1
|
Wen J, Wu Y, Luo Q. DNA methyltransferases-associated long non-coding RNA PRKCQ-AS1 regulate DNA methylation in myelodysplastic syndrome. Int J Lab Hematol 2024. [PMID: 38679027 DOI: 10.1111/ijlh.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic stem cell disorders. DNA hypermethylation is considered to be the key mechanism of pathogenesis for MDS. Studies have demonstrated that DNA methylation can be regulated by the co-effect between long non-coding RNAs (lncRNAs) and DNA methyltransferases (DNMTs). The aim of this study was to identify DNMTs-associated differentially expressed (DE) lncRNAs, which may be a novel diagnostic and therapeutic target for MDS. METHODS Two gene expression profile datasets (GSE4619 and GSE19429) were downloaded from the Gene Expression Omnibus (GEO) database. Systematic bioinformatics analysis was conducted. Then we verified the expression of PRKCQ-AS1 in MDS patients and features in SKM-1 cells. RESULTS Bioinformatics analysis revealed that the DNMT-associated DE-lncRNA PRKCQ-AS1 was functionally related to DNA methylation. The target genes of PRKCQ-AS1 associated with DNA methylation are mainly methionine synthetase (MTR) and ten-eleven-translocation 1 (TET1). Moreover, the high expression of PRKCQ-AS1 was verified in real MDS cases. Further cellular analysis in SKM-1 cells revealed that overexpressed PRKCQ-AS1 promoted methylation levels of long interspersed nuclear element 1 (LINE-1) and cell proliferation, and apparently elevated both mRNA and protein levels of MTR and TET1, while knockdown of PRKCQ-AS1 showed opposite trend in SKM-1 cells. CONCLUSION DNMT-associated DE-lncRNA PRKCQ-AS1 may affects DNA methylation levels by regulating MTR and TET1.
Collapse
Affiliation(s)
- Jian Wen
- Department of Hematology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Yongbin Wu
- Department of Laboratory Medicine, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Quanfang Luo
- Department of Hematology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Matsumoto T, Murakami Y, Yoshida-Sakai N, Katsuchi D, Kanazawa K, Okamura T, Imamura Y, Ono M, Kuwano M. Enhanced ALOX12 Gene Expression Predicts Therapeutic Susceptibility to 5-Azacytidine in Patients with Myelodysplastic Syndromes. Int J Mol Sci 2024; 25:4583. [PMID: 38731802 PMCID: PMC11083213 DOI: 10.3390/ijms25094583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
5-azacytidine (AZA), a representative DNA-demethylating drug, has been widely used to treat myelodysplastic syndromes (MDS). However, it remains unclear whether AZA's DNA demethylation of any specific gene is correlated with clinical responses to AZA. In this study, we investigated genes that could contribute to the development of evidence-based epigenetic therapeutics with AZA. A DNA microarray identified that AZA specifically upregulated the expression of 438 genes in AZA-sensitive MDS-L cells but not in AZA-resistant counterpart MDS-L/CDA cells. Of these 438 genes, the ALOX12 gene was hypermethylated in MDS-L cells but not in MDS-L/CDA cells. In addition, we further found that (1) the ALOX12 gene was hypermethylated in patients with MDS compared to healthy controls; (2) MDS classes with excess blasts showed a relatively lower expression of ALOX12 than other classes; (3) a lower expression of ALOX12 correlated with higher bone marrow blasts and a shorter survival in patients with MDS; and (4) an increased ALOX12 expression after AZA treatment was associated with a favorable response to AZA treatment. Taking these factors together, an enhanced expression of the ALOX12 gene may predict favorable therapeutic responses to AZA therapy in MDS.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| | - Yuichi Murakami
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| | - Nao Yoshida-Sakai
- Department of Hematology, St. Mary’s Hospital, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (N.Y.-S.); (T.O.); (Y.I.)
| | - Daisuke Katsuchi
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| | - Kuon Kanazawa
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| | - Takashi Okamura
- Department of Hematology, St. Mary’s Hospital, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (N.Y.-S.); (T.O.); (Y.I.)
| | - Yutaka Imamura
- Department of Hematology, St. Mary’s Hospital, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (N.Y.-S.); (T.O.); (Y.I.)
| | - Mayumi Ono
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| | - Michihiko Kuwano
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| |
Collapse
|
3
|
Li Y, Mao X, Li M, Li L, Tong X, Huang L. The predictive value of BTG1 for the response of newly diagnosed acute myeloid leukemia to decitabine. Clin Epigenetics 2024; 16:16. [PMID: 38254153 PMCID: PMC10802042 DOI: 10.1186/s13148-024-01627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Decitabine has been widely used to treat acute myeloid leukemia (AML); however as AML is a heterogeneous disease, not all patients benefit from decitabine. This study aimed to identify markers for predicting the response to decitabine. METHODS An intersection of in vitro experiments and bioinformatics was performed using a combination of epigenetic and transcriptomic analysis. A tumor-suppressor gene associated with methylation and the response to decitabine was screened. Then the sensitivity and specificity of this marker in predicting the response to decitabine was confirmed in 54 samples from newly diagnosed AML patients treated with decitabine plus IA regimen in a clinical trial (ChiCTR2000037928). RESULTS In vitro experiments showed that decitabine caused hypomethylation and upregulation of BTG1, while downregulation of BTG1 attenuated the inhibitory effect of decitabine. In newly diagnosed AML patients who received decitabine plus IA regimen, the predictive value of BTG1 to predict complete remission (CR) was assigned with a sensitivity of 86.7% and a specificity of 100.0% when BTG1 expression was < 0.292 (determined using real-time quantitative PCR), with area under the curve (AUC) = 0.933, P = 0.021. The predictive value of BTG1 to predict measurable residual disease (MRD) negativity was assigned with a sensitivity of 100.0% and a specificity of 80.0% when BTG1 expression was < 0.292 (AUC = 0.892, P = 0.012). Patients were divided into low and high BTG1 expression groups according to a cutoff of 0.292, and the CR rate of the low-expression group was significantly higher than that of the high-expression group (97.5% vs. 50%, P < 0.001). CONCLUSIONS Low expression of BTG1 was associated with CR and MRD negativity in newly diagnosed AML patients treated with a decitabine-containing regimen, suggesting that BTG1 is a potential marker for predicting the response to decitabine in newly diagnosed AML. CLINICAL TRIAL REGISTRATION ChiCTR2000037928.
Collapse
Affiliation(s)
- Yi Li
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Avenue, Wuhan, 430030, Hubei, China
| | - Mengyuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Avenue, Wuhan, 430030, Hubei, China
| | - Li Li
- Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xiwen Tong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Avenue, Wuhan, 430030, Hubei, China
| | - Lifang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
4
|
Schmutz M, Zucknick M, Schlenk RF, Mertens D, Benner A, Weichenhan D, Mücke O, Döhner K, Plass C, Bullinger L, Claus R. Predictive value of DNA methylation patterns in AML patients treated with an azacytidine containing induction regimen. Clin Epigenetics 2023; 15:171. [PMID: 37885041 PMCID: PMC10601277 DOI: 10.1186/s13148-023-01580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis. Dysregulation of the epigenetic machinery is a significant contributor to disease development. Some AML patients benefit from treatment with hypomethylating agents (HMAs), but no predictive biomarkers for therapy response exist. Here, we investigated whether unbiased genome-wide assessment of pre-treatment DNA-methylation profiles in AML bone marrow blasts can help to identify patients who will achieve a remission after an azacytidine-containing induction regimen. RESULTS A total of n = 155 patients with newly diagnosed AML treated in the AMLSG 12-09 trial were randomly assigned to a screening and a refinement and validation cohort. The cohorts were divided according to azacytidine-containing induction regimens and response status. Methylation status was assessed for 664,227 500-bp-regions using methyl-CpG immunoprecipitation-seq, resulting in 1755 differentially methylated regions (DMRs). Top regions were distilled and included genes such as WNT10A and GATA3. 80% of regions identified as a hit were represented on HumanMethlyation 450k Bead Chips. Quantitative methylation analysis confirmed 90% of these regions (36 of 40 DMRs). A classifier was trained using penalized logistic regression and fivefold cross validation containing 17 CpGs. Validation based on mass spectra generated by MALDI-TOF failed (AUC 0.59). However, discriminative ability was maintained by adding neighboring CpGs. A recomposed classifier with 12 CpGs resulted in an AUC of 0.77. When evaluated in the non-azacytidine containing group, the AUC was 0.76. CONCLUSIONS Our analysis evaluated the value of a whole genome methyl-CpG screening assay for the identification of informative methylation changes. We also compared the informative content and discriminatory power of regions and single CpGs for predicting response to therapy. The relevance of the identified DMRs is supported by their association with key regulatory processes of oncogenic transformation and support the idea of relevant DMRs being enriched at distinct loci rather than evenly distribution across the genome. Predictive response to therapy could be established but lacked specificity for treatment with azacytidine. Our results suggest that a predictive epigenotype carries its methylation information at a complex, genome-wide level, that is confined to regions, rather than to single CpGs. With increasing application of combinatorial regimens, response prediction may become even more complicated.
