 10.7717/peerj.6661] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Conventional methods used to identify BRCA1 and BRCA2 germline mutations in hereditary cancers, such as Sanger sequencing/multiplex ligation-dependent probe amplification (MLPA), are time-consuming and expensive, due to the large size of the genes. The recent introduction of next-generation sequencing (NGS) benchtop platforms offered a powerful alternative for mutation detection, dramatically improving the speed and the efficiency of DNA testing. Here we tested the performance of the Ion Torrent PGM platform with the Ion AmpliSeq BRCA1 and BRCA2 Panel in our clinical routine of breast/ovarian hereditary cancer syndrome assessment. Methods We first tested the NGS approach in a cohort of 11 patients (training set) who had previously undergone genetic diagnosis in our laboratory by conventional methods. Then, we applied the optimized pipeline to the consecutive cohort of 136 uncharacterized probands (validation set). Results By minimal adjustments in the analytical pipeline of Torrent Suite Software we obtained a 100% concordance with Sanger results regarding the identification of single nucleotide alterations, insertions, and deletions with the exception of three large genomic rearrangements (LGRs) contained in the training set. The optimized pipeline applied to the validation set (VS), identified pathogenic and polymorphic variants, including a novel BRCA2 pathogenic variant at exon 3, 100% of which were confirmed by Sanger in their correct zygosity status. To identify LGRs, all negative samples of the VS were subjected to MLPA analysis. Discussion Our experience strongly supports that the Ion Torrent PGM technology in BRCA1 and BRCA2 germline variant identification, combined with MLPA analysis, is highly sensitive, easy to use, faster, and cheaper than traditional (Sanger sequencing/MLPA) approaches.
Collapse
Affiliation(s)
- Arianna Nicolussi
- Department of Experimental Medicine, University of Roma "La Sapienza", Roma, Italy
| | | | - Yasaman Mahdavian
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Valeria Colicchia
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Sonia D'Inzeo
- Department of Experimental Medicine, University of Roma "La Sapienza", Roma, Italy.,U.O.C. Microbiology and Virology Laboratory, A.O. San Camillo Forlanini, Roma, Italy
| | - Marialaura Petroni
- Istituto Italiano di Tecnologia, Center for Life Nano Science@Sapienza, Roma, Italy
| | - Massimo Zani
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Sergio Ferraro
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Laura Ottini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Roma, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Anna Coppa
- Department of Experimental Medicine, University of Roma "La Sapienza", Roma, Italy
| |
Collapse
|
4
|
Investigating of variations in BRCA1 gene in Iranian families with breast cancer. Med J Islam Repub Iran 2018; 32:87. [PMID: 30788324 PMCID: PMC6376998 DOI: 10.14196/mjiri.32.87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 01/14/2023] Open
Abstract
Background: Breast cancer is one of the most common cancers among Iranian women whose relationship with mutation status in BRCA1 is previously approved. Therefore, screening of the most mutated exons in BRCA1 in hereditary breast cancer patients provides beneficial information about the main disease-causing reason. Methods: A total of 14 Iranian hereditary breast cancer patients participated in this case series study. DNA was extracted from patients' blood samples for PCR assay. The quality of PCR products was determined using horizontal electrophoresis. Then, sequencing and analysis of the sequencing results were performed to investigate variation status in the sequences. Results: Five variants in 4 patients were found, including 1 pathogenic variant in exon 16 (H1686Q, NM_007294.3:c.5058T>A) and 4 novel intronic variants of uncertain significance (NC_000017.11:41228314G>T, NC_000017.11:41228309C>T, NC_000017.11:41228317G>T, and NC_000017.11:41203042G>A) in BRCA1. This study was the first to report 1 rare pathogenic variant in BRCA1 (H1686Q, NM_007294.3: c.5058T>A) in an Iranian family as the main disease-causing reason. Another interesting finding was non-existence of variations in almost all globally-reported and mutated exons in BRCA1. Conclusion: Investigation of these exons in BRCA1 showed the uniqueness of mutation pattern in Iranian breast cancer patients compared to other world regions. Due to the existence of other BRCA1 exons and also other predisposing genes in breast cancer, the main cause of cancer development in other participants might have been put in those exons and genes. We concluded that the most mutated exons in BRCA1 in Iranian population may not be the same as those found in other parts of the world.
