1
|
Rondoni M, Marconi G, Nicoletti A, Giannini B, Zuffa E, Giannini MB, Mianulli A, Norata M, Monaco F, Zaccheo I, Rocchi S, Zannetti BA, Santoni A, Graziano C, Bocchia M, Lanza F. Low WT1 Expression Identifies a Subset of Acute Myeloid Leukemia with a Distinct Genotype. Cancers (Basel) 2025; 17:1213. [PMID: 40227798 PMCID: PMC11988028 DOI: 10.3390/cancers17071213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Wilms' tumor gene 1 (WT1) is a critical player in acute myeloid leukemia (AML), often serving as a biomarker for measurable residual disease (MRD). The WT1 gene is overexpressed in the majority of AML cases at diagnosis, with apparently no correlation with prognosis, and in the meantime, its role in patients with low-level expression is still undefined. This study investigates the mutational landscape and clinical outcomes of AML patients with low WT1 expression at diagnosis. Methods: We analyzed 34 AML patients with low WT1 expression (WT1/ABL1 < 250) diagnosed and treated from 2013 to 2017 at three institutions. Next-generation sequencing (NGS) was employed to investigate the mutational status of 32 genes commonly mutated in AML. The presence of specific mutations, as well as clinical outcomes, was compared to the general AML population. Results: Patients with low WT1 expression showed a significantly higher mutational burden, with a median of 3.4 mutations per patient, compared to the general AML population. Notably, clonal hematopoiesis (CHIP) or myelodysplasia-related (MR) mutations, particularly in ASXL1, TET2, and SRSF2, were present in most patients with low WT1 expression. All but one case of NPM1- or FLT3-mutant AML in the low-WT1 cohort harbored more CHIP or MR mutations. Patients with low WT1 expression had an overall survival (OS) that was superimposable to the OS expected in MR AML. Conclusions: Low WT1 expression in AML is associated with a distinct and complex mutational profile, marked by frequent CHIP and MR mutations.
Collapse
Affiliation(s)
- Michela Rondoni
- UO Ematologia, Ospedale S. Maria delle Croci, Via Randi 5, 48121 Ravenna, Italy; (G.M.); (F.L.)
| | - Giovanni Marconi
- UO Ematologia, Ospedale S. Maria delle Croci, Via Randi 5, 48121 Ravenna, Italy; (G.M.); (F.L.)
- Department of Medicine and Surgery (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Annalisa Nicoletti
- U.O. Genetica Medica, AUSL della Romagna, Piazzale della Liberazione 60, 47522 Pievesestina di Cesena, Italy
| | - Barbara Giannini
- U.O. Genetica Medica, AUSL della Romagna, Piazzale della Liberazione 60, 47522 Pievesestina di Cesena, Italy
| | - Elisa Zuffa
- U.O. Genetica Medica, AUSL della Romagna, Piazzale della Liberazione 60, 47522 Pievesestina di Cesena, Italy
| | - Maria Benedetta Giannini
- IRCSS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy
| | - Annamaria Mianulli
- UO Ematologia, Ospedale Infermi, Viale Luigi Settembrini 2, 47923 Rimini, Italy
| | - Marianna Norata
- IRCSS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy
| | - Federica Monaco
- UO Ematologia, Ospedale Infermi, Viale Luigi Settembrini 2, 47923 Rimini, Italy
| | - Irene Zaccheo
- IRCSS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy
| | - Serena Rocchi
- UO Ematologia, Ospedale S. Maria delle Croci, Via Randi 5, 48121 Ravenna, Italy; (G.M.); (F.L.)
| | - Beatrice Anna Zannetti
- UO Ematologia, Ospedale S. Maria delle Croci, Via Randi 5, 48121 Ravenna, Italy; (G.M.); (F.L.)
| | - Adele Santoni
- Dipartimento Scienze Mediche, Chirurgiche e Neuroscienze, University of Siena, 53100 Siena, Italy
| | - Claudio Graziano
- U.O. Genetica Medica, AUSL della Romagna, Piazzale della Liberazione 60, 47522 Pievesestina di Cesena, Italy
| | - Monica Bocchia
- Dipartimento Scienze Mediche, Chirurgiche e Neuroscienze, University of Siena, 53100 Siena, Italy
| | - Francesco Lanza
- UO Ematologia, Ospedale S. Maria delle Croci, Via Randi 5, 48121 Ravenna, Italy; (G.M.); (F.L.)
- Department of Medicine and Surgery (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Wang MM, Huang SM, Huang YH, Zhang J, Li HY, Ge SS, Wan CL, Wang M, Liu HH, Cao HY, Wang ZH, Tan KW, Pang HF, Lyu XY, Liu SB, Dai HP, Xue SL, Qiu QC. Quantification of the FLT3 internal tandem duplication is a reliable marker for monitoring measurable residual disease in acute myeloid leukemia with FLT3-ITD mutations. Bone Marrow Transplant 2025; 60:412-414. [PMID: 39658655 DOI: 10.1038/s41409-024-02495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Meng-Miao Wang
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Si-Man Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Yuan-Hong Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Jian Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui-Ying Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Shuai-Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Miao Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Hai-Hui Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Han-Yu Cao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Zi-Hao Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Kai-Wen Tan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Hong-Feng Pang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Xiao-Yu Lyu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China.
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China.
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China.
| | - Qiao-Cheng Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Suzhou University, Suzhou, China.
| |
Collapse
|
3
|
Tsushima T, Kimeda C, Yoda N, Matsuo K, Tanaka K, Hatanaka Y, Matsumoto R, Shimoji S, Utsu Y, Masuda SI, Aotsuka N. Clinical Outcomes of Early WT1 mRNA Reduction After Remission Induction in Newly Diagnosed Acute Myeloid Leukemia Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2025; 31:168.e1-168.e12. [PMID: 39694194 DOI: 10.1016/j.jtct.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Wilms' Tumor 1 (WT1) mRNA is a non-specific marker of measurable residual disease in acute myeloid leukemia (AML). Few studies have focused on the prognostic value of WT1 mRNA after initial remission induction of patients with AML who have received transplant treatments. Thus, we retrospectively analyzed the clinical features and prognostic impact of WT1 mRNA reduction in patients with AML after initial remission induction at our hospital. We classified the reduction in WT1 mRNA levels using logarithmic stratification, with particular focus on the prognostic impact of a 3-log reduction after initial remission induction. This single-center, retrospective, observational study included 71 consecutive patients with AML who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) between April 2013 and June 2023 and had WT1 mRNA quantified. Patients were grouped based on whether a 3-log reduction was observed during follow-up (N=30) or not (N=41). Among patients who did not achieve a 3-log reduction, European Leukemia Net (ELN) 2022 adverse risk was more common, and fewer patients showed complete hematological responses at transplantation. Patients who reached a 3-log reduction in WT1 mRNA after the initial remission induction had significantly longer overall survival (OS) and progression-free survival (PFS) and a lower relapse rate than patients who had not reached a 3-log reduction (2-year OS: 79.7% vs. 27.5%, 2-year PFS: 83.1% vs. 11.7% and 2-year cumulative relapse rate: 5.9% vs. 81.2%). In multivariate analysis, a 3-log reduction in WT1 mRNA after initial remission induction and ELN 2022 adverse risk by genetics were significantly associated with OS and PFS. We identified that patients with AML undergoing HSCT with an early and deep 3-log reduction in WT1 mRNA after initial remission induction were associated with low relapse rates and better long-term prognosis. Our data highlight the importance of WT1 mRNA reduction after initial remission induction.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Hematopoietic Stem Cell Transplantation/methods
- Male
- Female
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
- Adult
- Middle Aged
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Retrospective Studies
- Remission Induction
- Transplantation, Homologous
- Young Adult
- Adolescent
- Prognosis
- Treatment Outcome
- Aged
Collapse
Affiliation(s)
- Takafumi Tsushima
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Narita, Japan.
| | - Chiharu Kimeda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Narita, Japan
| | - Natsumi Yoda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Narita, Japan
| | - Kosuke Matsuo
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Narita, Japan
| | - Kazusuke Tanaka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Narita, Japan
| | - Yasuhito Hatanaka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Narita, Japan
| | - Rena Matsumoto
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Narita, Japan
| | - Sonoko Shimoji
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Narita, Japan
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Narita, Japan
| | - Shin-Ichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Narita, Japan
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Narita, Japan
| |
Collapse
|
4
|
Battaglia G, Lazzarotto D, Tanasi I, Gurrieri C, Forlani L, Mauro E, Capraro F, Ciotti G, De Bellis E, Callegari C, Tosoni L, Fanin M, Morelli GL, Simio C, Skert C, Gottardi M, Zaja F, Toffoletti E, Damiani D, Fanin R, Tiribelli M. New Combination Regimens vs. Fludarabine, Cytarabine, and Idarubicin in the Treatment of Intermediate- or Low-Risk Nucleophosmin-1-Mutated Acute Myeloid Leukemia: A Retrospective Analysis from 7 Italian Centers. J Clin Med 2025; 14:700. [PMID: 39941372 PMCID: PMC11818901 DOI: 10.3390/jcm14030700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Nucleophosmin-1 (NPM1) mutation accounts for 30% of acute myeloid leukemia (AML) cases and defines either low- or intermediate-risk AML, depending on FLT3-ITD mutation. New combination regimens (NCRs), adding midostaurin and gemtuzumab ozogamicin (GO) to the 3 + 7 scheme, are commonly used, though there are no data that compare NCRs with intensive induction chemotherapy. Methods: To evaluate the efficacy and safety of NCRs and FLAI in NPM1+ AML, we retrospectively analyzed 125 patients treated with FLAI (n = 53) or NCRs (n = 72) at seven Italian Centers. Results: The median age was 61 years and 51/125 (41%) were FLT3-ITD+. The complete remission (CR) rate was 77%, slightly better with NCRs (83% vs. 68%; p = 0.054). NCRs yielded a superior median overall survival (OS) (not reached (NR) vs. 27.3 months; p = 0.002), though the median event-free survival (EFS) was similar (NR vs. 20.5 months; p = 0.07). In low-risk AML, CR was higher in NCRs (94% vs. 72%, p = 0.02), as were median OS (NR vs. 41.6 months; p = 0.0002) and EFS (NR vs. 17.8 months; p = 0.0085). In intermediate-risk AML (FLT3-ITD+), there were no differences in CR (60% vs. 71%; p = 0.5), OS (p = 0.27), or EFS (p = 0.86); only allogeneic transplantation improved OS (NR vs. 13.4 months; p = 0.005), regardless of induction regimen. The safety profile was similar, except for delayed platelet recovery with FLAI (22 vs. 18 days; p = 0.0024) and higher-grade II-IV gastrointestinal toxicity with NCRs (43% vs. 18.8%; p = 0.0066). Conclusions: Our data suggest the superiority of NCRs over FLAI in low-risk patients, while all outcomes were comparable in intermediate-risk patients, a setting in which only transplants positively impacted on survival.
Collapse
Affiliation(s)
- Giulia Battaglia
- Division of Hematology and BMT, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (G.B.); (R.F.)
| | - Davide Lazzarotto
- Division of Hematology and BMT, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (G.B.); (R.F.)
| | - Ilaria Tanasi
- Hematology Unit, Department of Engineering for Innovation Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, 37126 Verona, Italy
| | - Carmela Gurrieri
- Hematology Unit, Azienda Ospedale-Università and University of Padova, 35128 Padua, Italy
| | - Laura Forlani
- Hematology Unit, Azienda Ospedale-Università and University of Padova, 35128 Padua, Italy
| | - Endri Mauro
- Hematology Section, Dipartimento di Medicina Specialistica, Ca’ Foncello Hospital, 31100 Treviso, Italy
| | - Francesca Capraro
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venice, Italy (C.S.)
| | - Giulia Ciotti
- Department of Oncology, UOC Oncohematology, Istituto Oncologico Veneto (IOV) IRCCS, 35128 Padova, Italy (M.G.)
| | - Eleonora De Bellis
- Hematology Unit, Azienda Sanitaria Universitaria Giuliano Isontina, 34148 Trieste, Italy (F.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Chiara Callegari
- Division of Hematology and BMT, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (G.B.); (R.F.)
| | - Luca Tosoni
- Division of Hematology and BMT, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (G.B.); (R.F.)
| | - Matteo Fanin
- Division of Hematology and BMT, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (G.B.); (R.F.)
| | - Gian Luca Morelli
- Division of Hematology and BMT, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (G.B.); (R.F.)
| | - Claudia Simio
- Hematology Unit, Department of Engineering for Innovation Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, 37126 Verona, Italy
| | - Cristina Skert
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venice, Italy (C.S.)
| | - Michele Gottardi
- Department of Oncology, UOC Oncohematology, Istituto Oncologico Veneto (IOV) IRCCS, 35128 Padova, Italy (M.G.)
| | - Francesco Zaja
- Hematology Unit, Azienda Sanitaria Universitaria Giuliano Isontina, 34148 Trieste, Italy (F.Z.)
| | - Eleonora Toffoletti
- Division of Hematology and BMT, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (G.B.); (R.F.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Daniela Damiani
- Division of Hematology and BMT, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (G.B.); (R.F.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Renato Fanin
- Division of Hematology and BMT, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (G.B.); (R.F.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and BMT, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (G.B.); (R.F.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
5
|
Shen Q, Gong X, Feng Y, Hu Y, Wang T, Yan W, Zhang W, Qi S, Gale RP, Chen J. Measurable residual disease (MRD)-testing in haematological cancers: A giant leap forward or sideways? Blood Rev 2024; 68:101226. [PMID: 39164126 DOI: 10.1016/j.blre.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Measurable residual disease (MRD)-testing is used in many haematological cancers to estimate relapse risk and to direct therapy. Sometimes MRD-test results are used for regulatory approval. However, some people including regulators wrongfully believe results of MRD-testing are highly accurate and of proven efficacy in directing therapy. We review MRD-testing technologies and evaluate the accuracy of MRD-testing for predicting relapse and the strength of evidence supporting efficacy of MRD-guided therapy. We show that at the individual level MRD-test results are often an inaccurate relapse predictor. Also, no convincing data indicate that increasing therapy-intensity based on a positive MRD-test reduces relapse risk or improves survival. We caution against adjusting therapy-intensity based solely on results of MRD-testing.