Collapse
Affiliation(s)
- Maximilian Schmutz
- Hematology and Oncology, Medical Faculty, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuela Zucknick
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Richard F Schlenk
- NCT-Trial Center, National Center of Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Mertens
- Cooperation Unit "Mechanisms of Leukemogenesis", German Cancer Research Center, Heidelberg, Germany
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Mücke
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Bullinger
- German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
- Department of Hematology, Oncology, and Cancer Immunology, Campus Virchow Klinikum, Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rainer Claus
- Hematology and Oncology, Medical Faculty, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
5
|
Asari Y, Yamazaki J, Thandar O, Suzuki T, Aoshima K, Takeuchi K, Kinoshita R, Kim S, Hosoya K, Ishizaki T, Kagawa Y, Jelinek J, Yokoyama S, Sasaki N, Ohta H, Nakamura K, Takiguchi M. Diverse genome-wide DNA methylation alterations in canine hepatocellular tumours. Vet Med Sci 2023; 9:2006-2014. [PMID: 37483163 PMCID: PMC10508506 DOI: 10.1002/vms3.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Canine hepatocellular tumours (HCTs) are common primary liver tumours. However, the exact mechanisms of tumourigenesis remain unclear. Although some genetic mutations have been reported, DNA methylation alterations in canine HCT have not been well studied. OBJECTIVES In this study, we aimed to analyse the DNA methylation status of canine HCT. METHODS Tissues from 33 hepatocellular carcinomas, 3 hepatocellular adenomas, 1 nodular hyperplasia, 21 non-tumour livers from the patients and normal livers from 5 healthy dogs were used. We analysed the DNA methylation levels of 72,367 cytosine-guanine dinucleotides (CpG sites) in all 63 samples. RESULTS AND CONCLUSIONS Although a large fraction of CpG sites that were highly methylated in the normal liver became hypomethylated in tumours from most patients, we also found some patients with less remarkable change or no change in DNA methylation. Hierarchical clustering analysis revealed that 32 of 37 tumour samples differed from normal livers, although the remaining 5 tumour livers fell into the same cluster as normal livers. In addition, the number of hypermethylated genes in tumour livers varied among tumour cases, suggesting various DNA methylation patterns in different tumour groups. However, patient and clinical parameters, such as age, were not associated with DNA methylation status. In conclusion, we found that HCTs undergo aberrant and diverse patterns of genome-wide DNA methylation compared with normal liver tissue, suggesting a complex epigenetic mechanism in canine HCT.
Collapse
Affiliation(s)
- Yu Asari
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Jumpei Yamazaki
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
| | - Oo Thandar
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Tamami Suzuki
- Laboratory of Comparative Pathology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Keisuke Aoshima
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
- Laboratory of Comparative Pathology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Kyosuke Takeuchi
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Ryohei Kinoshita
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
| | - Sangho Kim
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
- Laboratory of Veterinary Surgery, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Kenji Hosoya
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
- Laboratory of Veterinary Surgery, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Teita Ishizaki
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Laboratory of Comparative Pathology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- North LabSapporoJapan
| | | | | | - Shoko Yokoyama
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Kensuke Nakamura
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
6
|
Liang G, Wang L, You Q, Cahill K, Chen C, Zhang W, Fulton N, Stock W, Odenike O, He C, Han D. Cellular Composition and 5hmC Signature Predict the Treatment Response of AML Patients to Azacitidine Combined with Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300445. [PMID: 37271891 PMCID: PMC10427370 DOI: 10.1002/advs.202300445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/12/2023] [Indexed: 06/06/2023]
Abstract
Azacitidine (AZA) is a DNA methyltransferase inhibitor and epigenetic modulator that can be an effective agent in combination with chemotherapy for patients with high-risk acute myeloid leukemia (AML). However, biological factors driving the therapeutic response of such hypomethylating agent (HMA)-based therapies remain unknown. Herein, the transcriptome and/or genome-wide 5-hydroxymethylcytosine (5hmC) is characterized for 41 patients with high-risk AML from a phase 1 clinical trial treated with AZA epigenetic priming followed by high-dose cytarabine and mitoxantrone (AZA-HiDAC-Mito). Digital cytometry reveals that responders have elevated Granulocyte-macrophage-progenitor-like (GMP-like) malignant cells displaying an active cell cycle program. Moreover, the enrichment of natural killer (NK) cells predicts a favorable outcome in patients receiving AZA-HiDAC-Mito therapy or other AZA-based therapies. Comparing 5hmC profiles before and after five-day treatment of AZA shows that AZA exposure induces dose-dependent 5hmC changes, in which the magnitude correlates with overall survival (p = 0.015). An extreme gradient boosting (XGBoost) machine learning model is developed to predict the treatment response based on 5hmC levels of 11 genes, achieving an area under the curve (AUC) of 0.860. These results suggest that cellular composition markedly impacts the treatment response, and showcase the prospect of 5hmC signatures in predicting the outcomes of HMA-based therapies in AML.
Collapse
Affiliation(s)
- Guanghao Liang
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Linchen Wang
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qiancheng You
- Department of Chemistry and Institute for Biophysical DynamicsThe University of ChicagoChicagoIL60637USA
- Howard Hughes Medical InstituteChicagoIL60637USA
| | - Kirk Cahill
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
| | - Chuanyuan Chen
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wei Zhang
- Department of MedicineUniversity of California, San DiegoLa JollaCA92093USA
- Bristol‐Myers SquibbSan DiegoCA92121USA
| | - Noreen Fulton
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
- Comprehensive Cancer CenterUniversity of Chicago MedicineChicagoIL60637USA
| | - Wendy Stock
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
- Comprehensive Cancer CenterUniversity of Chicago MedicineChicagoIL60637USA
| | - Olatoyosi Odenike
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
- Comprehensive Cancer CenterUniversity of Chicago MedicineChicagoIL60637USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical DynamicsThe University of ChicagoChicagoIL60637USA
- Howard Hughes Medical InstituteChicagoIL60637USA
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIL60637USA
| | - Dali Han
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
7
|
Kagan AB, Garrison DA, Anders NM, Webster J, Baker SD, Yegnasubramanian S, Rudek MA. DNA methyltransferase inhibitor exposure-response: Challenges and opportunities. Clin Transl Sci 2023; 16:1309-1322. [PMID: 37345219 PMCID: PMC10432879 DOI: 10.1111/cts.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Although DNA methyltransferase inhibitors (DNMTis), such as azacitidine and decitabine, are used extensively in the treatment of myelodysplastic syndromes and acute myeloid leukemia, there remain unanswered questions about DNMTi's mechanism of action and predictors of clinical response. Because patients often remain on single-agent DNMTis or DNMTi-containing regimens for several months before knowing whether clinical benefit can be achieved, the development and clinical validation of response-predictive biomarkers represents an important unmet need in oncology. In this review, we will summarize the clinical studies that led to the approval of azacitidine and decitabine, as well as the real-world experience with these drugs. We will then focus on biomarker development for DNMTis-specifically, efforts at determining exposure-response relationships and challenges that remain impacting the broader clinical translation of these methods. We will highlight recent progress in liquid-chromatography tandem mass spectrometry technology that has allowed for the simultaneous measurement of decitabine genomic incorporation and global DNA methylation, which has significant potential as a mechanism-of-action based biomarker in patients on DNMTis. Last, we will cover important research questions that need to be addressed in order to optimize this potential biomarker for clinical use.