Collapse
|
5
|
Belardinilli F, Gradilone A, Gelibter A, Zani M, Occhipinti M, Ferraro S, Nicolazzo C, Coppa A, Giannini G. Coexistence of three EGFR mutations in an NSCLC patient: A brief report. Int J Biol Markers 2018; 33:1724600818782200. [PMID: 29945477 DOI: 10.1177/1724600818782200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) represents a molecular target for tyrosine kinase inhibitors for non-small cell lung cancer (NSCLC) patients with a mutation in the EGFR gene. Mutations of the EGFR gene that occur at a single position in NSCLC tissue are found as single, whereas two or more mutations on the same allele are poorly detected and investigated. PATIENT AND METHODS We investigated the presence of the EGFR gene mutations in tumor tissue by Sanger sequencing and ion torrent sequencing in an NSCLC patient at Stage IV of disease. RESULTS We found the presence of three coexisting mutations on the EGFR gene-two of which on exon 21 are present on the same allele, and the third, on exon 20, was analyzed by Sanger sequencing of the peripheral blood lymphocytes. The patient staged as cT4N0M1c (Stage IV) and started afatinib 40 mg daily 8 months ago, showing a clinical benefit. CONCLUSION In this report we describe the case of an NSCLC patient harboring three coexisting mutations on the EGFR gene, two of which are present on the same allele. This mutation pattern may represent, for patient progeny, a genetic risk of cancer development. Therefore it should be possible to obtain screening guidelines to improve the risk calculation for lung cancer susceptibility in the future.
Collapse
Affiliation(s)
| | - Angela Gradilone
- 1 Dipartimento di Medicina Molecolare, Sapienza Università di Roma, Roma, Italia
| | - Alain Gelibter
- 2 Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomopatologiche, Sapienza Università di Roma, Roma, Italia
| | - Massimo Zani
- 1 Dipartimento di Medicina Molecolare, Sapienza Università di Roma, Roma, Italia
| | - Mario Occhipinti
- 2 Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomopatologiche, Sapienza Università di Roma, Roma, Italia
| | - Sergio Ferraro
- 1 Dipartimento di Medicina Molecolare, Sapienza Università di Roma, Roma, Italia
| | - Chiara Nicolazzo
- 1 Dipartimento di Medicina Molecolare, Sapienza Università di Roma, Roma, Italia
| | - Anna Coppa
- 3 Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Roma, Italia
| | - Giuseppe Giannini
- 1 Dipartimento di Medicina Molecolare, Sapienza Università di Roma, Roma, Italia
- 4 Istituto Pasteur-Fondazione Cenci Bolognetti, Roma, Italia
| |
Collapse
|
6
|
Capalbo C, Belardinilli F, Filetti M, Parisi C, Petroni M, Colicchia V, Tessitore A, Santoni M, Coppa A, Giannini G, Marchetti P. Effective treatment of a platinum-resistant cutaneous squamous cell carcinoma case by EGFR pathway inhibition. Mol Clin Oncol 2018; 9:30-34. [PMID: 29977536 DOI: 10.3892/mco.2018.1634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/30/2018] [Indexed: 12/25/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common type of non-melanoma skin cancer. Platinum-based regimens have been an integral part of palliative care for patients with locally advanced or metastatic disease. There is no evidence of efficacy for later lines of chemotherapy and no targeted therapy has been introduced as 'standard of care'. Here we report on the case of an elderly cSCC patient, resistant to conventional therapy, however successfully treated with anti-epidermal growth factor receptor (EGFR) agent (Cetuximab) in addition to a daily dose of Curcumin phospholipid. The patient responded to treatment and experienced no recurrence for 11 months with only minor skin-related toxicity. To our knowledge, this is the first report of clinical evidence that an anti EGFR targeted therapy with a daily oral dose of Curcumin phospholipid is well tolerated and results in a highly effective disease control in a heavily pretreated cSCC patient.