Collapse
Affiliation(s)
- Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Tiantian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Wen Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK.
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
6
|
Aydin S, Schmitz J, Dellacasa CM, Dogliotti I, Giaccone L, Busca A. WT1 Expression Is Associated with Poor Overall Survival after Azacytidine and DLI in a Cohort of Adult AML and MDS Patients. Cancers (Basel) 2024; 16:3070. [PMID: 39272929 PMCID: PMC11394520 DOI: 10.3390/cancers16173070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction: Post-transplant relapse of acute myeloid leukemia and myelodysplastic syndrome faces restricted effective salvage regimens. We retrospectively analyzed the use of Azacitidine-donor lymphocyte infusion (AZA/DLI) in this setting. Furthermore, data on bone marrow Wilms tumor gene 1 (WT1) expression were collected. Methods: A Cox proportional hazards model, an outcome-oriented approach for the lowest smoothed plot of the martingale residuals, was performed for the cut-point determination of the respective WT1 expression levels. Finally, a Cox proportional hazards model investigated the association of overall survival (OS) with predictors. Results: An overall response of 41.4% with a median duration of 11.9 months for stable disease and 19.5 months for complete response (CR) patients was achieved. The disease risk index (DRI) high-/very high-risk patients had a shorter OS of 4.4 months than intermediate-risk patients, with 14.5 months, p = 0.007. At transplant, WT1-overexpressing patients (>150 copies) had a shorter median OS of 5.3 months than low-WT1-expressing ones, with 13.5 months, p = 0.024. Furthermore, patients with ≤1000 WT1 copies at relapse had a significantly longer OS with 15.3 months than patients overexpressing WT1, with 4.4 months, p = 0.0002. Conclusions: DRI and WT1 expression associate significantly with OS after AZA/DLI. Hence, WT1 may represent an MRD marker, especially in CR patients at high risk.
Collapse
Affiliation(s)
- Semra Aydin
- Department of Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital of Bonn, 53127 Bonn, Germany
- Division of Hematology, Department of Oncology, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Jennifer Schmitz
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Chiara M Dellacasa
- Stem Cell Transplant Center, Citta della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Irene Dogliotti
- Stem Cell Transplant Center, Hematology U, Città della Salute e della Scienza Turin, 10126 Turin, Italy
| | - Luisa Giaccone
- Stem Cell Transplant Center, Hematology U, Città della Salute e della Scienza Turin, 10126 Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Alessandro Busca
- Stem Cell Transplant Center, Citta della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
7
|
Arai S, Tachibana T, Izumi A, Takeda T, Tamai Y, Sato S, Hashimoto C, Fujimaki K, Ishii R, Kabasawa N, Hirasawa A, Inoue Y, Tanaka M, Suzuki T, Nakajima H. WT1-guided pre-emptive therapy after allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia. Int J Hematol 2024; 120:337-346. [PMID: 38795248 DOI: 10.1007/s12185-024-03795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/27/2024]
Abstract
Measurable residual disease (MRD)-guided pre-emptive therapies are now widely used to prevent post-transplant hematological relapse in patients with acute myeloid leukemia (AML). This single-center retrospective study aimed to clarify the significance of pre-emptive treatment based on Wilms' tumor gene-1 mRNA (WT1) monitoring for MRD in patients with AML who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). Patients with AML who received chemotherapy for hematological relapse or WT1 increase after allo-HSCT were eligible for inclusion. From January 2017 to June 2022, 30 patients with a median age of 57 (16-70) years were included and stratified into two groups: 10 with WT1 increase and 20 with hematological relapse. The median times from HCT to WT1 increase or hematological relapse were 309 days (range: 48-985) or 242 days (range: 67-1116), respectively. Less intensive chemotherapy using azacitidine or cytarabine was selected for all patients with WT1 increase and 12 (60%) with hematological relapse. The 1-year overall survival and event-free survival rates for WT1 increase and hematological relapse were 70% vs. 44% (P = 0.024) and 70% vs. 29% (P = 0.029), respectively. These real-world data suggest that WT1-guided pre-emptive therapy may be superior to therapy after hematological relapse in patients with AML who have undergone allo-HSCT.
Collapse
Affiliation(s)
- Shota Arai
- Department of Hematology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-Ku, Yokohama, 241-8515, Japan
- Department of Hematology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takayoshi Tachibana
- Department of Hematology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-Ku, Yokohama, 241-8515, Japan.
| | - Akihiko Izumi
- Department of Hematology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-Ku, Yokohama, 241-8515, Japan
| | - Takaaki Takeda
- Department of Hematology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-Ku, Yokohama, 241-8515, Japan
| | - Yotaro Tamai
- Division of Hematology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shuku Sato
- Division of Hematology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Chizuko Hashimoto
- Department of Hematology/Oncology, Yamato Municipal Hospital, Yamato, Japan
| | | | - Ryuji Ishii
- Department of Hematology, Japan Community Health Care Organization Sagamino Hospital, Sagamihara, Japan
| | - Noriyuki Kabasawa
- Division of Hematology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Akira Hirasawa
- Department of Hematology, Yokohama Rosai Hospital, Yokohama, Japan
| | - Yasuyuki Inoue
- Department of Internal Medicine, Division of Hematology, Yokohama City Seibu Hospital, St. Marianna University School of Medicine, Yokohama, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-Ku, Yokohama, 241-8515, Japan
| | - Takahiro Suzuki
- Department of Hematology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideaki Nakajima
- Department of Hematology and Clinical Immunology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
8
|
Duployez N, Preudhomme C. Monitoring molecular changes in the management of myelodysplastic syndromes. Br J Haematol 2024; 205:772-779. [PMID: 38934371 DOI: 10.1111/bjh.19614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The ongoing or anticipated therapeutic advances as well as previous experience in other malignancies, including acute myeloid leukaemia, have made molecular monitoring a potential interesting tool for predicting outcomes and demonstrating treatment efficacy in patients with myelodysplastic syndromes (MDS). The important genetic heterogeneity in MDS has made challenging the establishment of recommendations. In this context, high-throughput/next-generation sequencing (NGS) has emerged as an attractive tool, especially in patients with high-risk diseases. However, its implementation in clinical practice still suffers from a lack of standardization in terms of sensitivity, bioinformatics and result interpretation. Data from literature, mostly gleaned from retrospective cohorts, show NGS monitoring when used appropriately could help clinicians to guide therapy, detect early relapse and predict disease evolution. Translating these observations into personalized patient management requires a prospective evaluation in clinical research and remains a major challenge for the next years.
Collapse
Affiliation(s)
- Nicolas Duployez
- Laboratory of Haematology, CHU Lille, Lille, France
- U1277 CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), University of Lille, INSERM, Lille, France
| | - Claude Preudhomme
- Laboratory of Haematology, CHU Lille, Lille, France
- U1277 CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), University of Lille, INSERM, Lille, France
| |
Collapse
|
9
|
Namdaroğlu S, Başcı S, Aslan Candır B, Yaman S, Yiğenoğlu TN, Bahsi T, Özcan N, Dal MS, Kızıl Çakar M, Altuntaş F. Role of WT1 in Measurable Residual Disease Follow-Up in the Post Allogeneic Stem Cell Transplant Setting. J Clin Med 2024; 13:5145. [PMID: 39274359 PMCID: PMC11396114 DOI: 10.3390/jcm13175145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Objectives: The Wilms' tumor gene 1 (WT1) plays a critical role in cell development and the regulation of essential genes involved in cell growth and metabolism. In the context of hematopoietic tumors, including acute myeloid leukemia (AML), WT1 has been identified as a potential marker for measurable residual disease (MRD) assessment. Relapse after allogeneic hematopoietic stem cell transplantation (allo-SCT) remains a significant challenge in AML treatment, highlighting the importance of MRD monitoring for risk stratification and treatment decisions. This study aimed to investigate the clinical significance of WT1 as a molecular marker for MRD and its correlation with chimerism in AML patients post-allo-SCT setting. Methods: We have included 58 patients with WT1-expression-positive acute myeloid leukemia (AML) who received allo-SCT in our center between 2016-2022. The exclusion criteria are as follows: not having WT1 polymerase chain reaction (PCR) measurement at diagnosis, not receiving allo-SCT, and not having a serial measurement of WT1 post-transplant. Pre- and post-transplant assessments were made with flow cytometry, WT1 PCR, and bone marrow morphological evaluations. Statistical analyses were carried out to explore correlations between WT1 levels, MRD markers, and chimerism post-transplantation. Results: We found that WT1 had a significant correlation with flow cytometry and bone marrow morphological evaluation, but not with chimerism. Interestingly, high WT1 expressors exhibited a more robust correlation with chimerism compared to the general cohort. The negative predictive value for post-allo-SCT relapse was 91.8% for the whole WT1 cohort; for high WT1 expressors, it was similar, at 87.5%. The negative predictive value for post-allo-SCT relapse was high for the whole WT1 cohort; for high WT1 expressors, it was similar. The WT1 MRD assay showed a high negative predictive value for post-allo-SCT relapse, consistent across both the entire cohort (91.8%) and high WT1 expressors (87.5%). Conclusions: WT1 expression levels may serve as a valuable ancillary marker in MRD assessment and relapse prediction post-allo-SCT in AML patients, particularly for those lacking specific fusion genes or mutations. However, further large-scale, controlled studies are needed to standardize WT1 MRD assays and establish clear guidelines for their clinical application.
Collapse
Affiliation(s)
- Sinem Namdaroğlu
- Department of Hematology and Bone Marrow Transplantation Center, Dokuz Eylul University Hospital, Izmir 35330, Turkey
| | - Semih Başcı
- Department of Hematology and Bone Marrow Transplantation Center, Dokuz Eylul University Hospital, Izmir 35330, Turkey
| | - Burcu Aslan Candır
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara 06200, Turkey
| | - Samet Yaman
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara 06200, Turkey
| | - Tuğçe Nur Yiğenoğlu
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara 06200, Turkey
| | - Taha Bahsi
- Department of Genetics, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara 06200, Turkey
| | - Nurgül Özcan
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara 06200, Turkey
| | - Mehmet Sinan Dal
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara 06200, Turkey
| | - Merih Kızıl Çakar
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara 06200, Turkey
| | - Fevzi Altuntaş
- Department of Hematology and Bone Marrow Transplantation Center, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences, Ankara 06200, Turkey
| |
Collapse
|
10
|
Park S, Bang SY, Kwag D, Lee JH, Kim TY, Lee J, Min GJ, Park SS, Yahng SA, Jeon YW, Shin SH, Yoon JH, Lee SE, Cho BS, Eom KS, Kim YJ, Lee S, Min CK, Cho SG, Lee JW, Kim HJ. Reduced toxicity (FluBu3) versus myeloablative (BuCy) conditioning in acute myeloid leukemia patients who received first allogeneic hematopoietic stem cell transplantation in measurable residual disease-negative CR1. Bone Marrow Transplant 2024; 59:813-823. [PMID: 38438648 DOI: 10.1038/s41409-024-02255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
In the present study, reduced toxicity (FluBu3) and myeloablative (BuCy) conditioning were compared in patients with AML who received first allogeneic HSCT in MRD-negative CR1. The study included 124 adult patients who underwent HSCT from an HLA-matched (8/8) sibling, unrelated, or 1-locus mismatched (7/8) unrelated donor (MMUD). The median age was 45 years and intermediate cytogenetics comprised majority (71.8%). The 2-year OS, RFS, CIR and NRM for BuCy (n = 78, 62.9%) and FluBu3 (n = 46, 37.1%) groups were 78.3% and 84.5% (p = 0.358), 78.0% and 76.3% (p = 0.806), 7.7% and 21.5% (p = 0.074) and 14.3% and 2.2% (p = 0.032), respectively. At the time of data cut-off, relapse and NRM were the main causes of HSCT failure in each of the FluBu3 and BuCy arms. Among patients, 75% of relapsed FluBu3 patients had high-risk features of either poor cytogenetics or FLT3-ITD mutation compared with 16.7% of BuCy patients. The majority of NRM in the BuCy group was due to GVHD (73%), half of whom received MMUD transplantation. To conclude, the FluBu3 reduced toxicity conditioning showed comparable post-transplant OS and RFS to BuCy and was associated with significantly reduced NRM that was offset by a trend towards higher risk of relapse even in MRD-negative CR1 population.