Collapse
Affiliation(s)
- Amanda B. Kagan
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dominique A. Garrison
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nicole M. Anders
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Jonathan A. Webster
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Michelle A. Rudek
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
8
|
Sheel A, Bae J, Asada A, Otterson GA, Baliga RR, Koenig KL. Reversible cardiomyopathy in a patient with chronic myelomonocytic leukemia treated with decitabine/cedazuridine: a case report. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:4. [PMID: 36653885 PMCID: PMC9845814 DOI: 10.1186/s40959-023-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Hypomethylating agents (HMAs) have shown efficacy in the treatment of hematological malignancies and are indicated for the treatment of chronic myelomonocytic leukemia (CMML). While the HMA decitabine, in its intravenous formulation, has been used since 2006 for the treatment of CMML, use of its oral formulation has been limited by poor bioavailability due to first-pass metabolism by the enzyme cytidine deaminase. The dose of intravenous decitabine is limited by toxicities such as cardiomyopathy and heart failure. Therefore, cedazuridine was developed as an inhibitor of cytidine deaminase. Cedazuridine decreases the first-pass metabolism of oral decitabine allowing therapeutic levels to be achieved at lower doses, and thus, the novel oral combination of cedazuridine with decitabine was developed. While cardiomyopathy and heart failure are well-established adverse effects associated with intravenous decitabine alone, there to our knowledge there have been no documented incidences of reversible cardiomyopathy in the literature or in patients who participated in the phase 2 and phase 3 clinical trials of oral decitabine-cedazuridine. CASE This case study presents an 85 year-old Caucasian female with CMML who developed cardiomyopathy and heart failure with reduced ejection fraction after completing 5 cycles of therapy with decitabine/cedazuridine. Furthermore, her symptoms and cardiac function recovered upon discontinuation of the drug. CONCLUSIONS We present an occurrence of reversible cardiomyopathy in a patient who completed 5 cycles of decitabine/cedazuridine, an oral combination therapy developed to enhance oral bioavailability of decitabine thereby limiting its adverse effects. As the decitabine/cedazuridine combination therapy rises in popularity due to its convenient oral formulation, more trials are needed to understand the prevalence of cardiomyopathy with this drug and to discover preventative strategies for cardiotoxic effects.
Collapse
Affiliation(s)
- Ankur Sheel
- grid.412332.50000 0001 1545 0811Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Junu Bae
- grid.261331.40000 0001 2285 7943College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Ashlee Asada
- grid.412332.50000 0001 1545 0811Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Gregory A. Otterson
- grid.413944.f0000 0001 0447 4797Division of Oncology, Department of Internal Medicine, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210 USA
| | - Ragavendra R. Baliga
- grid.412332.50000 0001 1545 0811Division of Cardiovascular Medicine, Department of Internal Medicine, Cardio-Oncology Center of Excellence, The Ohio State University Wexner Medical Center, OH, Columbus, OH 43210 USA
| | - Kristin L. Koenig
- grid.413944.f0000 0001 0447 4797Division of Hematology, Department of Medicine, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210 USA
| |
Collapse
|
9
|
Hara R, Kitahara T, Numata H, Toyosaki M, Watanabe S, Kikkawa E, Ogawa Y, Kawada H, Ando K. Fetal hemoglobin level predicts lower-risk myelodysplastic syndrome. Int J Hematol 2022; 117:684-693. [PMID: 36574168 DOI: 10.1007/s12185-022-03523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The relationship between fetal hemoglobin (HbF) levels and disease prognosis in patients with myelodysplastic syndrome (MDS) is unclear. This study aimed to clarify the relationship between HbF level and the prognosis of MDS. To this end, data from 217 patients diagnosed with MDS between April 2006 and August 2020 at Ebina General Hospital were analyzed retrospectively. The primary endpoint was leukemia-free survival (LFS) for 5 years after diagnosis. HbF levels were significantly higher in patients with MDS than in control patients without MDS (n = 155), with a cut-off value of 0.4%. Higher-risk patients had a similar prognosis regardless of HbF level, but lower-risk patients had longer LFS at intermediate HbF levels. Although prognosis based on pre-treatment HbF levels did not differ significantly among azacitidine-treated patients, prognosis tended to be better in lower-risk patients with intermediate HbF levels. Multivariate analysis showed that the intermediate HbF category correlated with LFS, independently of MDS lower-risk prognostic scoring system (LR-PSS)-related factors. This study is the first to assess the association between HbF levels and the new World Health Organization 2016 criteria for MDS, demonstrating the significance of HbF levels in the prognosis of MDS.
Collapse
Affiliation(s)
- Ryujiro Hara
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan.
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| | - Toshihiko Kitahara
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
| | - Hiroki Numata
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masako Toyosaki
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Shigeki Watanabe
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
| | - Eri Kikkawa
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoshiaki Ogawa
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroshi Kawada
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Kiyoshi Ando
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
10
|
Centomo ML, Vitiello M, Poliseno L, Pandolfi PP. An Immunocompetent Environment Unravels the Proto-Oncogenic Role of miR-22. Cancers (Basel) 2022; 14:cancers14246255. [PMID: 36551740 PMCID: PMC9776418 DOI: 10.3390/cancers14246255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
MiR-22 was first identified as a proto-oncogenic microRNA (miRNA) due to its ability to post-transcriptionally suppress the expression of the potent PTEN (Phosphatase And Tensin Homolog) tumor suppressor gene. miR-22 tumorigenic role in cancer was subsequently supported by its ability to positively trigger lipogenesis, anabolic metabolism, and epithelial-mesenchymal transition (EMT) towards the metastatic spread. However, during the following years, the picture was complicated by the identification of targets that support a tumor-suppressive role in certain tissues or cell types. Indeed, many papers have been published where in vitro cellular assays and in vivo immunodeficient or immunosuppressed xenograft models are used. However, here we show that all the studies performed in vivo, in immunocompetent transgenic and knock-out animal models, unanimously support a proto-oncogenic role for miR-22. Since miR-22 is actively secreted from and readily exchanged between normal and tumoral cells, a functional immune dimension at play could well represent the divider that allows reconciling these contradictory findings. In addition to a critical review of this vast literature, here we provide further proof of the oncogenic role of miR-22 through the analysis of its genomic locus vis a vis the genetic landscape of human cancer.
Collapse
Affiliation(s)
- Maria Laura Centomo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- William N. Pennington Cancer Institute, Renown Health, Nevada System of Higher Education, Reno, NV 89502, USA
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
| | - Marianna Vitiello
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124 Pisa, Italy
| | - Laura Poliseno
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124 Pisa, Italy
- Correspondence: (L.P.); (P.P.P.); Tel.: +39-050-315-2780 (L.P.); +1-775-982-6210 (P.P.P.); Fax: +39-050-315-3327 (L.P.); +1-775-982-4288 (P.P.P.)
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- William N. Pennington Cancer Institute, Renown Health, Nevada System of Higher Education, Reno, NV 89502, USA
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
- Correspondence: (L.P.); (P.P.P.); Tel.: +39-050-315-2780 (L.P.); +1-775-982-6210 (P.P.P.); Fax: +39-050-315-3327 (L.P.); +1-775-982-4288 (P.P.P.)
| |
Collapse
|
11
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
12
|
Park S, Park SY, Lee JH, Choi EJ, Lee KH, Yoon SS, Hong J, Shin DY, Kim YJ. Five-day versus 7-day treatment regimen with azacitidine in lower risk myelodysplastic syndrome: A phase 2, multicenter, randomized trial. Cancer 2022; 128:4095-4108. [PMID: 36208097 DOI: 10.1002/cncr.34492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Low-dose azacitidine (AZA) regimens, primarily 5-day AZA, have been used in lower risk myelodysplastic syndrome (LrMDS) but they have yet to be directly compared to the standard 7-day, uninterrupted dosing schedule. METHOD In this phase 2, multicenter, randomized trial, 55 patients with adult LrMDS (low and intermediate-1 risk by international prognostic scoring system [IPSS]) were randomly assigned and received either 5-day (n = 26) or 7-day (n = 29) AZA between March 2012 and August 2020. The trial was stopped prematurely because of the slow accrual of patients. The primary end point was the overall response rate (ORR) of the 5-day AZA as compared to that of the 7-day regimen. RESULTS Median patient age was 59 years, and IPSS intermediate-1 risk comprised the majority (81.8%). The median number of cycles in both arms was six. In the ITT subset (n = 53), in each of the 5-day and 7-day arms, the ORR of 48.0% and 39.3%, hematologic improvement of 44.0% and 39.3%, and RBC transfusion independence of 35.3% and 40.0% were observed respectively, and none of these findings were significantly different between the two arms. A cytogenetic response rate was significantly higher in the 7-day arm (8.3% and 53.8%, p = .027). Survival and adverse events were similar between the groups, although gastrointestinal toxicities, grade ≥3 thrombocytopenia, and febrile neutropenia were less frequent in the 5-day arm. CONCLUSION The 5-day AZA in LrMDS showed comparable efficacy to a 7-day regimen in terms of similar overall response and other outcomes, despite significantly higher rates of cytogenetic responses in the 7-day regimen. LAY SUMMARY Azacitidine (75 mg/m2 /day for 7 consecutive days per 28-day cycle) has shown survival benefit in patients with higher risk myelodysplastic syndrome (MDS). Although the use of azacitidine is less-well studied for lower risk MDS, it is generally accepted as a feasible option for lower risk MDS (LrMDS).