Collapse
Affiliation(s)
- Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy.,Medical Oncology Sant'Andrea Hospital, I-00189 Rome, Italy
| | | | - Marco Filetti
- Medical Oncology Sant'Andrea Hospital, I-00189 Rome, Italy
| | - Claudia Parisi
- Medical Oncology Sant'Andrea Hospital, I-00189 Rome, Italy
| | - Marialaura Petroni
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, I-00161 Rome, Italy
| | - Valeria Colicchia
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Matteo Santoni
- Oncology Unit, Macerata Hospital, I-62100 Macerata, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, I-00161 Rome, Italy
| | | |
Collapse
|
7
|
Rizzolo P, Silvestri V, Valentini V, Zelli V, Zanna I, Masala G, Bianchi S, Palli D, Ottini L. Gene-specific methylation profiles in BRCA-mutation positive and BRCA-mutation negative male breast cancers. Oncotarget 2018; 9:19783-19792. [PMID: 29731982 PMCID: PMC5929425 DOI: 10.18632/oncotarget.24856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/27/2018] [Indexed: 12/29/2022] Open
Abstract
Male breast cancer (MBC) is a rare disease. Due to its rarity, MBC research and clinical approach are mostly based upon data derived from female breast cancer (FBC). Increasing evidence indicate that on molecular level MBC may be an heterogeneous disease different from FBC. In order to investigate whether epigenetic signatures could define molecular subgroups of MBCs, we performed promoter methylation analysis of genes involved in signal transduction and hormone signalling in BRCA1/2 mutation-positive and -negative MBCs. We examined 69 MBCs, paired blood samples, and 15 normal tissues for promoter methylation of hTERT, ESR1, RASSF1, AR, MYC and WNT1 genes. MBCs showed higher gene promoter methylation levels compared to paired blood and normal breast samples. Significantly higher RASSF1 methylation levels were observed in association with BRCA1/2 mutations, HER2 expression and high tumor grade. Significantly higher AR methylation levels were observed in BRCA1/2 wild-type cases and higher WNT1 methylation levels in PR negative cases. Overall, our results indicate that alterations in gene methylation profiles are common in MBC and that methylation pattern of tumor-associated genes may allow for the identification of MBC molecular subgroups, that could have implications in clinical management of MBC patients.
Collapse
Affiliation(s)
- Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Zelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ines Zanna
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPRO), Florence, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPRO), Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Medical and Surgical Critical Care, University of Florence, Florence, Italy
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPRO), Florence, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Coppa A, Nicolussi A, D'Inzeo S, Capalbo C, Belardinilli F, Colicchia V, Petroni M, Zani M, Ferraro S, Rinaldi C, Buffone A, Bartolazzi A, Screpanti I, Ottini L, Giannini G. Optimizing the identification of risk-relevant mutations by multigene panel testing in selected hereditary breast/ovarian cancer families. Cancer Med 2018; 7:46-55. [PMID: 29271107 PMCID: PMC5773970 DOI: 10.1002/cam4.1251] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/05/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
The introduction of multigene panel testing for hereditary breast/ovarian cancer screening has greatly improved efficiency, speed, and costs. However, its clinical utility is still debated, mostly due to the lack of conclusive evidences on the impact of newly discovered genetic variants on cancer risk and lack of evidence-based guidelines for the clinical management of their carriers. In this pilot study, we aimed to test whether a systematic and multiparametric characterization of newly discovered mutations could enhance the clinical utility of multigene panel sequencing. Out of a pool of 367 breast/ovarian cancer families Sanger-sequenced for BRCA1 and BRCA2 gene mutations, we selected a cohort of 20 BRCA1/2-negative families to be subjected to the BROCA-Cancer Risk Panel massive parallel sequencing. As a strategy for the systematic characterization of newly discovered genetic variants, we collected blood and cancer tissue samples and established lymphoblastoid cell lines from all available individuals in these families, to perform segregation analysis, loss-of-heterozygosity and further molecular studies. We identified loss-of-function mutations in 6 out 20 high-risk families, 5 of which occurred on BRCA1, CHEK2 and ATM and are esteemed to be risk-relevant. In contrast, a novel RAD50 truncating mutation is most likely unrelated to breast cancer. Our data suggest that integrating multigene panel testing with a pre-organized, multiparametric characterization of newly discovered genetic variants improves the identification of risk-relevant alleles impacting on the clinical management of their carriers.