Collapse
Affiliation(s)
- Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su-Yeon Bang
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Daehun Kwag
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Hyuk Lee
- Department of Hematology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Tong Yoon Kim
- Department of Hematology, Yeoido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joonyeop Lee
- Department of Hematology, Catholic Hematology Hospital, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gi June Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Soo Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Ah Yahng
- Department of Hematology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Young-Woo Jeon
- Department of Hematology, Yeoido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hwan Shin
- Department of Hematology, Catholic Hematology Hospital, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Eun Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Seong Eom
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo-Jin Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang-Ki Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok-Goo Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Wook Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
11
|
Ahmed S, Elsherif M, Yassin D, Elsharkawy N, Mohamed AS, Yasser N, Elnashar A, Hafez H, Kolb EA, Elhaddad A. Integration of measurable residual disease by WT1 gene expression and flow cytometry identifies pediatric patients with high risk of relapse in acute myeloid leukemia. Front Oncol 2024; 14:1340909. [PMID: 38720804 PMCID: PMC11077298 DOI: 10.3389/fonc.2024.1340909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024] Open
Abstract
Background Molecular testing plays a pivotal role in monitoring measurable residual disease (MRD) in acute myeloid leukemia (AML), aiding in the refinement of risk stratification and treatment guidance. Wilms tumor gene 1 (WT1) is frequently upregulated in pediatric AML and serves as a potential molecular marker for MRD. This study aimed to evaluate WT1 predictive value as an MRD marker and its impact on disease prognosis. Methods Quantification of WT1 expression levels was analyzed using the standardized European Leukemia Network real-time quantitative polymerase chain reaction assay (qRT-PCR) among a cohort of 146 pediatric AML patients. Post-induction I and intensification I, MRD response by WT1 was assessed. Patients achieving a ≥2 log reduction in WT1MRD were categorized as good responders, while those failing to reach this threshold were classified as poor responders. Results At diagnosis, WT1 overexpression was observed in 112 out of 146 (76.7%) patients. Significantly high levels were found in patients with M4- FAB subtype (p=0.018) and core binding fusion transcript (CBF) (RUNX1::RUNX1T1, p=0.018, CBFB::MYH11, p=0.016). Following induction treatment, good responders exhibited a reduced risk of relapse (2-year cumulative incidence of relapse [CIR] 7.9% vs 33.2%, p=0.008). Conversely, poor responders' post-intensification I showed significantly lower overall survival (OS) (51% vs 93.2%, p<0.001), event-free survival (EFS) (33.3% vs 82.6%, p<0.001), and higher CIR (66.6% vs 10.6%, p<0.001) at 24 months compared to good responders. Even after adjusting for potential confounders, it remained an independent adverse prognostic factor for OS (p=0.04) and EFS (p=0.008). High concordance rates between WT1-based MRD response and molecular MRD were observed in CBF patients. Furthermore, failure to achieve either a 3-log reduction by RT-PCR or a 2-log reduction by WT1 indicated a high risk of relapse. Combining MFC-based and WT1-based MRD results among the intermediate-risk group identified patients with unfavorable prognosis (positive predictive value [PPV] 100%, negative predictive value [NPV] 85%, and accuracy 87.5%). Conclusion WT1MRD response post-intensification I serves as an independent prognostic factor for survival in pediatric AML. Integration of WT1 and MFC-based MRD results enhances the reliability of MRD-based prognostic stratification, particularly in patients lacking specific leukemic markers, thereby influencing treatment strategies.
Collapse
Affiliation(s)
- Sonia Ahmed
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Pediatric Oncology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Mariam Elsherif
- Department of Pediatric Oncology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Dina Yassin
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nahla Elsharkawy
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ayman S. Mohamed
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Nouran Yasser
- Department of Research and Biostatistics, Children’s Cancer Hospital (CCHE-57357), Cairo, Egypt
| | - Amr Elnashar
- Department of Research and Biostatistics, Children’s Cancer Hospital (CCHE-57357), Cairo, Egypt
| | - Hanafy Hafez
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Pediatric Oncology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Edward A. Kolb
- Department of Pediatric Hematology and Oncology, Nemours Center for Cancer and Blood Disorders, Wilmington, DE, United States
- Leukemia and Lymphoma Society, Rye Brook, NY, United States
| | - Alaa Elhaddad
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Pediatric Oncology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| |
Collapse
|
12
|
Sato H, Kobayashi T, Kameoka Y, Teshima K, Watanabe A, Yamada M, Yamashita T, Noguchi S, Michisita Y, Fujishima N, Kuroki J, Takahashi N. Prognostic impact of peripheral blood WT1 mRNA dynamics in patients with acute myeloid leukemia treated with venetoclax combination therapy. Int J Clin Oncol 2024; 29:481-492. [PMID: 38334897 DOI: 10.1007/s10147-024-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Wilms' tumor gene 1 (WT1) mRNA quantification is a useful marker of measurable residual disease in acute myeloid leukemia (AML). However, whether monitoring the WT1 mRNA levels may predict the outcome of venetoclax (VEN) combination therapy in AML is not reported. This study aims to elucidate whether WT1 mRNA dynamics could predict long-term prognosis. METHODS 33 patients with untreated or relapsed/refractory AML evaluated for peripheral blood WT1 dynamics in VEN combination therapy were analyzed. RESULTS The median age was 73 years (range 39-87). Azacitidine was combined with VEN in 91% of patients. Overall, the median overall survival (OS) was 334 days (95% CI 210-482), and the complete remission (CR) plus CR with incomplete hematologic recovery rate was 59%. A 1-log reduction of WT1 mRNA values by the end of cycle 2 of treatment was associated with significantly better OS and event-free survival (EFS) (median OS 482 days vs. 237 days, p = 0.049; median EFS 270 days vs. 125 days, p = 0.02). The negativity of post-treatment WT1 mRNA value during the treatment was associated with significantly better OS and EFS (median OS 482 days vs. 256 days, p = 0.02; median EFS not reached vs. 150 days, p = 0.005). Multivariate analysis confirmed the significance of these two parameters as strong EFS predictors (HR 0.26, p = 0.024 and HR 0.15, p = 0.013, respectively). The increase in WT1 mRNA values was correlated with relapse. CONCLUSION This study demonstrates that WT1 mRNA dynamics can be a useful marker for assessing long-term prognosis of VEN combination therapy for AML.
Collapse
Affiliation(s)
- Honami Sato
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Takahiro Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - Yoshihiro Kameoka
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kazuaki Teshima
- Department of Hematology, Hiraka General Hospital, Yokote, Japan
| | - Atsushi Watanabe
- Department of Hematology, Nephrology and Rheumatology, Omagari Kousei Medical Center, Daisen, Japan
- Department of Hematology, Akita City Hospital, Akita, Japan
| | - Masahiro Yamada
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
- Department of Hematology, Hiraka General Hospital, Yokote, Japan
- Department of Hematology, Nephrology and Rheumatology, Omagari Kousei Medical Center, Daisen, Japan
| | - Takaya Yamashita
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shinsuke Noguchi
- Department of Hematology, Akita Red Cross Hospital, Akita, Japan
| | | | - Naohito Fujishima
- Department of Hematology, Nephrology and Rheumatology, Nohsiro Kousei Medical Center, Noshiro, Japan
| | - Jun Kuroki
- Department of Internal Medicine, Yuri Kumiai General Hospital, Yurihonjo, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
13
|
Gronlund JK, Veigaard C, Juhl-Christensen C, Skou AS, Melsvik D, Ommen HB. Droplet digital PCR for sensitive relapse detection in acute myeloid leukaemia patients transplanted by reduced intensity conditioning. Eur J Haematol 2024; 112:601-610. [PMID: 38197567 DOI: 10.1111/ejh.14151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Follow-up after allogeneic transplantation in acute myeloid leukaemia (AML) is guided by measurable residual disease (MRD) testing. Quantitative polymerase chain reaction (qPCR) is the preferred MRD platform but unfortunately, 40%-60% of AML patients have no high-quality qPCR target. This study aimed to improve MRD testing by utilising droplet digital PCR (ddPCR). ddPCR offers patient-specific monitoring but concerns of tracking clonal haematopoiesis rather than malignant cells prompt further validation. METHODS Retrospectively, we performed MRD testing on blood and bone marrow samples from AML patients transplanted by reduced-intensity conditioning. RESULTS The applicability of ddPCR was 39/42 (92.9%). Forty-five ddPCR assays were validated with a 0.0089% median sensitivity. qPCR targeting NPM1 mutation detected relapse 46 days before ddPCR (p = .03). ddPCR detected relapse 34.5 days before qPCR targeting WT1 overexpression (p = .03). In non-relapsing patients, zero false positive ddPCR MRD relapses were observed even when monitoring targets associated with clonal haematopoiesis such as DNMT3A, TET2, and ASXL1 mutations. CONCLUSION These results confirm that qPCR targeting NPM1 mutations or fusion transcripts are superior in MRD testing. In the absence of such targets, ddPCR is a promising alternative demonstrating (a) high applicability, (b) high sensitivity, and (c) zero false positive MRD relapses in non-relapsing patients.
Collapse
Affiliation(s)
| | | | | | - Anne-Sofie Skou
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Dorte Melsvik
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Beier Ommen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Yang J, Chen M, Ye J, Ma H. Targeting PRAME for acute myeloid leukemia therapy. Front Immunol 2024; 15:1378277. [PMID: 38596687 PMCID: PMC11002138 DOI: 10.3389/fimmu.2024.1378277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Despite significant progress in targeted therapy for acute myeloid leukemia (AML), clinical outcomes are disappointing for elderly patients, patients with less fit disease characteristics, and patients with adverse disease risk characteristics. Over the past 10 years, adaptive T-cell immunotherapy has been recognized as a strategy for treating various malignant tumors. However, it has faced significant challenges in AML, primarily because myeloid blasts do not contain unique surface antigens. The preferentially expressed antigen in melanoma (PRAME), a cancer-testis antigen, is abnormally expressed in AML and does not exist in normal hematopoietic cells. Accumulating evidence has demonstrated that PRAME is a useful target for treating AML. This paper reviews the structure and function of PRAME, its effects on normal cells and AML blasts, its implications in prognosis and follow-up, and its use in antigen-specific immunotherapy for AML.
Collapse
Affiliation(s)
- Jinjun Yang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Chen
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbing Ma
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Asghari-Ghomi A, Fallahian F, Garavand J, Mohammadi MH. WT1 and TP53 as valuable diagnostic biomarkers for relapse after hematopoietic stem cell transplantation in acute myeloid leukemia. Mol Biol Rep 2024; 51:244. [PMID: 38300383 DOI: 10.1007/s11033-023-09185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Relapse following hematopoietic stem cell transplantation (HSCT) occurs relatively frequently and is a significant risk factor for mortality in patients with acute myeloid leukemia (AML). Early diagnosis is, therefore, of utmost importance and can provide valuable guidance for appropriate and timely intervention. Here, the diagnostic value of two molecular markers, Wilms tumor 1 (WT1) and tumor suppressor protein p53 (TP53), were studied. METHODS AND RESULTS Twenty AML patients undergoing HSCT participated in this investigation. Some had relapsed following HSCT, while others were in remission. Peripheral blood (PB) and bone marrow (BM) samples were collected following relapse and remission. WT1 and TP53 messenger RNA (mRNA) expression was evaluated using reverse transcription-quantitative polymerase chain reaction (RT‒qPCR). The diagnostic value of genes was evaluated by utilizing receiver-operating characteristic (ROC) curve analysis. ROC analysis showed WT1 and TP53 as diagnostic markers for relapse after HSCT in AML patients. The mRNA expression level of WT1 was elevated in individuals who experienced relapse compared to those in a state of remission (p value < 0.01). Conversely, the expression level of TP53 mRNA was lower in individuals who had relapsed compared to those in remission (p value < 0.01). CONCLUSIONS WT1 and TP53 possess the potential to serve as invaluable biomarkers in the identification of molecular relapse after HSCT in patients with AML. Further studies for a definitive conclusion are recommended.
Collapse
Affiliation(s)
- Ali Asghari-Ghomi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faranak Fallahian
- Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Javad Garavand
- Department of Laboratory sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Yu T, Zhan Q, Yan X, Luo X, Wang X, Tang X, Zhang H, Yang Z, Chen J, Liu L, Wang L. Clinical significance of WT1 in the evaluation of therapeutic effect and prognosis of non-M3 acute myeloid leukemia. Cancer Biol Ther 2023; 24:2285801. [PMID: 38031921 PMCID: PMC10783827 DOI: 10.1080/15384047.2023.2285801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
To explore the clinical significance and prognosis of acute myeloid leukemia (AML) patients with WT1 mutations.In total, the clinical data of 269 adult patients with non-M3 AML were considered retrospectively. From these patients, 153 carried WT1 mutation whereas 116 were negative. WT1 mutation positive patients were further divided into WT1 low expression and high expression groups base on the expression level of WT1 by qPCR at diagnosis (cut off: 170500). Survival and therapeutic effect analysis were performed for the above patients with different interfering factors such as co-mutations, the extent of WT1 log reduction and the chemotherapy regimens. Patients with high WT1 expression have higher rate of relapse. We can accurately identify patients with inferior outcomes when we take the following factors into consideration: the WT1 expression level at diagnosis; different prognostic factors including co-mutations (especially NPM1 and FLT3-ITD); the log reduction of WT1 after induction therapy and the risk of stratification. Idarubicin + Cytarabine (IA) regimen could reduce the expression level of WT1 after treatment, and Allo-HSCT played an important role in improving the prognosis of patients with WT1 high expression and patients with WT1 negativity. Among the relapsed patients, there existed a rising trend of WT1-MRD in advance than MFC-MRD and that of patients with continuous complete remission (CR). Different clinical background should be taken into consideration when we judge the prognosis and therapeutic effect of patients with WT1 mutations. In addition, WT1 may be an optional MRD marker, which needs regular monitoring.