Collapse
Affiliation(s)
- Silvia Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea.,Leukemia Research Institute, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - So Yeon Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea.,Leukemia Research Institute, College of Medicine, Catholic University of Korea, Seoul, Korea
| |
Collapse
|
13
|
Meta-Analysis of the Prognostic and Predictive Role of the CpG Island Methylator Phenotype in Colorectal Cancer. DISEASE MARKERS 2022; 2022:4254862. [PMID: 36157209 PMCID: PMC9499813 DOI: 10.1155/2022/4254862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Background Various studies have produced contradictory results on the prognostic role of the CpG island methylator phenotype (CIMP) among colorectal cancer (CRC) patients. Although a meta-analysis published in 2014 reported a worse prognosis of CIMP among CIMP-high (CIMP-H) CRC patients, the sample sizes of the major included studies were small. In this study, we included the most recent studies with large sample sizes and performed an updated meta-analysis on the relationship between CIMP and CRC prognosis. Methods A search of MEDLINE, Web of Science, and Cochrane for studies related to CIMP and CRC published until July 2021 was conducted based on the PICO (participant, intervention, control, outcome) framework. Data extraction and literature analyses were performed according to PRISMA standards. Results In the present update, 36 eligible studies (20 recently published) reported survival data in 15315 CRC patients, 18.3% of whom were characterized as CIMP-H. Pooled analysis suggested that CIMP-H was associated with poorer overall survival (OS) (hazard ratio [HR] = 1.37, 95% CI: 1.26–1.48) and disease-free survival/progression-free survival/recurrence-free survival (DFS/PFS/RFS) (HR = 1.51, 95% CI: 1.19–1.91) among CRC patients. Subgroup analysis based on tumor stage and DNA mismatch repair (MMR) status showed that only patients with stages III-IV and proficient MMR (pMMR) tumors showed a significant association between CIMP-H and shorter OS, with HRs of 1.52 and 1.37, respectively. Three studies were pooled to explore the predictive value of CIMP on CRC patient DFS after receiving postoperative chemotherapy, and no significant correlation was found. Conclusion CIMP-H is associated with a significantly poor prognosis in CRC patients, especially those with stage III-IV and pMMR tumors. However, the predictive value of CIMP needs to be confirmed by more prospective randomized studies.
Collapse
|
14
|
Sandoval JE, Ramabadran R, Stillson N, Sarah L, Fujimori DG, Goodell MA, Reich N. First-in-Class Allosteric Inhibitors of DNMT3A Disrupt Protein-Protein Interactions and Induce Acute Myeloid Leukemia Cell Differentiation. J Med Chem 2022; 65:10554-10566. [PMID: 35866897 DOI: 10.1021/acs.jmedchem.2c00725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously identified two structurally related pyrazolone (compound 1) and pyridazine (compound 2) allosteric inhibitors of DNMT3A through screening of a small chemical library. Here, we show that these compounds bind and disrupt protein-protein interactions (PPIs) at the DNMT3A tetramer interface. This disruption is observed with distinct partner proteins and occurs even when the complexes are acting on DNA, which better reflects the cellular context. Compound 2 induces differentiation of distinct myeloid leukemia cell lines including cells with mutated DNMT3A R882. To date, small molecules targeting DNMT3A are limited to competitive inhibitors of AdoMet or DNA and display extreme toxicity. Our work is the first to identify small molecules with a mechanism of inhibition involving the disruption of PPIs with DNMT3A. Ongoing optimization of compounds 1 and 2 provides a promising basis to induce myeloid differentiation and treatment of diseases that display aberrant PPIs with DNMT3A, such as acute myeloid leukemia.
Collapse
Affiliation(s)
- Jonathan E Sandoval
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9510, United States
| | - Raghav Ramabadran
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Nathaniel Stillson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Letitia Sarah
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Norbert Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
15
|
Zhou JD, Xu ZJ, Jin Y, Zhang XL, Gu Y, Ma JC, Wen XM, Lin J, Zhang TJ, Qian J. Whole-Genome DNA Methylation Sequencing Reveals Epigenetic Changes in Myelodysplastic Syndromes. Front Oncol 2022; 12:897898. [PMID: 35847864 PMCID: PMC9277050 DOI: 10.3389/fonc.2022.897898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic dysregulation of cancer-associated genes has been identified to contribute to the pathogenesis of myelodysplastic syndromes (MDS). However, few studies have elucidated the whole-genome DNA methylation in the initiation pathogenesis of MDS. Reduced representation bisulfite sequencing was performed in five de novo MDS patients and four controls to investigate epigenetic alterations in MDS pathogenesis. The mean global methylation in five MDS patients showed no significant difference compared with the four controls. In depth, a total of 1,459 differentially methylated fragments, including 759 hypermethylated and 700 hypomethylated fragments, were identified between MDS patients and controls. Targeted bisulfite sequencing further identified that hypermethylation of DLEU7, FOXR1, LEP, and PANX2 were frequent events in an additional cohort of MDS patients. Subsequently, LEP hypermethylation was confirmed by real-time quantitative methylation-specific PCR in an expanded cohort of larger MDS patients. In clinics, LEP hypermethylation tended to be associated with lower bone marrow blasts and was significantly correlated with U2AF1 mutation. Survival analysis indicated that LEP hypermethylation was associated with a markedly longer survival time but was not an independent prognostic biomarker in MDS patients. Functional studies revealed pro-proliferative and anti-apoptotic effects of leptin in the MDS cell line SKM-1, and it was significantly associated with cell growth and death as well as the Toll-like receptor and NF-kappa B signaling pathways. Collectively, our findings demonstrated that whole-genome DNA methylation analysis identified novel epigenetic alterations such as DLEU7, FOXR1, LEP, and PANX2 methylations as frequent events in MDS. Moreover, LEP might play a role in MDS pathogenesis, and LEP hypermethylation was associated with longer survival but not as an independent prognostic biomarker in MDS.
Collapse
Affiliation(s)
- Jing-dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
| | - Zi-jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Ye Jin
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
| | - Xin-long Zhang
- Department of Hematology, The People’s Hospital of Danyang, Zhenjiang, China
| | - Yu Gu
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
| | - Ji-chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang-mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jun Qian, ; Ting-juan Zhang, ; Jiang Lin,
| | - Ting-juan Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Department of Oncology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jun Qian, ; Ting-juan Zhang, ; Jiang Lin,
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- *Correspondence: Jun Qian, ; Ting-juan Zhang, ; Jiang Lin,
| |
Collapse
|
16
|
Yang WY, Izzi B, Bress AP, Thijs L, Citterio L, Wei FF, Salvi E, Delli Carpini S, Manunta P, Cusi D, Hoylaerts MF, Luttun A, Verhamme P, Hardikar S, Nawrot TS, Staessen JA, Zhang ZY. Association of colorectal cancer with genetic and epigenetic variation in PEAR1—A population-based cohort study. PLoS One 2022; 17:e0266481. [PMID: 35390065 PMCID: PMC8989234 DOI: 10.1371/journal.pone.0266481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Platelet Endothelial Aggregation Receptor 1 (PEAR1) modulates angiogenesis and platelet contact-induced activation, which play a role in the pathogenesis of colorectal cancer. We therefore tested the association of incident colorectal cancer and genetic and epigenetic variability in PEAR1 among 2532 randomly recruited participants enrolled in the family-based Flemish Study on Environment, Genes and Health Outcomes (51.2% women; mean age 44.8 years). All underwent genotyping of rs12566888 located in intron 1 of the PEAR1 gene; in 926 participants, methylation at 16 CpG sites in the PEAR1 promoter was also assessed. Over 18.1 years (median), 49 colorectal cancers occurred, all in different pedigrees. While accounting for clustering of risk factors within families and adjusting for sex, age, body mass index, the total-to-HDL cholesterol ratio, serum creatinine, plasma glucose, smoking and drinking, use of antiplatelet and nonsteroidal anti-inflammatory drug, the hazard ratio of colorectal cancer contrasting minor-allele (T) carriers vs. major-allele (GG) homozygotes was 2.17 (95% confidence interval, 1.18–3.99; P = 0.013). Bootstrapped analyses, from which we randomly excluded from two to nine cancer cases, provided confirmatory results. In participants with methylation data, we applied partial least square discriminant analysis (PLS-DA) and identified two methylation sites associated with higher colorectal cancer risk and two with lower risk. In-silico analysis suggested that methylation of the PEAR1 promoter at these four sites might affect binding of transcription factors p53, PAX5, and E2F-1, thereby modulating gene expression. In conclusion, our findings suggest that genetic and epigenetic variation in PEAR1 modulates the risk of colorectal cancer in white Flemish. To what extent, environmental factors as exemplified by our methylation data, interact with genetic predisposition and modulate penetrance of colorectal cancer risk is unknown.