Collapse
Affiliation(s)
- Anna Coppa
- Department of Experimental MedicineUniversity La SapienzaV.le R. Elena 324Rome00161Italy
| | - Arianna Nicolussi
- Department of Experimental MedicineUniversity La SapienzaV.le R. Elena 324Rome00161Italy
| | - Sonia D'Inzeo
- Department of Experimental MedicineUniversity La SapienzaV.le R. Elena 324Rome00161Italy
| | - Carlo Capalbo
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | | | - Valeria Colicchia
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Marialaura Petroni
- Center for Life Nano Science@SapienzaIstituto Italiano di TecnologiaRome00161Italy
| | - Massimo Zani
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Sergio Ferraro
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Christian Rinaldi
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Amelia Buffone
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Armando Bartolazzi
- Department of PathologySant'Andrea HospitalUniversity La SapienzaVia di Grottarossa 1035Rome00189Italy
| | - Isabella Screpanti
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Laura Ottini
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
| | - Giuseppe Giannini
- Department of Molecular MedicineUniversity La SapienzaV.le R. Elena 291Rome00161Italy
- Istituto Pasteur‐Fondazione Cenci BolognettiRome00161Italy
| |
Collapse
|
9
|
Catanzaro G, Besharat ZM, Chiacchiarini M, Abballe L, Sabato C, Vacca A, Borgiani P, Dotta F, Tesauro M, Po A, Ferretti E. Circulating MicroRNAs in Elderly Type 2 Diabetic Patients. Int J Endocrinol 2018; 2018:6872635. [PMID: 29849622 PMCID: PMC5914089 DOI: 10.1155/2018/6872635] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/25/2018] [Accepted: 02/18/2018] [Indexed: 02/07/2023] Open
Abstract
The circulating microRNAs (miRNAs) associated with type 2 diabetes (T2D) in elderly patients are still being defined. To identify novel miRNA biomarker candidates for monitoring responses to sitagliptin in such patients, we prospectively studied 40 T2D patients (age > 65) with HbA1c levels of 7.5-9.0% on metformin. After collection of baseline blood samples (t0), the dipeptidyl peptidase-IV (DPP-IV) inhibitor (DPP-IVi) sitagliptin was added to the metformin regimen, and patients were followed for 15 months. Patients with HbA1c < 7.5% or HbA1c reduction > 0.5% after 3 and 15 months of therapy were classified as "responders" (group R, n = 34); all others were classified as "nonresponders" (group NR, n = 6). Circulating miRNA profiling was performed on plasma collected in each group before and after 15 months of therapy (t0 and t15). Intra- and intergroup comparison of miRNA profiles pinpointed three miRNAs that correlated with responses to sitagliptin: miR-378, which is a candidate biomarker of resistance to this DPP-IVi, and miR-126-3p and miR-223, which are associated with positive responses to the drug. The translational implications are as immediate as evident, with the possibility to develop noninvasive diagnostic tools to predict drug response and development of chronic complications.
Collapse
Affiliation(s)
| | | | | | - Luana Abballe
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Sabato
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Vacca
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | | | - Manfredi Tesauro
- Hypertension and Nephrology Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Rizzolo P, Silvestri V, Tommasi S, Pinto R, Danza K, Falchetti M, Gulino M, Frati P, Ottini L. Male breast cancer: genetics, epigenetics, and ethical aspects. Ann Oncol 2014; 24 Suppl 8:viii75-viii82. [PMID: 24131976 DOI: 10.1093/annonc/mdt316] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND STUDY DESIGN Male breast cancer (MBC) is a rare disease compared with female BC and our current understanding regarding breast carcinogenesis in men has been largely extrapolated from the female counterpart. We focus on differences between the ethical issues related to male and female BC patients. A systematic literature search by using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), was carried out to provide a synopsis of the current research in the field of MBC genetics, epigenetics and ethics. Original articles and reviews published up to September 2012 were selected by using the following search key words to query the PubMed website: 'male breast cancer', 'male breast cancer and genetic susceptibility', 'male breast cancer and epigenetics', 'male breast cancer and methylation', 'male breast cancer and miRNA', 'male breast cancer and ethics'. RESULTS AND CONCLUSIONS As in women, three classes of breast cancer genetic susceptibility (high, moderate, and low penetrance) are recognized in men. However, genes involved and their impact do not exactly overlap in female and male BC. Epigenetic alterations are currently scarcely investigated in MBC, however, the different methylation and miRNA expression profiles identified to date in female and male BCs suggest a potential role for epigenetic alterations as diagnostic biomarkers. Overall, much still needs to be learned about MBC and, because of its rarity, the main effort is to develop large consortia for moving forward in understanding MBC and improving the management of MBC patients on a perspective of gender medicine.