Collapse
Affiliation(s)
- Tingyu Yu
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhan
- Molecular Testing Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Yan
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohua Luo
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqiong Tang
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbin Zhang
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zesong Yang
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianbin Chen
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Liu
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Wu J, Yan H, Xiang C. Wilms' tumor gene 1 in hematological malignancies: friend or foe? Hematology 2023; 28:2254557. [PMID: 37668240 DOI: 10.1080/16078454.2023.2254557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
Wilms' tumor gene 1 (WT1) is a transcription and post-translational factor that has a crucial role in the biological and pathological processes of several human malignancies. For hematological malignancies, WT1 overexpression or mutation has been found in leukemia and myelodysplastic syndrome. About 70-90% of acute myeloid leukemia patients showed WT1 overexpression, and 6-15% of patients carried WT1 mutations. WT1 has been widely regarded as a marker for monitoring minimal residual disease in acute myeloid leukemia. Many researchers were interested in developing WT1 targeting therapy. In this review, we summarized biological and pathological functions, correlation with other genes and clinical features, prognosis value and targeting therapy of WT1 in hematological features.
Collapse
Affiliation(s)
- Jie Wu
- Department of Emergency Medicine, The Fifth People's Hospital of Huai'an and Huai'an Hospital Affiliated to Yangzhou University, Huai'an, People's Republic of China
| | - Hui Yan
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Chunli Xiang
- Department of General Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, People's Republic of China
| |
Collapse
|
18
|
Ding Y, Liu Z, Wang H, Xiong S, Zhai Z. Prognostic value of combined WT1 and multiparameter flow cytometry assessment for measurable residual disease after induction in non-APL acute myeloid leukemia. Scand J Clin Lab Invest 2023; 83:340-347. [PMID: 37355341 DOI: 10.1080/00365513.2023.2227946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
The objective of this study was to investigate the expression pattern of Wilms tumor 1 (WT1) gene at diagnosis, complete remission (CR) and relapse status in non-acute promyelocytic leukemia (non-APL) acute myeloid leukemia (AML) patients, and further explore the prognostic value of measurable residual disease (MRD) assessment by WT1 gene and multiparameter flow cytometry (MFC). Our results showed that the average expression level of WT1 was 4026 ± 616.1 copies/104 ABL at diagnosis, 155.3 ± 36.03 copies/104 ABL at CR, and 1766 ± 238.8 copies/104 ABL at relapse, with statistically significant differences (p = .000). ROC analysis showed that WT1 expression levels were 118.1 copies/104 ABL and MFC-MRD was 0.155%, which had good predictive efficacy for relapse of patients during consolidation therapy. Both WT1-MRD and MFC-MRD had a significant impact on relapse-free survival (RFS) and overall survival (OS). Patients with WT1-MRD positive or MFC-MRD positive were associated with worse RFS (HR 3.840, 95% CI 1.582-9.320, p = .003), (HR 4.464, 95% CI 1.841-10.984, p = .001) and worse OS (HR 2.963, 95% CI 1.058-8.295, p = .039), (HR 3.590, 95% CI 1.254-10.280, p = .017). Besides, compared with patients who were negative for both WT1-MRD and MFC-MRD, patients who were positive both WT1-MRD and MFC-MRD were associated with worse RFS (HR 6.200, 95% CI 2.206-17.430, p = .001) and worse OS (HR 4.886, 95% CI 1.388-17.197, p = .013). This study demonstrates that combined assessment of MRD by WT1 and MFC improves relapse and prognosis prediction in non-APL AML patients, and may help guide interventions for disease relapse.
Collapse
Affiliation(s)
- Yangyang Ding
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zelin Liu
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Huiping Wang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
19
|
Bogdanov K, Kudryavtseva E, Fomicheva Y, Churkina I, Lomaia E, Girshova L, Osipov Y, Zaritskey A. Shift of N-MYC Oncogene Expression in AML Patients Carrying the FLT3-ITD Mutation. PATHOPHYSIOLOGY 2023; 30:296-313. [PMID: 37606386 PMCID: PMC10443239 DOI: 10.3390/pathophysiology30030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023] Open
Abstract
Mutations in the FLT3 gene not only lead to abnormalities in its structure and function, but also affect the expression of other genes involved in leukemogenesis. This study evaluated the expression of genes that are more characteristic of neuroblastoma but less studied in leukemia. N-MYC oncogene expression was found to be more than 3-fold higher in primary AML patients carrying the FLT3-ITD mutation compared to carriers of other mutations as well as patients with normal karyotype (p = 0.03946). In contrast to the expression of several genes (C-MYC, SPT16, AURKA, AURKB) directly correlated to the allelic load of FLT3-ITD, the expression of the N-MYC oncogene is extremely weakly related or independent of it (p = 0.0405). Monitoring of N-MYC expression in some patients with high FLT3-ITD allelic load receiving therapy showed that a decrease in FLT3-ITD allelic load is not always accompanied by a decrease in N-MYC expression. On the contrary, N-MYC expression may remain elevated during the first three months after therapy, which is additional evidence of the emergence of resistance to therapy and progression of AML.
Collapse
Affiliation(s)
- Konstantin Bogdanov
- Almazov National Medical Research Centre, 2 Akkuratova Str., Saint Petersburg 197341, Russia; (E.K.); (Y.F.); (I.C.); (E.L.); (L.G.); (Y.O.); (A.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Li X, Tong X. Role of Measurable Residual Disease in Older Adult Acute Myeloid Leukemia. Clin Interv Aging 2023; 18:921-931. [PMID: 37313310 PMCID: PMC10258117 DOI: 10.2147/cia.s409308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
There is overwhelming evidence indicating that the use of measurable residual disease (MRD) as a biomarker provides critical prognostic information and that MRD may have a role in directing postremission decisions. There are a variety of assays for MRD assessment, such as multiparameter flow cytometry and molecular assessment of MRD, which present different characteristics in patients older than 60 years of age. Due to multiple reasons related to age, the progress of older adult AML patients is rarely investigated, especially with respect to MRD. In this review, we will clarify the characteristics of different assays for assessing MRD, focusing on its role as a risk-stratification biomarker to predict prognostic information and its role in optimal postremission therapy among older adult AML patients. These characteristics also provide guidance regarding the potential to apply personalized medicine in older adult AML patients.
Collapse
Affiliation(s)
- Xueyao Li
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiuzhen Tong
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
21
|
Lanza F, Rondoni M, Zannetti BA. New Horizons in Immunology and Immunotherapy of Acute Leukemias and Related Disorders. Cancers (Basel) 2023; 15:cancers15092422. [PMID: 37173889 PMCID: PMC10177104 DOI: 10.3390/cancers15092422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Accumulating data have shown that molecular aberrations have the potential to trigger the development of acute leukemia, and that the routine application of novel molecular biology technologies has facilitated the development of investigational drugs which target driver genetic mutations [...].
Collapse
Affiliation(s)
- Francesco Lanza
- Hematology Unit and Metropolitan Romagna Transplant Network, University of Bologna, 40126 Ravenna, Italy
| | - Michela Rondoni
- Hematology Unit and Metropolitan Romagna Transplant Network, University of Bologna, 40126 Ravenna, Italy
| | - Beatrice Anna Zannetti
- Hematology Unit and Metropolitan Romagna Transplant Network, University of Bologna, 40126 Ravenna, Italy
| |
Collapse
|
22
|
Duployez N, Vasseur L, Kim R, Largeaud L, Passet M, L'Haridon A, Lemaire P, Fenwarth L, Geffroy S, Helevaut N, Celli-Lebras K, Adès L, Lebon D, Berthon C, Marceau-Renaut A, Cheok M, Lambert J, Récher C, Raffoux E, Micol JB, Pigneux A, Gardin C, Delabesse E, Soulier J, Hunault M, Dombret H, Itzykson R, Clappier E, Preudhomme C. UBTF tandem duplications define a distinct subtype of adult de novo acute myeloid leukemia. Leukemia 2023:10.1038/s41375-023-01906-z. [PMID: 37085611 DOI: 10.1038/s41375-023-01906-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Tandem duplications (TDs) of the UBTF gene have been recently described as a recurrent alteration in pediatric acute myeloid leukemia (AML). Here, by screening 1946 newly diagnosed adult AML, we found that UBTF-TDs occur in about 3% of patients aged 18-60 years, in a mutually exclusive pattern with other known AML subtype-defining alterations. The characteristics of 59 adults with UBTF-TD AML included young age (median 37 years), low bone marrow (BM) blast infiltration (median 25%), and high rates of WT1 mutations (61%), FLT3-ITDs (51%) and trisomy 8 (29%). BM morphology frequently demonstrates dysmyelopoiesis albeit modulated by the co-occurrence of FLT3-ITD. UBTF-TD patients have lower complete remission (CR) rates (57% after 1 course and 76% after 2 courses of intensive chemotherapy [ICT]) than UBTF-wild-type patients. In patients enrolled in the ALFA-0702 study (n = 614 patients including 21 with UBTF-TD AML), the 3-year disease-free survival (DFS) and overall survival of UBTF-TD patients were 42.9% (95%CI: 23.4-78.5%) and 57.1% (95%CI: 39.5-82.8%) and did not significantly differ from those of ELN 2022 intermediate/adverse risk patients. Finally, the study of paired diagnosis and relapsed/refractory AML samples suggests that WT1-mutated clones are frequently selected under ICT. This study supports the recognition of UBTF-TD AML as a new AML entity in adults.
Collapse
Affiliation(s)
- Nicolas Duployez
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France.
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France.
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France.
| | - Loïc Vasseur
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Rathana Kim
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laëtitia Largeaud
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marie Passet
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anaïs L'Haridon
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
| | - Pierre Lemaire
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurène Fenwarth
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Sandrine Geffroy
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Nathalie Helevaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | | | - Lionel Adès
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Delphine Lebon
- Hematology Department, CHU Amiens-Picardie, Amiens, France
| | - Céline Berthon
- Hematology Department, Claude Huriez Hospital, CHU Lille, Lille, France
| | - Alice Marceau-Renaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Meyling Cheok
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Juliette Lambert
- Hematology Department, Versailles Hospital, University Versailles-Saint-Quentin-en-Yvelines, Le Chesnay, France
| | - Christian Récher
- Service d'Hématologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Emmanuel Raffoux
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | | | - Arnaud Pigneux
- Hematology Department, CHU de Bordeaux, Bordeaux, France
| | - Claude Gardin
- Hematology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Eric Delabesse
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Jean Soulier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Mathilde Hunault
- Hematology Department, Université d'Angers, Université de Nantes, CHU Angers, Inserm, CNRS, CRCI2NA, SFR ICAT, F‑49000, Angers, France
- Fédération Hospitalo-Universitaire, Grand-Ouest Acute Leukemia, Angers, France
| | - Hervé Dombret
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claude Preudhomme
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| |
Collapse
|
23
|
Tamefusa K, Ishida H, Kanamitsu K, Ochi M, Fujiwara K, Tatebe Y, Aoe M, Nodomi S, Washio K. Posttransplant gilteritinib maintenance therapy for pediatric acute myeloid leukemia with myelodysplasia-related changes with FLT3-internal tandem duplication. Pediatr Blood Cancer 2023; 70:e30108. [PMID: 36495539 DOI: 10.1002/pbc.30108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Kosuke Tamefusa
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Hisashi Ishida
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Kiichiro Kanamitsu
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan.,Department of Pediatrics, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Motoharu Ochi
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Kaori Fujiwara
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Yasuhisa Tatebe
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Michinori Aoe
- Division of Medical Support, Okayama University Hospital, Okayama, Japan
| | - Seishiro Nodomi
- Department of Pediatrics, Kurashiki Central Hospital, Okayama, Japan
| | - Kana Washio
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
24
|
Malagola M, Polverelli N, Beghin A, Bolda F, Comini M, Farina M, Morello E, Radici V, Accorsi Buttini E, Bernardi S, Re F, Leoni A, Bonometti D, Brugnoni D, Lanfranchi A, Russo D. Bone marrow CD34+ molecular chimerism as an early predictor of relapse after allogeneic stem cell transplantation in patients with acute myeloid leukemia. Front Oncol 2023; 13:1133418. [PMID: 36950550 PMCID: PMC10025489 DOI: 10.3389/fonc.2023.1133418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Background Minimal residual disease (MRD) monitoring is an important tool to optimally address post-transplant management of acute myeloid leukemia (AML) patients. Methods We retrospectively analyzed the impact of bone marrow CD34+ molecular chimerism and WT1 on the outcome of a consecutive series of 168 AML patients submitted to allogeneic stem cell transplantation. Results The cumulative incidence of relapse (CIR) was significantly lower in patients with donor chimerism on CD34+ cells ≥ 97.5% and WT1 < 213 copies/ABL x 10^4 both at 1st month (p=0.008 and p<0.001) and at 3rd month (p<0.001 for both). By combining chimerism and WT1 at 3rd month, 13 patients with chimerism < 97.5% or WT1 > 213 showed intermediate prognosis. 12 of these patients fell in this category because of molecular chimerism < 97.5% at a time-point in which WT1 was < 213. Conclusions Our results confirm that lineage-specific molecular chimerism and WT1 after allo-SCT (1st and 3rd month) are useful MRD markers. When considered together at 3rd month, CD34+ molecular chimerism could represent an earlier predictor of relapse compared to WT1. Further studies are necessary to confirm this preliminary observation.