Collapse
Affiliation(s)
- Wen-Yi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Adam P Bress
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Lutgarde Thijs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Lorena Citterio
- Division of Nephrology and Dialysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fang-Fei Wei
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Erika Salvi
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Simona Delli Carpini
- Division of Nephrology and Dialysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Manunta
- School of Nephrology, University Vita-Salute San Raffaele, Milan, Italy
| | | | | | - Aernout Luttun
- Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Sheetal Hardikar
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Jan A Staessen
- Biomedical Science Group, University of Leuven, Leuven, Belgium
- Research Institute Association for the Promotion of Preventive Medicine, Mechelen, Belgium
| | - Zhen-Yu Zhang
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Bejar R. How do molecular aberrations guide therapy in MDS? Best Pract Res Clin Haematol 2021; 34:101324. [PMID: 34865696 DOI: 10.1016/j.beha.2021.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myelodysplastic syndromes (MDS) represent a cluster of genetically and phenotypically heterogeneous hematological disorders. While molecularly targeted therapies have entered the standard of care for other hematological malignancies like acute myeloid leukemia, this approach has been elusive in MDS. This review has summarized recent evidence to determine how molecular aberrations can be used to guide therapy in MDS and improve outcomes among patients.
Collapse
Affiliation(s)
- Rafael Bejar
- UC San Diego Moores Cancer Center, 3855 Health Sciences Drive, San Diego, CA, 92093, USA.
| |
Collapse
|
18
|
Kontandreopoulou CN, Diamantopoulos PT, Giannopoulos A, Symeonidis A, Kotsianidis I, Pappa V, Galanopoulos A, Panayiotidis P, Dimou M, Solomou E, Loupis T, Zoi K, Giannakopoulou N, Dryllis G, Hatzidavid S, Viniou NA. Bone marrow ribonucleotide reductase mRNA levels and methylation status as prognostic factors in patients with myelodysplastic syndrome treated with 5-Azacytidine. Leuk Lymphoma 2021; 63:729-737. [PMID: 34738857 DOI: 10.1080/10428194.2021.1998484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ribonucleotide Reductase (RNR) is a two-subunit (RRM1, RRM2) enzyme, responsible for the conversion of ribonucleotides to deoxyribonucleotides required for DNA replication. To evaluate RNR as a biomarker of response to 5-azacytidine, we measured RNR mRNA levels by a quantitative real-time PCR in bone marrow samples of 98 patients with myelodysplastic syndrome (MDS) treated with 5-azacytidine with parallel quantification of the gene promoter's methylation. Patients with low RRM1 levels had a high RRM1 methylation status (p = 0.005) and a better response to treatment with 5-azacytidine (p = 0.019). A next-generation sequencing for genes of interest in MDS was also carried out in a subset of 61 samples. Splicing factor mutations were correlated with lower RRM1 mRNA levels (p = 0.044). Our results suggest that the expression of RNR is correlated with clinical outcomes, thus its expression could be used as a prognostic factor for response to 5-azacytidine and a possible therapeutic target in MDS.
Collapse
Affiliation(s)
- Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis T Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Giannopoulos
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Argiris Symeonidis
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Vasiliki Pappa
- Haematology Division, Second Department of Internal Medicine, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Galanopoulos
- Department of Clinical Hematology, 'G. Gennimatas' District General Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- First Department of Propedeutic Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Dimou
- First Department of Propedeutic Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Solomou
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Theodoros Loupis
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Katerina Zoi
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Dryllis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sevastianos Hatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
19
|
Zhao G, Wang Q, Li S, Wang X. Resistance to Hypomethylating Agents in Myelodysplastic Syndrome and Acute Myeloid Leukemia From Clinical Data and Molecular Mechanism. Front Oncol 2021; 11:706030. [PMID: 34650913 PMCID: PMC8505973 DOI: 10.3389/fonc.2021.706030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
The nucleoside analogs decitabine (5-AZA-dC) and azacitidine (5-AZA) have been developed as targeted therapies to reverse DNA methylation in different cancer types, and they significantly improve the survival of patients who are not suitable for traditional intensive chemotherapies or other treatment regimens. However, approximately 50% of patients have a response to hypomethylating agents (HMAs), and many patients have no response originally or in the process of treatment. Even though new combination regimens have been tested to overcome the resistance to 5-AZA-dC or 5-AZA, only a small proportion of patients benefited from these strategies, and the outcome was very poor. However, the mechanisms of the resistance remain unknown. Some studies only partially described management after failure and the mechanisms of resistance. Herein, we will review the clinical and molecular signatures of the HMA response, alternative treatment after failure, and the causes of resistance in hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Xiaoqin Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Aspriţoiu VM, Stoica I, Bleotu C, Diaconu CC. Epigenetic Regulation of Angiogenesis in Development and Tumors Progression: Potential Implications for Cancer Treatment. Front Cell Dev Biol 2021; 9:689962. [PMID: 34552922 PMCID: PMC8451900 DOI: 10.3389/fcell.2021.689962] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a multi-stage process of new blood vessel development from pre-existing vessels toward an angiogenic stimulus. The process is essential for tissue maintenance and homeostasis during embryonic development and adult life as well as tumor growth. Under normal conditions, angiogenesis is involved in physiological processes, such as wound healing, cyclic regeneration of the endometrium, placental development and repairing certain cardiac damage, in pathological conditions, it is frequently associated with cancer development and metastasis. The control mechanisms of angiogenesis in carcinogenesis are tightly regulated at the genetic and epigenetic level. While genetic alterations are the critical part of gene silencing in cancer cells, epigenetic dysregulation can lead to repression of tumor suppressor genes or oncogene activation, becoming an important event in early development and the late stages of tumor development, as well. The global alteration of the epigenetic spectrum, which includes DNA methylation, histone modification, chromatin remodeling, microRNAs, and other chromatin components, is considered one of the hallmarks of cancer, and the efforts are concentrated on the discovery of molecular epigenetic markers that identify cancerous precursor lesions or early stage cancer. This review aims to highlight recent findings on the genetic and epigenetic changes that can occur in physiological and pathological angiogenesis and analyze current knowledge on how deregulation of epigenetic modifiers contributes to tumorigenesis and tumor maintenance. Also, we will evaluate the clinical relevance of epigenetic markers of angiogenesis and the potential use of "epi-drugs" in modulating the responsiveness of cancer cells to anticancer therapy through chemotherapy, radiotherapy, immunotherapy and hormone therapy as anti-angiogenic strategies in cancer.
Collapse
Affiliation(s)
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Faculty of Biology, University of Bucharest, Bucharest, Romania.,Romanian Academy, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | |
Collapse
|
21
|
Wang B, Guan W, Lv N, Li T, Yu F, Huang Y, Wang Y, Li L, Yu L. Genetic features and efficacy of decitabine-based chemotherapy in elderly patients with acute myeloid leukemia. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2021; 26:371-379. [PMID: 33971800 DOI: 10.1080/16078454.2021.1921434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The outcome of elderly acute myeloid leukemia (AML) patients is poor, which was traditionally attributed to patient- and leukemia-related factors. However, studies about the genetic features of these elderly patients have not been integrated and the genetic mechanism of their poor outcome is less known. METHODS Here, we used next generation sequencing (NGS) to identify the genetic features of elderly AML patients and confirmed the efficacy of chemotherapy based on molecular aberrations. Mutations in 111 genes relevant to hematological malignancy was analysed by virtue of NGS and the genetic differences were compared between elderly (n=52) and young (n=161) AML patients. Furthermore, the outcome of decitabine-based chemotherapy was identified in elderly patients. RESULTS Frequencies of adverse genetic alterations, such as RUNX1 and secondary-type mutations (ASXL1, STAG2 and spliceosome), were much higher in elderly patients, while the frequency of WT1 mutations was much lower. Moreover, epigenetic mutations such as DNMT3A, TET2, ASXL1 and IDH2, were also more common in elderly patients. Furthermore, there were 39 elderly patients receiving the decitabine-based chemotherapy, and the results showed that the overall response rate (ORR) and complete remission rate (CR) were 76.9% and 71.8%, respectively. The median overall survival (OS) for those older patients was 12 months, and the 2-year OS probability was 20.5%. DISCUSSION Our study provides deep understanding into the molecular mechanisms of the poor outcome of elderly AML patients. CONCLUSION Epigenetic mutations play an important role, and decitabine-based regimen can be used as alternative first-line chemotherapy for elderly patients.