Collapse
Affiliation(s)
- P Rizzolo
- Department of Molecular Medicine, 'Sapienza' University of Rome, Rome
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lindor NM, Goldgar DE, Tavtigian SV, Plon SE, Couch FJ. BRCA1/2 sequence variants of uncertain significance: a primer for providers to assist in discussions and in medical management. Oncologist 2013; 18:518-24. [PMID: 23615697 DOI: 10.1634/theoncologist.2012-0452] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION DNA variants of uncertain significance (VUS) are common outcomes of clinical genetic testing for susceptibility to cancer. A statistically rigorous model that provides a pathogenicity score for each variant has been developed to aid in the clinical management of patients undergoing genetic testing. METHODS The information in this article is derived from multiple publications on VUS in BRCA genes, distilled for communicating with clinicians who may encounter VUS in their practice. RESULTS The posterior probability scores for BRCA1 or BRCA2 VUS, calculated from a multifactorial likelihood model, are explained, and links for looking up specific VUS are provided. The International Agency on Cancer Research (IARC) of the World Health Organization has proposed a simple five-tier system for clinical management that is not widely known to clinicians. Classes 1 and 2 in this system are managed as neutral variants, classes 4 and 5 are managed as pathogenic variants, and class 3 variants still have insufficient evidence to move to either end of this scale and, thus, cannot be used in medical management. CONCLUSIONS Development of models that integrate multiple independent lines of evidence has allowed classification of a growing number of VUS in the BRCA1 and BRCA2 genes. The pathogenicity score that is generated by this model maps to the IARC system for clinical management, which will assist clinicians in the medical management of those patients who obtain a VUS result upon testing.
Collapse
Affiliation(s)
- Noralane M Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona 85259, USA.
| | | | | | | | | |
Collapse
|
12
|
Collective evidence supports neutrality of BRCA1 V1687I, a novel sequence variant in the conserved THV motif of the first BRCT repeat. Breast Cancer Res Treat 2012; 134:435-41. [PMID: 22527099 DOI: 10.1007/s10549-012-2052-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Unambiguous classification of BRCA1 and BRCA2 variants of uncertain significance (VUS) is a challenging task that vexes health care providers and has profound implications for patients and their family members. Numerous VUS have been described to date, which await assessment of their functional, hence clinical, impact. As a result of a routine BRCA1/BRCA2 mutational screening, we identified a previously unreported BRCA1 sequence alteration [c.5178G>A (V1687I)] in a patient diagnosed with early onset triple negative breast cancer. The sequence alteration falls in the invariant THV motif of the BRCT domain. To investigate its significance, we applied an integrated approach that, in addition to genetic and histopathological data, included in silico analyses, comparative structural modeling and verification of BRCT-mediated interactions. In line with web-based algorithms that predicted the benign nature of BRCA1 V1687I, the three-dimensional model of the BRCA1 V1687I BRCT domain did not reveal any major structural changes relative to its wild-type counterpart, thus suggesting that BRCA1 V1687I has a negligible impact on both the local architecture and the overall stability of the protein. Consistently, the BRCA1 V1687I protein was properly expressed and localized to the nucleus, and it was still capable of binding three BRCT-interacting, DNA damage response, and repair partner proteins, namely BRIP1/FANCJ, CtIP, and Abraxas. Our collected evidence suggests that, although occurring in a highly conserved region, the BRCA1 V1687I variant is likely a benign sequence alteration.
Collapse
|
13
|
Steffensen AY, Jønson L, Ejlertsen B, Gerdes AM, Nielsen FC, Hansen TVO. Identification of a Danish breast/ovarian cancer family double heterozygote for BRCA1 and BRCA2 mutations. Fam Cancer 2010; 9:283-7. [PMID: 20455026 PMCID: PMC2921502 DOI: 10.1007/s10689-010-9345-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the two breast cancer susceptibility genes BRCA1 and BRCA2 are associated with increased risk of breast and ovarian cancer. Patients with mutations in both genes are rarely reported and often involve Ashkenazi founder mutations. Here we report the first identification of a Danish breast and ovarian cancer family heterozygote for mutations in the BRCA1 and BRCA2 genes. The BRCA1 nucleotide 5215G > A/c.5096G > A mutation results in the missense mutation Arg1699Gln, while the BRCA2 nucleotide 859 + 4A > G/c.631 + 4A > G is novel. Exon trapping experiments and reverse transcriptase (RT)–PCR analysis revealed that the BRCA2 mutation results in skipping of exon 7, thereby introducing a frameshift and a premature stop codon. We therefore classify the mutation as disease causing. Since the BRCA1 Arg1699Gln mutation is also suggested to be disease-causing, we consider this family double heterozygote for BRCA1 and BRCA2 mutations.
Collapse
Affiliation(s)
- Ane Y Steffensen
- Department of Clinical Biochemistry 4111, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|