Collapse
Affiliation(s)
- Michele Malagola
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- *Correspondence: Michele Malagola,
| | - Nicola Polverelli
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandra Beghin
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Federica Bolda
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Marta Comini
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Mirko Farina
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Morello
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Vera Radici
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eugenia Accorsi Buttini
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Simona Bernardi
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-oncologico AIL (CREA) , “ASST-Spedali Civili” Hospital of Brescia, Brescia, Italy
| | - Federica Re
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-oncologico AIL (CREA) , “ASST-Spedali Civili” Hospital of Brescia, Brescia, Italy
| | - Alessandro Leoni
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-oncologico AIL (CREA) , “ASST-Spedali Civili” Hospital of Brescia, Brescia, Italy
| | - Davide Bonometti
- Department of Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Duilio Brugnoni
- Department of Laboratory Diagnostics, ASST Spedali Civili, Brescia, Italy
| | - Arnalda Lanfranchi
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Domenico Russo
- Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
25
|
Ciurea SO, Kothari A, Sana S, Al Malki MM. The mythological chimera and new era of relapse prediction post-transplant. Blood Rev 2023; 57:100997. [PMID: 35961800 DOI: 10.1016/j.blre.2022.100997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 01/28/2023]
Abstract
Allogeneic hemopoietic stem cell transplantation is the treatment of choice for high-risk or relapsed acute leukemia. However, unfortunately, relapse post-transplant continues to be the most common cause of treatment failure with 20-80% of patients relapsing based on disease risk and status at transplant. Advances in molecular profiling of different hematological malignancies have enabled us to monitor low level disease before and after transplant and develop a more personalized approach to the management of these disease including early detection post-transplant. While, in general, detectable disease by morphology remains the gold standard to diagnosing relapse, multiple approaches have allowed detection of cancer cells earlier, using peripheral blood-based methods with sensitivities as high as 1:106, together called minimal/measurable residual disease (MRD) detection. However, a in significant number of patients with acute leukemia where no such molecular markers exist it remains challenging to detect early relapse. In such patients who receive transplantation, chimerism monitoring remains the only option. An increase in mixed chimerism in post allogeneic HCT patients has been correlated with relapse in multiple studies. However, chimerism monitoring, while commonly accepted as a tool for assessing engraftment, has not been routinely used for relapse detection, at least in part because of the lack of standardized, high sensitivity, reliable methods for chimerism detection. In this paper, we review the various methods employed for MRD and chimerism detection post-transplant and discuss future trends in MRD and chimerism monitoring from the viewpoint of the practicing transplant physician.
Collapse
Affiliation(s)
- Stefan O Ciurea
- University of California Irvine, Orange, CA, United States of America.
| | | | - Sean Sana
- CareDx Inc., Brisbane, CA, United States of America
| | - Monzr M Al Malki
- City of Hope National Medical Center, Duarte, CA, United States of America
| |
Collapse
|
26
|
Blachly JS, Walter RB, Hourigan CS. The present and future of measurable residual disease testing in acute myeloid leukemia. Haematologica 2022; 107:2810-2822. [PMID: 36453518 PMCID: PMC9713561 DOI: 10.3324/haematol.2022.282034] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Considerable progress has been made in the past several years in the scientific understanding of, and available treatments for, acute myeloid leukemia (AML). Achievement of a conventional remission, evaluated cytomorphologically via small bone marrow samples, is a necessary but not sufficient step toward cure. It is increasingly appreciated that molecular or immunophenotypic methods to identify and quantify measurable residual disease (MRD) - populations of leukemia cells below the cytomorphological detection limit - provide refined information on the quality of response to treatment and prediction of the risk of AML recurrence and leukemia-related deaths. The principles and practices surrounding MRD remain incompletely determined however and the genetic and immunophenotypic heterogeneity of AML may prevent a one-sizefits- all approach. Here, we review the current approaches to MRD testing in AML, discuss strengths and limitations, highlight recent technological advances that may improve such testing, and summarize ongoing initiatives to generate the clinical evidence needed to advance the use of MRD testing in patients with AML.
Collapse
Affiliation(s)
- James S. Blachly
- Division of Hematology/Department of Medicine, The Ohio State University - The James Comprehensive Cancer Center, Columbus, OH,Department of Biomedical Informatics, The Ohio State University, Columbus, OH,J.S. Blachly
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA,Division of Hematology/Department of Medicine, University of Washington, Seattle, WA,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA,Department of Epidemiology, University of Washington, Seattle, WA
| | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Ishiyama K, Dung TC, Imi T, Hosokawa K, Nannya Y, Yamazaki H, Ogawa S, Nakao S. Clinical significance of the increased expression of the WT1 gene in peripheral blood of patients with acquired aplastic anemia. EJHAEM 2022; 3:1116-1125. [PMID: 36467821 PMCID: PMC9713059 DOI: 10.1002/jha2.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/17/2023]
Abstract
To determine the significance of increased Wilms tumor 1 (WT1) gene expression in the peripheral blood of patients with acquired aplastic anemia (AA), we analyzed serial changes in WT1 mRNA copy number (WT1cn) in 63 patients with AA as well as in five patients with myelodysplastic syndromes (MDS) and seven patients with paroxysmal nocturnal hemoglobinuria (PNH). WT1cn was higher than the cut-off (≥50 copies/μg RNA) at the time of the first measurement in 41% of untreated (60-190 copies/μg RNA [median 130]) and 59% of treated (59-520 copies/μg RNA [median 150]) AA patients. Although WT1cns gradually increased in most AA patients during the 2-105 months follow-up period, they did not lead to clonal evolution except in three patients in whom the maximum change ratio of WT1cn (WT1cn-change max), defined as the ratio of WT1cn at the first examination to that of the maximum value, exceeded 20.0 and who developed MDS at 2, 46, and 105 months. Increased WT1 gene expression was enriched in granulocytes rather than in mononuclear cells in most WT1-positive AA patients and did not correlate with mutations of genes associated with myeloid malignancy. WT1cns were high at 690-5700 (median 2000) in MDS patients and remained high thereafter, while WT1cns in PNH patients (77-200; median 96) were similar to those in AA. Thus, moderate increases in WT1cns up to 600 are common in AA patients in stable remission. An increase in the WT1cn-change max over 20.0 may portend transformation from AA to MDS.
Collapse
Affiliation(s)
- Ken Ishiyama
- Department of HematologyKanazawa University HospitalKanazawaIshikawaJapan
| | - Tran Cao Dung
- Department of HematologyKanazawa University HospitalKanazawaIshikawaJapan
| | - Tatsuya Imi
- Department of HematologyKanazawa University HospitalKanazawaIshikawaJapan
| | - Kohei Hosokawa
- Department of HematologyKanazawa University HospitalKanazawaIshikawaJapan
| | - Yasuhito Nannya
- Department of Pathology and Tumor BiologyGraduate School of MedicineKyoto UniversityKyotoJapan
- Division of Hematopoietic Disease ControlInstitute of Medical ScienceThe University of TokyoTokyoJapan
| | - Hirohito Yamazaki
- Department of HematologyKanazawa University HospitalKanazawaIshikawaJapan
| | - Seishi Ogawa
- Department of Pathology and Tumor BiologyGraduate School of MedicineKyoto UniversityKyotoJapan
- Institute for the Advanced Study of Human BiologyKyoto UniversityKyotoJapan
- Center for Hematology and Regenerative MedicineKarolinska InstituteStockholmSweden
| | - Shinji Nakao
- Department of HematologyKanazawa University HospitalKanazawaIshikawaJapan
| |
Collapse
|
28
|
Olkhovskiy IA, Gorbenko AS, Stolyar MA, Bakhtina VI, Mikhalev MA, Olkhovik TI, Sudarikov AB, Sidorova YS, Pospelova TI, Kolesnikova MA, Kaporskaya TS, Lyskova VA. Study of mRNA of WT1, BAALC, EVI1, PRAME and HMGA2 genes in whole blood samples. Klin Lab Diagn 2022; 67:613-620. [PMID: 36315178 DOI: 10.51620/0869-2084-2022-67-10-613-620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Simultaneous quantitative measurement of mRNA of the WT1, BAALC, EVI1, PRAME and HMGA2 genes in whole blood samples reflects the specific pathological proliferative activity in acute leukemia and their ratio is promising as a diagnostic marker. The transcriptome profile of acute leukemia cells is usually assessed using NGS or microarray techniques after a preliminary procedure for isolation of mononuclear cells. However, the results of using the multiplex PCR reaction for the simultaneous determination of all above mRNAs in whole blood samples have not been published so far. Determination of mRNA of WT1, BAALC, EVI1, PRAME and HMGA2 genes in venous blood level samples by multiplex RT-PCR. The study included 127 blood samples from patients who diagnosis of acute leukemia was subsequently confirmed. In the comparison group, 87 samples of patients without oncohematological diagnosis were selected, including 31 samples (K1) with a normal blood formula and 56 samples (K2) with a violation of the cellular composition - anemia, leukocytosis and thrombocytopenia. RNA isolation and reverse transcription were performed using the Ribozol-D and Reverta-L kits (TsNIIE, Russia). Determination of the mRNA expression level of the WT1, BAALC, EVI1, PRAME and HMGA2 genes by multiplex real-time PCR using a homemade multiplex PCR kit. The mRNA level was characterized by high interindividual variation and did not correlate with the rate of circulating leukocytes or blood blasts. Expression of WT1 mRNA was observed in whole blood only in one patient from the control group and in 112 (88%) patients with leukemia and was combined with a decrease in the level of HMGA2 mRNA expression and BAALC mRNA values. In contrast to the control groups, patients with leukemia had higher levels of BAALC mRNA in AML and ALL, increased PRAME mRNA in AML and APL, but lower levels of HMGA2 in APL.
Collapse
Affiliation(s)
- I A Olkhovskiy
- Krasnoyarsk branch of the «National Research Center for Hematology» Department of Health
- Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences
| | - A S Gorbenko
- Krasnoyarsk branch of the «National Research Center for Hematology» Department of Health
- Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences
| | - M A Stolyar
- Krasnoyarsk branch of the «National Research Center for Hematology» Department of Health
- Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences
| | - V I Bakhtina
- Krasnoyarsk regional clinic Hospital
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | | | | | - A B Sudarikov
- «National Research Center for Hematology» Department of Health
| | - Yu S Sidorova
- «National Research Center for Hematology» Department of Health
| | | | | | - T S Kaporskaya
- State-financed health care institution Irkutsk regional clinical hospital
| | - V A Lyskova
- State-financed health care institution Irkutsk regional clinical hospital
| |
Collapse
|
29
|
Stanojevic M, Grant M, Vesely SK, Knoblach S, Kanakry CG, Nazarian J, Panditharatna E, Panchapakesan K, Gress RE, Holter-Chakrabarty J, Williams KM. Peripheral blood marker of residual acute leukemia after hematopoietic cell transplantation using multi-plex digital droplet PCR. Front Immunol 2022; 13:999298. [PMID: 36248870 PMCID: PMC9556966 DOI: 10.3389/fimmu.2022.999298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background Relapse remains the primary cause of death after hematopoietic cell transplantation (HCT) for acute leukemia. The ability to identify minimal/measurable residual disease (MRD) via the blood could identify patients earlier when immunologic interventions may be more successful. We evaluated a new test that could quantify blood tumor mRNA as leukemia MRD surveillance using droplet digital PCR (ddPCR). Methods The multiplex ddPCR assay was developed using tumor cell lines positive for the tumor associated antigens (TAA: WT1, PRAME, BIRC5), with homeostatic ABL1. On IRB-approved protocols, RNA was isolated from mononuclear cells from acute leukemia patients after HCT (n = 31 subjects; n = 91 specimens) and healthy donors (n = 20). ddPCR simultaneously quantitated mRNA expression of WT1, PRAME, BIRC5, and ABL1 and the TAA/ABL1 blood ratio was measured in patients with and without active leukemia after HCT. Results Tumor cell lines confirmed quantitation of TAAs. In patients with active acute leukemia after HCT (MRD+ or relapse; n=19), the blood levels of WT1/ABL1, PRAME/ABL1, and BIRC5/ABL1 exceeded healthy donors (p<0.0001, p=0.0286, and p=0.0064 respectively). Active disease status was associated with TAA positivity (1+ TAA vs 0 TAA) with an odds ratio=10.67, (p=0.0070, 95% confidence interval 1.91 - 59.62). The area under the curve is 0.7544. Changes in ddPCR correlated with disease response captured on standard of care tests, accurately denoting positive or negative disease burden in 15/16 (95%). Of patients with MRD+ or relapsed leukemia after HCT, 84% were positive for at least one TAA/ABL1 in the peripheral blood. In summary, we have developed a new method for blood MRD monitoring of leukemia after HCT and present preliminary data that the TAA/ABL1 ratio may may serve as a novel surrogate biomarker for relapse of acute leukemia after HCT.
Collapse
Affiliation(s)
- M. Stanojevic
- Department of Pediatrics, MedStar Georgetown University Hospital, Washington, DC, United States
| | - M. Grant
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - S. K. Vesely
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - S. Knoblach
- Children’s Research Institute, Research Center for Genetic Medicine, Children’s National Health System, Washington, DC, United States
| | - C. G. Kanakry
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - J. Nazarian
- Children’s Research Institute, Research Center for Genetic Medicine, Children’s National Health System, Washington, DC, United States,Department of Oncology, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - E. Panditharatna
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA, United States
| | - K. Panchapakesan
- Children’s Research Institute, Research Center for Genetic Medicine, Children’s National Health System, Washington, DC, United States
| | - R. E. Gress
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - J. Holter-Chakrabarty
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Kirsten M. Williams
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States,*Correspondence: Kirsten M. Williams,
| |
Collapse
|
30
|
Chiusolo P, Metafuni E, Minnella G, Giammarco S, Bellesi S, Rossi M, Sorà F, Limongiello MA, Frioni F, Piccirillo N, Bianchi M, Valentini CG, Teofili L, Sica S, Bacigalupo A. Day +60 WT1 assessment on CD34 selected bone marrow better predicts relapse and mortality after allogeneic stem cell transplantation in acute myeloid leukemia patients. Front Oncol 2022; 12:994366. [PMID: 36119469 PMCID: PMC9471009 DOI: 10.3389/fonc.2022.994366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/12/2022] [Indexed: 12/05/2022] Open
Abstract
The aim of this study was to evaluate the role of WT1 expression after allogeneic stem cell transplantation (alloHSCT) in patients with acute myeloid leukemia (AML). We studied WT1 expression in bone marrow cells from 50 patients in complete remission on day +60 after transplant. WT1 was assessed on unfractionated bone marrow mononuclear cells (MNC) and on CD34+ selected cells (CD34+). A ROC curve analysis identified 800 WT1 copies on CD34+ selected cells, as the best cut-off predicting relapse (AUC 0.842, p=0.0006, 85.7% sensitivity and 81.6% specificity) and 100 copies in MNC (AUC 0.819, p=0.007, 83.3% sensitivity and 88.2% specificity). Using the 800 WT1 copy cut off in CD34+ cells, the 2 year cumulative incidence of relapse was 12% vs 38% (p=0.005), and 2 year survival 88% vs 55% (p=0.02). Using the 100 WT1 copy cut off in unfractionated MNC, the 2 year cumulative incidence of relapse 13% vs 44% (p=0.01) and the 2 year survival 88% vs 55% (p=0.08). In a multivariate Cox analysis WT1 expression in CD34 cells proved to highly predictive of relapse (p=0.004); also WT1 expression on unfractionated cells predicted relapse (p=0.03). In conclusion, day-60 WT1 expression after allogeneic HSCT is a significant predictor of relapse, particularly when tested on CD34+ selected bone marrow cells.