Collapse
Affiliation(s)
- Bianhong Wang
- Department of Hematology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China.,Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wei Guan
- Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Na Lv
- Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ting Li
- Annoroad Gene Technology, Beijing, People's Republic of China
| | - Fan Yu
- Department of Hematology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yuehua Huang
- Department of Hematology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yanying Wang
- Department of Hematology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Lihong Li
- Department of Hematology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China.,Department of Hematology and Oncology, Shenzhen University General Hospital; Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, People's Republic of China
| |
Collapse
|
22
|
Susmi TF, Rahman A, Khan MMR, Yasmin F, Islam MS, Nasif O, Alharbi SA, Batiha GES, Hossain MU. Prognostic and clinicopathological insights of phosphodiesterase 9A gene as novel biomarker in human colorectal cancer. BMC Cancer 2021; 21:577. [PMID: 34016083 PMCID: PMC8136133 DOI: 10.1186/s12885-021-08332-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND PDE9A (Phosphodiesterase 9A) plays an important role in proliferation of cells, their differentiation and apoptosis via intracellular cGMP (cyclic guanosine monophosphate) signaling. The expression pattern of PDE9A is associated with diverse tumors and carcinomas. Therefore, PDE9A could be a prospective candidate as a therapeutic target in different types of carcinoma. The study presented here was designed to carry out the prognostic value as a biomarker of PDE9A in Colorectal cancer (CRC). The present study integrated several cancer databases with in-silico techniques to evaluate the cancer prognosis of CRC. RESULTS The analyses suggested that the expression of PDE9A was significantly down-regulated in CRC tissues than in normal tissues. Moreover, methylation in the DNA promoter region might also manipulate PDE9A gene expression. The Kaplan-Meier curves indicated that high level of expression of PDE9A gene was associated to higher survival in OS, RFS, and DSS in CRC patients. PDE9A demonstrated the highest positive correlation for rectal cancer recurrence with a marker gene CEACAM7. Furtheremore, PDE9A shared consolidated pathways with MAPK14 to induce survival autophagy in CRC cells and showed interaction with GUCY1A2 to drive CRPC. CONCLUSIONS Overall, the prognostic value of PDE9A gene could be used as a potential tumor biomarker for CRC.
Collapse
Affiliation(s)
- Tasmina Ferdous Susmi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Atikur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Fermentation Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Md. Moshiur Rahman Khan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Farzana Yasmin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Shariful Islam
- Department of Reproductive and Developmental Biology, Graduate School of Life Science, Hokkaido University, Sapporo, 5 Chome Kita 8 Jonishi, Kita Ward, Sapporo, Hokkaido 060-0808 Japan
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506-022 USA
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box 2925, Riyadh, 11461 Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh, 11451 Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511 Egypt
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349 Bangladesh
| |
Collapse
|
23
|
Wang W, Auer P, Zhang T, Spellman S, Carlson KS, Nazha A, Bolon YT, Saber W. Impact of Epigenomic Hypermethylation at TP53 on Allogeneic Hematopoietic Cell Transplantation Outcomes for Myelodysplastic Syndromes. Transplant Cell Ther 2021; 27:659.e1-659.e6. [PMID: 33992829 PMCID: PMC8421055 DOI: 10.1016/j.jtct.2021.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/03/2021] [Accepted: 04/29/2021] [Indexed: 01/25/2023]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell disorders for which allogeneic hematopoietic cell transplantation (HCT) is currently the sole curative treatment. Epigenetic lesions are considered a major pathogenetic determinant in many cancers, and in MDS, epigenetic-based interventions have emerged as life-prolonging therapies. However, the impact of epigenomic aberrations on HCT outcomes among patients with MDS are not well understood. We hypothesized that epigenomic signatures in MDS patients before undergoing HCT serve as a novel prognostic indicator of the risk of post-HCT MDS relapse. To evaluate these epigenomic signatures in MDS patients, we analyzed reduced representation bisulfite sequencing profiles in a matched case-control population of 94 patients. Among these HCT recipients, 47 patients with MDS who relapsed post-HCT (cases) were matched 1:1 to patients with MDS who did not relapse (controls). Only patients with wild-type TP53, RAS pathway, and JAK2 mutations were included in this study to promote the discovery of novel factors. Cases were matched with controls based on conditioning regimen intensity, age, sex, Revised International Prognostic Scoring System, Karnofsky Performance Status, graft type, and donor type. Pre-HCT whole-blood samples from cases and matched controls were obtained from the Center for International Blood and Marrow Transplant Research repository. We comprehensively identified differentially methylated regions (DMRs) by comparing the methylation patterns among matched cases and controls. Our findings show that cases displayed more hyper-DMRs pretransplantation compared with controls, even after adjusting for pre-HCT use of hypomethylating agents. Hyper-DMRs specific to cases were mapped to the transcription start site of 218 unique genes enriched in 5 different signaling pathways that may serve as regions of interest and factors to consider as prognostic determinants of post-HCT relapse in MDS patients. Interestingly, although patients selected for this cohort were wild-type for the TP53 gene, cases showed significantly greater levels of methylation at TP53 compared with controls. These findings indicate that previously identified prognostic genes for MDS, such as TP53, may affect disease relapse not only through genetic mutation, but also through epigenetic methylation mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Paul Auer
- National Marrow Donor Program/Be the Match, Minneapolis, Minnesota
| | - Tao Zhang
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | | | - Aziz Nazha
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Avon Lake, Ohio
| | - Yung-Tsi Bolon
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota.
| | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
24
|
Schwenger E, Steidl U. An evolutionary approach to clonally complex hematologic disorders. Blood Cancer Discov 2021; 2:201-215. [PMID: 34027415 PMCID: PMC8133502 DOI: 10.1158/2643-3230.bcd-20-0219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging clonal complexity has brought into question the way in which we perceive and, in turn, treat disorders of the hematopoietic system. Former models of cell-intrinsic clonal dominance driven by acquisition of driver genes in a stereotypic sequence are often insufficient in explaining observations such as clonal hematopoiesis, and new paradigms are in order. Here, we review the evidence both within the hematologic malignancy field and also borrow from perspectives rooted in evolutionary biology to reframe pathogenesis of hematologic disorders as dynamic processes involving complex interplays of genetic and non-genetic subclones and the tissue microenvironment in which they reside.
Collapse
Affiliation(s)
- Emily Schwenger
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, New York
- Departments of Cell Biology and Medicine (Oncology), Albert Einstein Cancer Center, Bronx, New York
- Blood Cancer Institute, Albert Einstein Cancer Center, Bronx, New York
- Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Ulrich Steidl
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, New York.
- Departments of Cell Biology and Medicine (Oncology), Albert Einstein Cancer Center, Bronx, New York.
- Blood Cancer Institute, Albert Einstein Cancer Center, Bronx, New York.
- Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
25
|
Zhu H, Yang B, Liu J, Wang B, Wu Y, Zheng Z, Ling Y. A novel treatment regimen of granulocyte colony-stimulating factor combined with ultra-low-dose decitabine and low-dose cytarabine in older patients with acute myeloid leukemia and myelodysplastic syndromes. Ther Adv Hematol 2021; 12:20406207211009334. [PMID: 33995987 PMCID: PMC8111530 DOI: 10.1177/20406207211009334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Older patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) unfit for intensive chemotherapy are emergent for suitable treatment strategies. Hypomethylating agents and low-dose cytarabine have generated relevant benefits in the hematological malignancies over recent decades. We evaluated the efficacy and safety of the novel treatment regimen consisting of ultra-low-dose decitabine and low-dose cytarabine, with granulocyte colony-stimulating factor (G-CSF) in this population of patients. Methods and materials: Patients aged more than 60 years with newly diagnosed AML/MDS were enrolled to receive therapy combined of 300 µg subcutaneously per day for priming, decitabine 5.15–7.62 mg/m2/d intravenously and cytarabine 15 mg/m2/d twice a day subcutaneously and G-CSF for consecutive 10 days every 28 days. The study enrolled 28 patients unfit for standard intensive chemotherapy. The median age of patients was 68 years (range 60–83 years) and 20 (71.4%) patients harbored AML. The primary outcome was to evaluate overall response rate. Results: Overall, this novel ultra-low-dose treatment regimen was well tolerated, with 0% of both 4- and 8-week mortality occurrence. Objective response rate (CR + CRi + PR in AML and CR + mCR + PR in MDS) was 57.1% after the first treatment course. Responses of hematologic improvement (HI) aspect were achieved in 18 of 28 (64.3%) patients, 11 (39.3%), 12 (42.9%), and eight patients (28.6%) achieved HI-E, HI-P, HI-N, respectively. Conclusions: Untreated elderly with AML/MDS were well tolerated and benefited from this novel ultra-low-dose treatment regimen.
Collapse
Affiliation(s)
- Huan Zhu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Bin Yang
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Jia Liu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Biao Wang
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yicun Wu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Zhuojun Zheng
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yun Ling
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Juqian Road 185, Changzhou, Jiangsu 213000, China
| |
Collapse
|
26
|
Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/pharmacodynamic randomized crossover study. Blood 2021; 136:674-683. [PMID: 32285126 DOI: 10.1182/blood.2019004143] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/28/2020] [Indexed: 12/24/2022] Open
Abstract
This phase 2 study was designed to compare systemic decitabine exposure, demethylation activity, and safety in the first 2 cycles with cedazuridine 100 mg/decitabine 35 mg vs standard decitabine 20 mg/m2 IV. Adults with International Prognostic Scoring System intermediate-1/2- or high-risk myelodysplastic syndromes (MDS) or chronic myelomonocytic leukemia (CMML) were randomized 1:1 to receive oral cedazuridine/decitabine or IV decitabine in cycle 1, followed by crossover to the other treatment in cycle 2. All patients received oral cedazuridine/decitabine in subsequent cycles. Cedazuridine and decitabine were given initially as separate capsules in a dose-confirmation stage and then as a single fixed-dose combination (FDC) tablet. Primary end points: mean decitabine systemic exposure (geometric least-squares mean [LSM]) of oral/IV 5-day area under curve from time 0 to last measurable concentration (AUClast), percentage long interspersed nuclear element 1 (LINE-1) DNA demethylation for oral cedazuridine/decitabine vs IV decitabine, and clinical response. Eighty patients were randomized and treated. Oral/IV ratios of geometric LSM 5-day AUClast (80% confidence interval) were 93.5% (82.1-106.5) and 97.6% (80.5-118.3) for the dose-confirmation and FDC stages, respectively. Differences in mean %LINE-1 demethylation between oral and IV were ≤1%. Clinical responses were observed in 48 patients (60%), including 17 (21%) with complete response. The most common grade ≥3 adverse events regardless of causality were neutropenia (46%), thrombocytopenia (38%), and febrile neutropenia (29%). Oral cedazuridine/decitabine (100/35 mg) produced similar systemic decitabine exposure, DNA demethylation, and safety vs decitabine 20 mg/m2 IV in the first 2 cycles, with similar efficacy. This study is registered at www.clinicaltrials.gov as #NCT02103478.
Collapse
|
27
|
Reilly BM, Luger T, Park S, Lio CWJ, González-Avalos E, Wheeler EC, Lee M, Williamson L, Tanaka T, Diep D, Zhang K, Huang Y, Rao A, Bejar R. 5-Azacytidine Transiently Restores Dysregulated Erythroid Differentiation Gene Expression in TET2-Deficient Erythroleukemia Cells. Mol Cancer Res 2021; 19:451-464. [PMID: 33172974 PMCID: PMC7925369 DOI: 10.1158/1541-7786.mcr-20-0453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/05/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
DNA methyltransferase inhibitors (DNMTI) like 5-Azacytidine (5-Aza) are the only disease-modifying drugs approved for the treatment of higher-risk myelodysplastic syndromes (MDS), however less than 50% of patients respond, and there are no predictors of response with clinical utility. Somatic mutations in the DNA methylation regulating gene tet-methylcytosine dioxygenase 2 (TET2) are associated with response to DNMTIs, however the mechanisms responsible for this association remain unknown. Using bisulfite padlock probes, mRNA sequencing, and hydroxymethylcytosine pull-down sequencing at several time points throughout 5-Aza treatment, we show that TET2 loss particularly influences DNA methylation (5mC) and hydroxymethylation (5hmC) patterns at erythroid gene enhancers and is associated with downregulation of erythroid gene expression in the human erythroleukemia cell line TF-1. 5-Aza disproportionately induces expression of these down-regulated genes in TET2KO cells and this effect is related to dynamic 5mC changes at erythroid gene enhancers after 5-Aza exposure. We identified differences in remethylation kinetics after 5-Aza exposure for several types of genomic regulatory elements, with distal enhancers exhibiting longer-lasting 5mC changes than other regions. This work highlights the role of 5mC and 5hmC dynamics at distal enhancers in regulating the expression of differentiation-associated gene signatures, and sheds light on how 5-Aza may be more effective in patients harboring TET2 mutations. IMPLICATIONS: TET2 loss in erythroleukemia cells induces hypermethylation and impaired expression of erythroid differentiation genes which can be specifically counteracted by 5-Azacytidine, providing a potential mechanism for the increased efficacy of 5-Aza in TET2-mutant patients with MDS. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/3/451/F1.large.jpg.
Collapse
Affiliation(s)
- Brian M Reilly
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
- Moores Cancer Center, University of California San Diego, La Jolla, California
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Timothy Luger
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Soo Park
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Chan-Wang Jerry Lio
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, California
| | - Edahí González-Avalos
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, California
| | - Emily C Wheeler
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Minjung Lee
- Center for Epigenetics and Disease Prevention, Texas A&M University Health Science Center, Houston, Texas
| | - Laura Williamson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Tiffany Tanaka
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Dinh Diep
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Texas A&M University Health Science Center, Houston, Texas
| | - Anjana Rao
- Moores Cancer Center, University of California San Diego, La Jolla, California
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, California
| | - Rafael Bejar
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California.
- Moores Cancer Center, University of California San Diego, La Jolla, California
| |
Collapse
|
28
|
Cabezón M, Malinverni R, Bargay J, Xicoy B, Marcé S, Garrido A, Tormo M, Arenillas L, Coll R, Borras J, Jiménez MJ, Hoyos M, Valcárcel D, Escoda L, Vall-Llovera F, Garcia A, Font LL, Rámila E, Buschbeck M, Zamora L. Different methylation signatures at diagnosis in patients with high-risk myelodysplastic syndromes and secondary acute myeloid leukemia predict azacitidine response and longer survival. Clin Epigenetics 2021; 13:9. [PMID: 33446256 PMCID: PMC7809812 DOI: 10.1186/s13148-021-01002-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epigenetic therapy, using hypomethylating agents (HMA), is known to be effective in the treatment of high-risk myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients who are not suitable for intensive chemotherapy and/or allogeneic stem cell transplantation. However, response rates to HMA are low and there is an unmet need in finding prognostic and predictive biomarkers of treatment response and overall survival. We performed global methylation analysis of 75 patients with high-risk MDS and secondary AML who were included in CETLAM SMD-09 protocol, in which patients received HMA or intensive treatment according to age, comorbidities and cytogenetic. RESULTS Unsupervised analysis of global methylation pattern at diagnosis did not allow patients to be differentiated according to the cytological subtype, cytogenetic groups, treatment response or patient outcome. However, after a supervised analysis we found a methylation signature defined by 200 probes, which allowed differentiating between patients responding and non-responding to azacitidine (AZA) treatment and a different methylation pattern also defined by 200 probes that allowed to differentiate patients according to their survival. On studying follow-up samples, we confirmed that AZA decreases global DNA methylation, but in our cohort the degree of methylation decrease did not correlate with the type of response. The methylation signature detected at diagnosis was not useful in treated samples to distinguish patients who were going to relapse or progress. CONCLUSIONS Our findings suggest that in a subset of specific CpGs, altered DNA methylation patterns at diagnosis may be useful as a biomarker for predicting AZA response and survival.
Collapse
Affiliation(s)
- M Cabezón
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Badalona, Spain
| | - R Malinverni
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Spain
| | - J Bargay
- Hematology Service, Hospital Son Llàtzer, Palma de Mallorca, Spain
| | - B Xicoy
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Badalona, Spain
| | - S Marcé
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain
| | - A Garrido
- Hematology Service, Hospital de Sant Pau, Barcelona, Spain
| | - M Tormo
- Hematology Service, Hospital Clínico de Valencia, Valencia, Spain
| | - L Arenillas
- Hematology Service, Hospital del Mar, Barcelona, Spain
| | - R Coll
- Hematology Service, ICO Girona - Hospital Josep Trueta, Girona, Spain
| | - J Borras
- Hematology Service, Hospital Son Llàtzer, Palma de Mallorca, Spain
| | - M J Jiménez
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain
| | - M Hoyos
- Hematology Service, Hospital de Sant Pau, Barcelona, Spain
| | - D Valcárcel
- Hematology Service, Hospital Vall D'Hebron, Barcelona, Spain
| | - L Escoda
- Hematology Service, Hospital Joan XXIII, Tarragona, Spain
| | - F Vall-Llovera
- Hematology Service, Hospital Mútua de Terrassa, Terrassa, Spain
| | - A Garcia
- Hematology Service, Hospital Arnau de Vilanova, Lleida, Spain
| | - L L Font
- Hematology Service, Hospital Verge de La Cinta, Tortosa, Spain
| | - E Rámila
- Hematology Service, Hospital Parc Taulí, Sabadell, Spain
| | - M Buschbeck
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Spain.,Program for Predictive and Personalized Medicine of Cancer, Germans Trias I Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
| | - L Zamora
- Hematology Laboratory Service, ICO Badalona-Hospital Germans Trias I Pujol, Myeloid Neoplasms Group, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain.