Collapse
Affiliation(s)
- Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Patrizia Chiusolo,
| | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gessica Minnella
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Monica Rossi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Federica Sorà
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Assunta Limongiello
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Filippo Frioni
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola Piccirillo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Bianchi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Caterina Giovanna Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luciana Teofili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Bacigalupo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
31
|
Kim TY, Park S, Kwag D, Lee JH, Lee J, Min GJ, Park SS, Jeon YW, Shin SH, Yahng SA, Yoon JH, Lee SE, Cho BS, Eom KS, Kim YJ, Lee S, Min CK, Cho SG, Lee JW, Kim HJ. Depth of Response to Intensive Chemotherapy Has Significant Prognostic Value among Acute Myeloid Leukemia (AML) Patients Undergoing Allogeneic Hematopoietic Stem-Cell Transplantation with Intermediate or Adverse Risk at Diagnosis Compared to At-Risk Group According to European Leukemia Net 2017 Risk Stratification. Cancers (Basel) 2022; 14:3199. [PMID: 35804971 PMCID: PMC9265052 DOI: 10.3390/cancers14133199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
We evaluated the prognostic efficiency of the European Leukemia Net (ELN) 2017 criteria on the post-transplant outcomes of 174 patients with intermediate (INT; n = 108, 62%) or adverse (ADV) risk (n = 66, 38%) of acute myeloid leukemia; these patients had received the first allogeneic hematopoietic stem-cell transplantation (HSCT) at remission. After a median follow-up period of 18 months, the 2 year OS, RFS, and CIR after HSCT were estimated to be 58.6% vs. 64.4% (p = 0.299), 50.5% vs. 53.7% (p = 0.533), and 26.9% vs. 36.9% (p = 0.060) in the INT and ADV risk groups, respectively. Compared to the ELN 2017 stratification, pre-HSCT WT1 levels (cutoff: 250 copies/104 ABL) more effectively segregated the post-HSCT outcomes of INT risk patients compared to ADV risk patients regarding their 2 year OS (64.2% vs. 51.5%, p = 0.099), RFS (59.4% vs. 32.4%, p = 0.003), and CIR (18.9% vs. 60.0% p < 0.001). Indeed, high WT1 levels were more prominent in INT risk patients than in ADV risk patients. Notably, FLT3-ITD had the greatest impact on post-HSCT outcomes among all the ELN 2017 criteria components; patients in the FLT3-ITD mutant subgroups exhibited the worst outcomes regardless of their allelic ratios or NPM1 status compared to the pre-HSCT WT1 level of other INT and ADV risk patients.
Collapse
Affiliation(s)
- Tong-Yoon Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
| | - Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Daehun Kwag
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
| | - Jong-Hyuk Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
| | - Joonyeop Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
| | - Gi-June Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sung-Soo Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Young-Woo Jeon
- Department of Hematology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Seung-Hawn Shin
- Department of Hematology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Seung-Ah Yahng
- Department of Hematology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sung-Eun Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Byung-Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ki-Seong Eom
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yoo-Jin Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Chang-Ki Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seok-Goo Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
| | - Jong-Wook Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (T.-Y.K.); (S.P.); (D.K.); (J.-H.L.); (J.L.); (G.-J.M.); (S.-S.P.); (J.-H.Y.); (S.-E.L.); (B.-S.C.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
32
|
Zhang L, Ye X, Luo S, Xu X, Wang S, Jin K, Zheng Y, Zhu X, Chen D, Jin J, Huang J. Clinical features and next-generation sequencing landscape of essential thrombocythemia, prefibrotic primary myelofibrosis, and overt fibrotic primary myelofibrosis: a Chinese monocentric retrospective study. J Cancer Res Clin Oncol 2022; 149:2383-2392. [PMID: 35731275 DOI: 10.1007/s00432-022-04067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Since prefibrotic primary myelofibrosis (pre-PMF) was recognized as a separate entity in the 2016 revised classification of MPN differed from essential thrombocythemia (ET) or overt fibrotic primary myelofibrosis (overt PMF), it has been a subject of debate among experts due to its indefinite diagnosis. METHODS We retrospectively reviewed the clinical parameters, haematologic information, and genetic mutations of patients who were diagnosed with myeloproliferative neoplasms (MPNs) according to the WHO 2016 criteria in China, including 56 ET patients, 19 pre-PMF patients, and 43 overt PMF patients. RESULTS Pre-PMF patients exhibited higher leukocyte counts [14.2(6.0-28.1) × 109/L vs 9.6(4.0-55.0) × 109/L, P = 0.003], LDH values [307(233-479)U/L vs 241(129-1182)U/L, P < 0.001], onset ages [67(32-76) years vs 50(16-79) years, P = 0.006], a higher frequency of splenomegaly(47.4% vs 16.7%, P = 0.018) and hypertension (57.9 vs 23.2%, P = 0.005) than ET patients. On the other hand, pre-PMF patients had higher platelet counts [960(500-2245) × 109/L vs 633(102-1720) × 109/L, P = 0.017], haemoglobin levels [152(115-174)g/L vs 119(71-200)g/L, P = 0.003], lower LDH values [307(233-479)U/L vs 439(134-8100)U/L, P = 0.007] and a lower frequency of splenomegaly(47.4 vs 75.6%, P = 0.031) than overt PMF patients. Next-generation sequencing landscape was performed in 50 patients, revealed the frequency of EP300 mutations was significantly increased in pre-PMF patients compared with ET and overt PMF patients (60 vs 10 vs 15.79%, P = 0.033), and WT1 was more often overexpressed (WT1/ABL1 copies ≥ 1.0%) in patients with overt PMF than in those with ET or pre-PMF(54.55 vs 16.67 vs 17.65%, P = 0.009). In terms of outcome, male sex, along with symptoms including MPN10, anaemia (haemoglobin < 120 g/L), thrombocytopenia (platelet count < 100 × 109/L), leucocytosis (leukocyte counts > 13 × 109/L), high LDH value (> 350U/L), splenomegaly, WT1 overexpression(WT1/ABL1 copies ≥ 1.0%), KMT2A, ASXL1 and TP53 mutations, indicated a poor prognosis for PMF patients. CONCLUSION The results of this study indicated that a comprehensive evaluation of BM features, clinical phenotypes, haematologic parameters, and molecular profiles is needed for the accurate diagnosis and treatment of ET, pre-PMF, and overt PMF patients.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China
| | - Xingnong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Shuna Luo
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Road, Nanchang, Jiangxi, People's Republic of China
| | - Xiaofei Xu
- Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China
| | - Shengjie Wang
- Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China
| | - Keyi Jin
- Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China
| | - Yan Zheng
- Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China
| | - Xiaoqiong Zhu
- Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China
| | - Dan Chen
- Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Jian Huang
- Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China. .,Department of Hematology, The First Affiliated Hospital of Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
33
|
The Role of Wilms' Tumor Gene (WT1) Expression as a Marker of Minimal Residual Disease in Acute Myeloid Leukemia. J Clin Med 2022; 11:jcm11123306. [PMID: 35743376 PMCID: PMC9225390 DOI: 10.3390/jcm11123306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
The Minimal Residual Disease(MRD) monitoring in acute myeloid leukemia (AML) is crucial to guide treatment after morphologic complete remission, to define the need for consolidation with allogeneic stem cell transplantation (Allo-SCT), and to detect impending relapse allowing early intervention. However, more than 50% of patients with AML lack a specific or measurable molecular marker to monitor MRD. We reviewed the key studies on WT1 overexpression as a marker of MRD in AML patients undergoing an intensive chemotherapy program, including Allo-SCT. In addition, we provided some practical considerations on how to properly use WT1 expression as an MRD marker, considering its strengths and weaknesses. In order to achieve the best sensitivity and specificity, it is recommended to refer to the standardized method of European LeukemiaNet and its defined threshold (250 WT1 copies/104 Abelson (ABL) on Bone Marrow-BM and 50 WT1 copies/104 ABL on Peripheral Blood-PB), which has been validated in a large and multicenter cohort of patients and normal controls.
Collapse
|
34
|
Víctor GG, Nerea M, Beatriz RC, Paula VS, Bárbara OF, Pilar GG, Alicia PS, Jordi M, Berta G, Isabel MR, Sonsoles SRP, Pablo EM, Adrián IN, Antonio PM, Adela EL. Advanced Molecular Characterisation in Relapsed and Refractory Paediatric Acute Leukaemia, the Key for Personalised Medicine. J Pers Med 2022; 12:881. [PMID: 35743666 PMCID: PMC9224967 DOI: 10.3390/jpm12060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Relapsed and refractory (R/r) disease in paediatric acute leukaemia remains the first reason for treatment failure. Advances in molecular characterisation can ameliorate the identification of genetic biomarkers treatment strategies for this disease, especially in high-risk patients. The purpose of this study was to analyse a cohort of R/r children diagnosed with acute lymphoblastic (ALL) or myeloid (AML) leukaemia in order to offer them a targeted treatment if available. Advanced molecular characterisation of 26 patients diagnosed with R/r disease was performed using NGS, MLPA, and RT-qPCR. The clinical relevance of the identified alterations was discussed in a multidisciplinary molecular tumour board (MTB). A total of 18 (69.2%) patients were diagnosed with B-ALL, 4 (15.4%) with T-ALL, 3 (11.5%) with AML and 1 patient (3.8%) with a mixed-phenotype acute leukaemia (MPL). Most of the patients had relapsed disease (88%) at the time of sample collection. A total of 17 patients (65.4%) were found to be carriers of a druggable molecular alteration, 8 of whom (47%) received targeted therapy, 7 (87.5%) of them in addition to hematopoietic stem cell transplantation (HSCT). Treatment response and disease control were achieved in 4 patients (50%). In conclusion, advanced molecular characterisation and MTB can improve treatment and outcome in paediatric R/r acute leukaemias.
Collapse
Affiliation(s)
- Galán-Gómez Víctor
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Matamala Nerea
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Ruz-Caracuel Beatriz
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Valle-Simón Paula
- Clinical Pharmacology Department, La Paz University Hospital, 28046 Madrid, Spain;
| | - Ochoa-Fernández Bárbara
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Guerra-García Pilar
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Pernas-Sánchez Alicia
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Minguillón Jordi
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - González Berta
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Martínez-Romera Isabel
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - San Román-Pacheco Sonsoles
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Estival-Monteliú Pablo
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (E.-M.P.); (I.-N.A.)
| | - Ibáñez-Navarro Adrián
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (E.-M.P.); (I.-N.A.)
| | - Pérez-Martínez Antonio
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (E.-M.P.); (I.-N.A.)
| | - Escudero-López Adela
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| |
Collapse
|
35
|
Mopin A, Leprêtre F, Sebda S, Villenet C, Ben Khoud M, Figeac M, Quesnel B, Brinster C. Detection of residual and chemoresistant leukemic cells in an immune-competent mouse model of acute myeloid leukemia: Potential for unravelling their interactions with immunity. PLoS One 2022; 17:e0267508. [PMID: 35486629 PMCID: PMC9053800 DOI: 10.1371/journal.pone.0267508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by blocked differentiation and extensive proliferation of hematopoietic progenitors/precursors. Relapse is often observed after chemotherapy due to the presence of residual leukemic cells, which is also called minimal residual disease (MRD). Subclonal heterogeneity at diagnosis was found to be responsible for MRD after treatment. Patient xenograft mouse models are valuable tools for studying MRD after chemotherapy; however, the contribution of the immune system in these models is usually missing. To evaluate its role in leukemic persistence, we generated an immune-competent AML mouse model of persistence after chemotherapy treatment. We used well-characterized (phenotypically and genetically) subclones of the murine C1498 cell line stably expressing the ZsGreen reporter gene and the WT1 protein, a valuable antigen. Accordingly, these subclones were also selected due to their in vitro aracytidine (Ara-c) sensitivity. A combination of 3 subclones (expressing or not expressing WT1) was found to lead to prolonged mouse survival after Ara-c treatment (as long as 150 days). The presence of residual leukemic cells in the blood and BM of surviving mice indicated their persistence. Thus, a new mouse model that may offer insights into immune contributions to leukemic persistence was developed.
Collapse
Affiliation(s)
- Alexia Mopin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Frédéric Leprêtre
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Shéhérazade Sebda
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Céline Villenet
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Meriem Ben Khoud
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Martin Figeac
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Carine Brinster
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
- * E-mail:
| |
Collapse
|
36
|
Kreutmair S, Pfeifer D, Waterhouse M, Takács F, Graessel L, Döhner K, Duyster J, Illert AL, Frey AV, Schmitt M, Lübbert M. First-in-human study of WT1 recombinant protein vaccination in elderly patients with AML in remission: a single-center experience. Cancer Immunol Immunother 2022; 71:2913-2928. [PMID: 35476127 PMCID: PMC9588470 DOI: 10.1007/s00262-022-03202-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
Abstract
Wilms’ tumor 1 (WT1) protein is highly immunogenic and overexpressed in acute myeloid leukemia (AML), consequently ranked as a promising target for novel immunotherapeutic strategies. Here we report our experience of a phase I/II clinical trial (NCT01051063) of a vaccination strategy based on WT1 recombinant protein (WT1-A10) together with vaccine adjuvant AS01B in five elderly AML patients (median age 69 years, range 63–75) receiving a total of 62 vaccinations (median 18, range 3–20) after standard chemotherapy. Clinical benefit was observed in three patients: one patient achieved measurable residual disease clearance during WT1 vaccination therapy, another patient maintained long-term molecular remission over 59 months after the first vaccination cycle. Interestingly, in one case, we observed a complete clonal switch at AML relapse with loss of WT1 expression, proposing suppression of the original AML clone by WT1-based vaccination therapy. Detected humoral and cellular CD4+ T cell immune responses point to efficient immune stimulation post-vaccination, complementing hints for induced conventional T cell infiltration into the bone marrow and a shift from senescent/exhausted to a more activated T cell profile. Overall, the vaccinations with WT1 recombinant protein had an acceptable safety profile and were thus well tolerated. To conclude, our data provide evidence of potential clinical efficacy of WT1 protein-based vaccination therapy in AML patients, warranting further investigations.
Collapse
Affiliation(s)
- Stefanie Kreutmair
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Freiburg, 69120, Heidelberg, Germany
| | - Dietmar Pfeifer
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Miguel Waterhouse
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Ferenc Takács
- Center for Pathology, University Medical Center, University of Freiburg, 79106, Freiburg, Germany.,1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085, Budapest, Hungary
| | - Linda Graessel
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital, 89081, Ulm, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Freiburg, 69120, Heidelberg, Germany
| | - Anna Lena Illert
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Freiburg, 69120, Heidelberg, Germany
| | - Anna-Verena Frey
- Center for Pathology, University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, Hematology, Oncology, Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Michael Lübbert
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Freiburg, 69120, Heidelberg, Germany.
| |
Collapse
|
37
|
Park S, Kwag D, Kim TY, Lee JH, Lee JY, Min GJ, Park SS, Yahng SA, Jeon YW, Shin SH, Yoon JH, Lee SE, Cho BS, Eom KS, Kim YJ, Lee S, Min CK, Cho SG, Lee JW, Kim HJ. A retrospective comparison of salvage intensive chemotherapy versus venetoclax-combined regimen in patients with relapsed/refractory acute myeloid leukemia (AML). Ther Adv Hematol 2022; 13:20406207221081637. [PMID: 35340720 PMCID: PMC8949776 DOI: 10.1177/20406207221081637] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Evidence that a venetoclax (VEN)-combined regimen is effective in relapsed/refractory acute myeloid leukemia (R/R AML) is emerging. However, it is unknown how VEN-combined low intensity treatment compares to intensive chemotherapy (IC) in medically fit patients with R/R AML. METHODS We compared AML patients who received IC (n = 89) to those who received a VEN in combination with hypomethylating agents or low dose cytarabine (VEN combination) (n = 54) as their first- or second-line salvage after failing anthracycline-containing intensive chemotherapy. RESULTS The median age was 49 years, and significantly more patients in the VEN combination group were in their second salvage and had received prior stem cell transplantation (SCT). Overall response rates including CR, CRi, and MLFS were comparable (44.0% for IC vs. 59.3% for VEN combination, p = 0.081), but VEN combination group compared to IC group tended to show lower treatment related mortality. The rate of bridging to SCT was the same (68.5%), but the percentage of SCT at blast clearance was significantly higher in the VEN-combined group (62.3% vs. 86.5%, p = 0.010). After median follow-up periods of 22.5 (IC) and 11.3 months (VEN combination), the median overall survival was 8.9 (95% CI, 5.4-12.4) and 12.4 months (95% CI, 9.5-15.2) (p = 0.724), respectively. CONCLUSION VEN combination provides a comparable anti-leukemic response and survival to salvage IC, and provide a bridge to SCT with better disease control in medically-fit patients with R/R AML.
Collapse
Affiliation(s)
- Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Daehun Kwag
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tong Yoon Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jong Hyuk Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joon yeop Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Gi June Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Soo Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ah Yahng
- Department of Hematology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, South Korea
| | - Young-Woo Jeon
- Department of Hematology, Yeoido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Hwan Shin
- Department of Hematology, Catholic Hematology Hospital, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Eun Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Byung Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ki-Seong Eom
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yoo-Jin Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang-Ki Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok-Goo Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jong Wook Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
38
|
Increasing Role of Targeted Immunotherapies in the Treatment of AML. Int J Mol Sci 2022; 23:ijms23063304. [PMID: 35328721 PMCID: PMC8953556 DOI: 10.3390/ijms23063304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The standard of care in medically and physically fit patients is intensive induction therapy. The majority of these intensively treated patients achieve a complete remission. However, a high number of these patients will experience relapse. In patients older than 60 years, the results are even worse. Therefore, new therapeutic approaches are desperately needed. One promising approach in high-risk leukemia to prevent relapse is the induction of the immune system simultaneously or after reduction of the initial tumor burden. Different immunotherapeutic approaches such as allogenic stem cell transplantation or donor lymphocyte infusions are already standard therapies, but other options for AML treatment are in the pipeline. Moreover, the therapeutic landscape in AML is rapidly changing, and in the last years, a number of immunogenic targets structures eligible for specific therapy, risk assessment or evaluation of disease course were determined. For example, leukemia-associated antigens (LAA) showed to be critical as biomarkers of disease state and survival, as well as markers of minimal residual disease (MRD). Yet many mechanisms and properties are still insufficiently understood, which also represents a great potential for this form of therapy. Therefore, targeted therapy as immunotherapy could turn into an efficient tool to clear residual disease, improve the outcome of AML patients and reduce the relapse risk. In this review, established but also emerging immunotherapeutic approaches for AML patients will be discussed.
Collapse
|
39
|
Dynamic change in peripheral blood WT1 mRNA levels within three cycles of azacitidine predict treatment response in patients with high-risk myelodysplastic syndromes. Ann Hematol 2022; 101:1239-1250. [PMID: 35257209 DOI: 10.1007/s00277-022-04807-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/22/2022] [Indexed: 01/30/2023]
Abstract
Azacitidine (AZA) improves overall survival (OS) in patients with high-risk myelodysplastic syndromes (MDS). However, predictive factors for response to AZA remain largely unknown. To elucidate whether dynamic change in peripheral blood (PB) Wilms' Tumor 1 (WT1) mRNA levels could predict response to AZA, we retrospectively identified 75 treatment-naïve patients with high-risk MDS who received at least 3 cycles of AZA. We classified patients into 4 groups, low-increase (LI), low-stable (LS), high-decrease (HD), and high-stable (HS) based on the dynamic change in PB WT1 mRNA levels within 3 cycles of AZA. Cumulative incidence of overall response after 10 cycles of AZA was significantly higher in LS/HD than in HS/LI (75.5% vs 4.5%, P < 0.001). The median OS for LS/HD was 18.2 months (95% CI, 12.8-28.1 months), whereas it was 11.6 months for HS/LI (95% CI, 6.6-14.1 months; P < 0.001). Multivariate analysis demonstrated that poor-/very poor-IPSS-R cytogenetic risk and HS/LI were independently associated with poor OS (poor-/very poor-IPSS-R cytogenetic risk: HR, 2.26; 95% CI, 1.10-4.68, P = 0.03, HS/LI: HR, 2.32; 95% CI, 1.21-4.46, P = 0.01). Patients with HS/LI did not show any further response to continuous AZA, and they should be considered for alternative therapy from earlier cycles.
Collapse
|
40
|
Ogasawara M, Miyashita M, Yamagishi Y, Ota S. Wilms’ tumor 1 peptide‐loaded dendritic cell vaccination in patients with relapsed or refractory acute leukemia. Ther Apher Dial 2022; 26:537-547. [DOI: 10.1111/1744-9987.13828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Masahiro Ogasawara
- Department of Hematology Sapporo Hokuyu Hospital Sapporo Japan
- Institute for Artificial Organ, transplantation and Cell Therapy Sapporo Japan
| | - Mamiko Miyashita
- Institute for Artificial Organ, transplantation and Cell Therapy Sapporo Japan
| | - Yuka Yamagishi
- Cell Processing Center, Sapporo Hokuyu Hospital Sapporo Japan
| | - Shuichi Ota
- Department of Hematology Sapporo Hokuyu Hospital Sapporo Japan
| |
Collapse
|
41
|
Kitamura W, Fujii N, Nawa Y, Fujishita K, Sugiura H, Yoshioka T, Fujiwara Y, Usui Y, Fujii K, Fujiwara H, Asada N, Nishimori H, Matsuoka KI, Maeda Y. Possible prognostic impact of WT1 mRNA expression at day + 30 after haploidentical peripheral blood stem cell transplantation with posttransplant cyclophosphamide for patients with myeloid neoplasm: a multicenter study from the Okayama Hematological Study Group. Int J Hematol 2022; 115:515-524. [PMID: 35119651 DOI: 10.1007/s12185-022-03290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies have revealed that relapse of myeloid neoplasms after allogeneic hematopoietic stem cell transplantation (allo-HSCT) could be predicted by monitoring Wilms' tumor 1 (WT1) mRNA expression. However, only a few studies have investigated patients who received human leukocyte antigen-haploidentical stem cell transplantation with posttransplant cyclophosphamide (PTCY-haplo). In this study, we investigated the relationship between WT1 mRNA levels and clinical outcomes in the PTCY-haplo group, and compared them with those in the conventional graft-versus-host disease prophylaxis group (conventional group). METHODS We retrospectively analyzed 130 patients who received their first allo-HSCT between April 2017 and December 2020, including 26 who received PTCY-haplo. RESULTS The WT1 mRNA expression level at day + 30 after allo-HSCT associated with increased risk of 1-year cumulative incidence of relapse (CIR) was ≥ 78 copies/μg RNA in the conventional group (p < 0.01) and ≥ 50 copies/μg RNA in the PTCY-haplo group (p = 0.03). CONCLUSIONS The appropriate cutoff level of WT1 mRNA at day + 30 after allo-HSCT for predicting prognosis in patients treated with PTCY-haplo may be < 50 copies/μg RNA.
Collapse
Affiliation(s)
- Wataru Kitamura
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Nobuharu Fujii
- Divison of Blood Transfusion, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Yuichiro Nawa
- Division of Hematology, Ehime Prefectural Central Hospital, 83, Kasuga-cho, Matsuyama, 790-0024, Japan
| | - Keigo Fujishita
- Department of Hematology and Blood Transfusion, Kochi Health Science Center, 2125-1, Ike, Kochi, 781-8555, Japan
| | - Hiroyuki Sugiura
- Department of Hematology, Chugoku Central Hospital, 148-13, Oazakamiiwanari, Miyuki-cho, Fukuyama, 720-0001, Japan
| | - Takanori Yoshioka
- Department of Hematology, National Hospital Organization Okayama Medical Center, 1711-1, Tamasu, Kita-ku, Okayama, 701-1192, Japan
| | - Yuki Fujiwara
- Department of Hematology and Oncology, Japanese Red Cross Society Himeji Hospital, 1-12-1, Shimoteno, Himeji, 670-8540, Japan
| | - Yoshiaki Usui
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keiko Fujii
- Divison of Clinical Laboratory, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hisakazu Nishimori
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
42
|
Pan X, Gao M, Sun Y, Zhou Y, Wang K, Wang Y, Xu L, Zhang X, Huang X, Zhao X. Significance of WT1 and multiparameter flow cytometry assessment in patients with chronic myelomonocytic leukemia receiving allogeneic hematopoietic stem cell transplantation. Int J Lab Hematol 2022; 44:510-517. [DOI: 10.1111/ijlh.13788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Xinan Pan
- Peking University People’s HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Mengge Gao
- Peking University People’s HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Yuqian Sun
- Peking University People’s HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Yang Zhou
- Peking University People’s HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Ke Wang
- Peking University People’s HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Yu Wang
- Peking University People’s HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Lanping Xu
- Peking University People’s HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Xiaohui Zhang
- Peking University People’s HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Xiaojun Huang
- Peking University People’s HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- Peking‐Tsinghua Center for Life Sciences Beijing China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies Chinese Academy of Medical Sciences Beijing China
| | - Xiao‐Su Zhao
- Peking University People’s HospitalPeking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies Chinese Academy of Medical Sciences Beijing China
| |
Collapse
|
43
|
Revealing the Mysteries of Acute Myeloid Leukemia: From Quantitative PCR through Next-Generation Sequencing and Systemic Metabolomic Profiling. J Clin Med 2022; 11:jcm11030483. [PMID: 35159934 PMCID: PMC8836582 DOI: 10.3390/jcm11030483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The efforts made in the last decade regarding the molecular landscape of acute myeloid leukemia (AML) have created the possibility of obtaining patients’ personalized treatment. Indeed, the improvement of accurate diagnosis and precise assessment of minimal residual disease (MRD) increased the number of new markers suitable for novel and targeted therapies. This progress was obtained thanks to the development of molecular techniques starting with real-time quantitative PCR (Rt-qPCR) passing through digital droplet PCR (ddPCR) and next-generation sequencing (NGS) up to the new attractive metabolomic approach. The objective of this surge in technological advances is a better delineation of AML clonal heterogeneity, monitoring patients without disease-specific mutation and designing customized post-remission strategies based on MRD assessment. In this context, metabolomics, which pertains to overall small molecules profiling, emerged as relevant access for risk stratification and targeted therapies improvement. In this review, we performed a detailed overview of the most popular modern methods used in hematological laboratories, pointing out their vital importance for MRD monitoring in order to improve overall survival, early detection of possible relapses and treatment efficacy.
Collapse
|
44
|
Leotta S, Condorelli A, Sciortino R, Milone GA, Bellofiore C, Garibaldi B, Schininà G, Spadaro A, Cupri A, Milone G. Prevention and Treatment of Acute Myeloid Leukemia Relapse after Hematopoietic Stem Cell Transplantation: The State of the Art and Future Perspectives. J Clin Med 2022; 11:253. [PMID: 35011994 PMCID: PMC8745746 DOI: 10.3390/jcm11010253] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) for high-risk acute myeloid leukemia (AML) represents the only curative option. Progress has been made in the last two decades in the pre-transplant induction therapies, supportive care, selection of donors and conditioning regimens that allowed to extend the HSCT to a larger number of patients, including those aged over 65 years and/or lacking an HLA-identical donor. Furthermore, improvements in the prophylaxis of the graft-versus-host disease and of infection have dramatically reduced transplant-related mortality. The relapse of AML remains the major reason for transplant failure affecting almost 40-50% of the patients. From 10 to 15 years ago to date, treatment options for AML relapsing after HSCT were limited to conventional cytotoxic chemotherapy and donor leukocyte infusions (DLI). Nowadays, novel agents and targeted therapies have enriched the therapeutic landscape. Moreover, very recently, the therapeutic landscape has been enriched by manipulated cellular products (CAR-T, CAR-CIK, CAR-NK). In light of these new perspectives, careful monitoring of minimal-residual disease (MRD) and prompt application of pre-emptive strategies in the post-transplant setting have become imperative. Herein, we review the current state of the art on monitoring, prevention and treatment of relapse of AML after HSCT with particular attention on novel agents and future directions.
Collapse
Affiliation(s)
| | - Annalisa Condorelli
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, Via Santa Sofia 78, 95124 Catania, Italy; (S.L.); (R.S.); (G.A.M.); (C.B.); (B.G.); (G.S.); (A.S.); (A.C.); (G.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Measurable Residual Disease Assessment as a Surrogate Marker in New Drug Development in Acute Myeloid Leukemia. Cancer J 2022; 28:73-77. [PMID: 35072377 PMCID: PMC8849520 DOI: 10.1097/ppo.0000000000000572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT Response criteria for patients treated for acute myeloid leukemia (AML) based on cytomorphology are inadequate. Many patients achieving a complete remission by such criteria will later relapse. Patients with AML in such remissions who test negative using higher sensitivity measures of residual disease burden (measurable residual disease [MRD]) have on average lower relapse rates and better survival than those testing positive. This association has raised the possibility that these technological advances in measurement of tumor burden could be used to optimize the drug development and regulatory approval processes in AML. The heterogeneous genetic etiology, diverse immunophenotypic profiles, related precursor states and polyclonal architecture however combine to make the development of standardized and validated MRD assessments for AML challenging. Current and future methods to measure residual disease in AML, performance characteristics of testing currently in use, and potential uses for optimized AML MRD tests including as a surrogate endpoint are discussed.
Collapse
|
46
|
Heuser M, Freeman SD, Ossenkoppele GJ, Buccisano F, Hourigan CS, Ngai LL, Tettero JM, Bachas C, Baer C, Béné MC, Bücklein V, Czyz A, Denys B, Dillon R, Feuring-Buske M, Guzman ML, Haferlach T, Han L, Herzig JK, Jorgensen JL, Kern W, Konopleva MY, Lacombe F, Libura M, Majchrzak A, Maurillo L, Ofran Y, Philippe J, Plesa A, Preudhomme C, Ravandi F, Roumier C, Subklewe M, Thol F, van de Loosdrecht AA, van der Reijden BA, Venditti A, Wierzbowska A, Valk PJM, Wood BL, Walter RB, Thiede C, Döhner K, Roboz GJ, Cloos J. 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood 2021; 138:2753-2767. [PMID: 34724563 PMCID: PMC8718623 DOI: 10.1182/blood.2021013626] [Citation(s) in RCA: 411] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML) that is used for prognostic, predictive, monitoring, and efficacy-response assessments. The European LeukemiaNet (ELN) MRD Working Party evaluated standardization and harmonization of MRD in an ongoing manner and has updated the 2018 ELN MRD recommendations based on significant developments in the field. New and revised recommendations were established during in-person and online meetings, and a 2-stage Delphi poll was conducted to optimize consensus. All recommendations are graded by levels of evidence and agreement. Major changes include technical specifications for next-generation sequencing-based MRD testing and integrative assessments of MRD irrespective of technology. Other topics include use of MRD as a prognostic and surrogate end point for drug testing; selection of the technique, material, and appropriate time points for MRD assessment; and clinical implications of MRD assessment. In addition to technical recommendations for flow- and molecular-MRD analysis, we provide MRD thresholds and define MRD response, and detail how MRD results should be reported and combined if several techniques are used. MRD assessment in AML is complex and clinically relevant, and standardized approaches to application, interpretation, technical conduct, and reporting are of critical importance.
Collapse
Affiliation(s)
- Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Sylvie D Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gert J Ossenkoppele
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, Italy
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancy, Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Lok Lam Ngai
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jesse M Tettero
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Marie-Christine Béné
- Department of Hematology and Biology, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Veit Bücklein
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Anna Czyz
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| | - Barbara Denys
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College, London, United Kingdom
| | | | - Monica L Guzman
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY
| | | | | | - Julia K Herzig
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | | | | | | | - Francis Lacombe
- Hematology Biology, Flow Cytometry, Bordeaux University Hospital, Pessac, France
| | | | - Agata Majchrzak
- Department of Experimental Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Luca Maurillo
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, Italy
| | - Yishai Ofran
- Department of Hematology, Shaare Zedek Medical Center Faculty of Medicine Hebrew University, Jerusalem Israel
| | - Jan Philippe
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University
| | - Adriana Plesa
- Department of Hematology Laboratory, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | | | | | | | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adriano Venditti
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, Italy
| | | | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Brent L Wood
- Department of Hematopathology, Children's Hospital Los Angeles, CA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; and
- AgenDix GmbH, Dresden, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Gail J Roboz
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Early detection of WT1 measurable residual disease identifies high-risk patients, independent of transplantation in AML. Blood Adv 2021; 5:5258-5268. [PMID: 34625784 PMCID: PMC9153044 DOI: 10.1182/bloodadvances.2021004322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Postinduction WT1 measurable residual disease is associated with shorter survival and higher risk of relapse in younger patients with AML. Postinduction WT1 residual disease is an independent prognostic factor in patients eligible for allogeneic stem cell transplantation.
WT1 overexpression is frequently identified in acute myeloid leukemia (AML) and has been reported to be a potential marker for monitoring measurable residual disease (MRD). We evaluated the use of postinduction WT1 MRD level as a prognostic factor, as well as the interaction between postinduction WT1 MRD response and the effect of allogeneic stem cell transplantation (allo-SCT) in the first complete remission (CR). In the ALFA-0702 trial, patients with AML, aged 18 to 59, had a prospective quantification of WT1 MRD. The occurrence of a WT1 MRD ratio >2.5% in bone marrow or >0.5% in peripheral blood was defined as MRDhigh, and ratios below these thresholds were defined as MRDlow. The prognostic value of MRD after induction chemotherapy was assessed in 314 patients in first CR by comparing the risk of relapse, the relapse-free survival (RFS), and the overall survival (OS). Interaction between MRD response and the allo-SCT effect was evaluated in patients by comparing the influence of allo-SCT on the outcomes of patients with MRDhigh with those with MRDlow. The results showed that patients with MRDhigh after induction had a higher risk of relapse and a shorter RFS and OS. The MRD response remained of strong prognostic value in the subset of 225 patients with intermediate-/unfavorable-risk AML who were eligible for allo-SCT, because patients with MRDhigh had a significantly higher risk of relapse resulting in worse RFS and OS. The effect of allo-SCT was higher in patients with MRDlow than in those with MRDhigh, but not significantly different. The early WT1 MRD response highlights a population of high-risk patients in need of additional therapy.
Collapse
|
48
|
Yuen KY, Lin XY, Zhou YZ, Luo H, Liu Y, Xu LH. Optimal time-points for detecting expression levels of BAALC, EVI1, and WT1 genes in patients with acute myeloid leukemia: a meta-analysis. Hematology 2021; 26:995-1006. [PMID: 34871539 DOI: 10.1080/16078454.2021.2006409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES This meta-analysis examined the prognostic role of brain and acute leukemia, cytoplasmic (BAALC), Ecotropic virus integration site-1 (EVI1) and Wilms' tumor 1 (WT1) genes at different time-points during conventional chemotherapy. METHODS A systematic search of publications indexed in the electronic databases from January 1988 to October 2020 was performed. Over 7525 cases of AML from 25 studies were involved. RESULTS At diagnosis, overexpression of either BAALC or EVI1 had a negative impact on complete remission achievement (Summary Odds ratios [SORs] for BAALC = 0.32; SORs for EVI1 = 0.49) and survival outcome. The summary hazard ratios of overall survival (OS) and disease-free survival (DFS) were 1.97 and 2.04 for BAALC and 1.33 and 1.86 for EVI1, respectively. The prognostic value of pretreatment WT1 levels was heterogeneous while subgroup analyses unveiled that overexpressed WT1 may correlate with a favorable outcome (summary hazard ratio [SHR] for OS = 0.42). Both WT1 and BAALC played a role in prognosis assessment at post-induction and the diagnostic performance of WT1 transcript reduction was superior to the absolute WT1 level. Post-consolidation WT1 overexpression consistently indicated an increased risk of relapse, while the combined HR for RFS was statistically insignificant (SHR = 4.22). CONCLUSION These findings confirm the application of BAALC and EVI1 at diagnosis, WT1 after induction chemotherapy in AML patients throughout conventional chemotherapy.
Collapse
Affiliation(s)
- Ka-Yuk Yuen
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiao-Ying Lin
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yong-Zhuo Zhou
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hua Luo
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yong Liu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lu-Hong Xu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
49
|
Austin AE, Byrne M. Detecting and preventing post-hematopoietic cell transplant relapse in AML. Curr Opin Hematol 2021; 28:380-388. [PMID: 34534984 DOI: 10.1097/moh.0000000000000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Relapsed disease is the primary cause of mortality for acute myeloid leukemia (AML) patients after allogeneic hematopoietic cell transplantation (HCT). This review outlines the most recent advances in the detection and prevention of AML relapse following allogeneic HCT. RECENT FINDINGS Conventional methods for predicting post-HCT relapse rely on the molecular and cytogenetics features present at diagnosis. These methods are slow to reflect a growing understanding of the molecular heterogeneity of AML and impact of new therapies on post-HCT outcomes. The use of measurable residual disease (MRD) techniques, including multiparameter flow cytometry and molecular testing, may improve the prognostic ability of these models and should be incorporated into post-HCT surveillance whenever possible.In the post-HCT setting, FLT3 inhibitor maintenance data indicate that effective therapies can improve post-HCT outcomes. Maintenance data with DNA methyltransferase inhibitor monotherapy is less compelling and outcomes may improve with combinations. Early interventions directed at preemptive management of MRD may further improve post-HCT outcomes. SUMMARY Post-HCT AML relapse prevention has evolved to include more sensitive measures of disease detection and novel therapies that may improve outcomes of poor-risk AML patients. Additional work is needed to maintain this progress.
Collapse
Affiliation(s)
| | - Michael Byrne
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
50
|
Vonk CM, Al Hinai ASA, Hanekamp D, Valk PJM. Molecular Minimal Residual Disease Detection in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:5431. [PMID: 34771594 PMCID: PMC8582498 DOI: 10.3390/cancers13215431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Initial induction chemotherapy to eradicate the bulk of acute myeloid leukemia (AML) cells results in complete remission (CR) in the majority of patients. However, leukemic cells persisting in the bone marrow below the morphologic threshold remain unaffected and have the potential to proliferate and re-emerge as AML relapse. Detection of minimal/measurable residual disease (MRD) is a promising prognostic marker for AML relapse as it can assess an individual patients' risk profile and evaluate their response to treatment. With the emergence of molecular techniques, such as next generation sequencing (NGS), a more sensitive assessment of molecular MRD markers is available. In recent years, the detection of MRD by molecular assays and its association with AML relapse and survival has been explored and verified in multiple studies. Although most studies show that the presence of MRD leads to a worse clinical outcome, molecular-based methods face several challenges including limited sensitivity/specificity, and a difficult distinction between mutations that are representative of AML rather than clonal hematopoiesis. This review describes the studies that have been performed using molecular-based assays for MRD detection in the context of other MRD detection approaches in AML, and discusses limitations, challenges and opportunities.
Collapse
Affiliation(s)
- Christian M Vonk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Adil S A Al Hinai
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
- National Genetic Center, Ministry of Health, Muscat 111, Oman
| | - Diana Hanekamp
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
- Department of Hematology, Cancer Center VU University Medical Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|