| | | |
Collapse
|
29
|
Zhao L, Jiang Y, Wang Y, Bai Y, Liu L, Li Y. Case Report: Sellar Ependymomas: A Clinic-Pathological Study and Literature Review. Front Endocrinol (Lausanne) 2021; 12:551493. [PMID: 34168614 PMCID: PMC8218727 DOI: 10.3389/fendo.2021.551493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Ependymomas are primary glial tumors arising from cells related to the ependymal lining of the ventricular system. They are classified into at least nine different molecular subtypes according to molecular phenotype, histological morphology, and tumor location. Primary sellar ependymoma is an extremely rare malignancy of the central nervous system, with only 12 known cases reported in humans. We herein report a case of ependymoma located at the pituitary region in a 44-year-old female patient and discuss the molecular subtype, natural history, clinical presentation, radiological findings, histological features, immunohistochemical characteristics, ultrastructural examinations, treatment, and prognosis of sellar ependymoma. This case report may serve as a helpful reference for clinicians and radiologists in clinical practice.
Collapse
Affiliation(s)
- Liyan Zhao
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Yining Jiang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yubo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yang Bai
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Liping Liu
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunqian Li,
| |
Collapse
|
30
|
Mariani M, Mattiucci D, Rossi E, Mari V, Masala E, Giuliani A, Santini V, Olivieri F, Marinelli Busilacchi E, Mancini S, Olivieri A, Poloni A. Serum Inflamma-miR Signature: A Biomarker of Myelodysplastic Syndrome? Front Oncol 2020; 10:595838. [PMID: 33330086 PMCID: PMC7713643 DOI: 10.3389/fonc.2020.595838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marianna Mariani
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Domenico Mattiucci
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Rossi
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Valeria Mari
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Erico Masala
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Valeria Santini
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Mancini
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Attilio Olivieri
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | - Antonella Poloni
- Hematology Clinic, Department of Clinical and Molecular Sciences, DISCLIMO, AOU Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
31
|
Gene expression signatures associated with sensitivity to azacitidine in myelodysplastic syndromes. Sci Rep 2020; 10:19555. [PMID: 33177628 PMCID: PMC7658235 DOI: 10.1038/s41598-020-76510-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic stem cell transplantation is currently the only curative treatment option for myelodysplastic syndromes (MDS). Pre-transplant debulking treatment have been employed for advanced MDS and we previously reported that marrow response (blast ≤ 5%) following the bridging therapy with hypomethylating agent was an independent favorable factor for survival; however, it is still not clear which patients will respond to hypomethylating agent and which genomic features can predict the response. In this study, we performed RNAseq for 23 MDS patients among which 14 (61%) and 9 (39%) patients showed marrow complete remission and primary resistance to azacitidine, respectively. Differential expression-based analyses of treatment-naive, baseline gene expression profiles revealed that molecular functions representing mitochondria and apoptosis were up-regulated in responders. In contrast, we identified genes involved in the Wnt pathway were relatively up-regulated in non-responders. In independent validation cohorts of MDS patients, the expression of gene sets specific to non-responders and responders distinguished the patients with favorable prognosis and those responded to azacitidine highlighting the prognostic and predictive implication. In addition, a systems biology approach identified genes involved in ubiquitination, such as UBC and PFDN2, which may be key players in the regulation of differential gene expression in treatment responders and non-responders. Taken together, identifying the gene expression signature may advance our understanding of the molecular mechanisms of azacitidine and may also serve to predict patient responses to drug treatment.
Collapse
|
32
|
Morschhauser F, Tilly H, Chaidos A, McKay P, Phillips T, Assouline S, Batlevi CL, Campbell P, Ribrag V, Damaj GL, Dickinson M, Jurczak W, Kazmierczak M, Opat S, Radford J, Schmitt A, Yang J, Whalen J, Agarwal S, Adib D, Salles G. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol 2020. [PMID: 33035457 DOI: 10.1016/s1470-2045(20)3044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Activating mutations of EZH2, an epigenetic regulator, are present in approximately 20% of patients with follicular lymphoma. We investigated the activity and safety of tazemetostat, a first-in-class, oral EZH2 inhibitor, in patients with follicular lymphoma. METHODS This study was an open-label, single-arm, phase 2 trial done at 38 clinics or hospitals in France, the UK, Australia, Canada, Poland, Italy, Ukraine, Germany, and the USA. Eligible patients were adults (≥18 years) with histologically confirmed follicular lymphoma (grade 1, 2, 3a, or 3b) that had relapsed or was refractory to two or more systemic therapies, had an Eastern Cooperative Oncology Group performance status of 0-2, and had sufficient tumour tissue for central testing of EZH2 mutation status. Patients were categorised by EZH2 status: mutant (EZH2mut) or wild-type (EZH2WT). Patients received 800 mg of tazemetostat orally twice per day in continuous 28-day cycles. The primary endpoint was objective response rate based on the 2007 International Working Group criteria for non-Hodgkin lymphoma, assessed by an independent radiology committee. Activity and safety analyses were done in patients who received one dose or more of tazemetostat. This study is registered with ClinicalTrials.gov, NCT01897571, and follow-up is ongoing. FINDINGS Between July 9, 2015, and May 24, 2019, 99 patients (45 in the EZH2mut cohort and 54 in the EZH2WT cohort) were enrolled in the study. At data cutoff for the analysis (Aug 9, 2019), the median follow-up was 22·0 months (IQR 12·0-26·7) for the EZH2mut cohort and 35·9 months (24·9-40·5) for the EZH2WT cohort. The objective response rate was 69% (95% CI 53-82; 31 of 45 patients) in the EZH2mut cohort and 35% (23-49; 19 of 54 patients) in the EZH2WT cohort. Median duration of response was 10·9 months (95% CI 7·2-not estimable [NE]) in the EZH2mut cohort and 13·0 months (5·6-NE) in the EZH2WT cohort; median progression-free survival was 13·8 months (10·7-22·0) and 11·1 months (3·7-14·6). Among all 99 patients, treatment-related grade 3 or worse adverse events included thrombocytopenia (three [3%]), neutropenia (three [3%]), and anaemia (two [2%]). Serious treatment-related adverse events were reported in four (4%) of 99 patients. There were no treatment-related deaths. INTERPRETATION Tazemetostat monotherapy showed clinically meaningful, durable responses and was generally well tolerated in heavily pretreated patients with relapsed or refractory follicular lymphoma. Tazemetostat is a novel treatment for patients with follicular lymphoma. FUNDING Epizyme.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Benzamides/administration & dosage
- Benzamides/adverse effects
- Biphenyl Compounds
- Enhancer of Zeste Homolog 2 Protein/genetics
- Female
- Humans
- Lymphoma, Follicular/drug therapy
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Male
- Middle Aged
- Morpholines
- Mutation/genetics
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Progression-Free Survival
- Pyridones/administration & dosage
- Pyridones/adverse effects
- Treatment Outcome
Collapse
Affiliation(s)
- Franck Morschhauser
- Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU de Lille, Université de Lille, Lille, France.
| | - Hervé Tilly
- Department of Hematology and INSERM U1245, Centre Henri Becquerel and Rouen University, Rouen, France
| | - Aristeidis Chaidos
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Hammersmith Hospital & Imperial College Healthcare NHS Trust, London, UK
| | - Pamela McKay
- Department of Hematology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Tycel Phillips
- Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sarit Assouline
- Division of Hematology, Jewish General Hospital, Montreal, QC, Canada; Department of Oncology, McGill University, Montreal, QC, Canada
| | - Connie Lee Batlevi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Campbell
- Department of Clinical Haematology, Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
| | - Vincent Ribrag
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Gandhi Laurent Damaj
- Hematology Institute, Hematologie Clinique, University Hospital School of Medicine, Caen, France
| | - Michael Dickinson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Wojciech Jurczak
- Department of Hematology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Stephen Opat
- Haematology Department, Monash University, Melbourne, VIC, Australia
| | - John Radford
- Department of Medical Oncology, University of Manchester, Manchester, UK; NIHR Manchester Clinical Research Facility, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Anna Schmitt
- Department of Hematology, Institut Bergonié, Bordeaux, France
| | - Jay Yang
- Clinical Development, Epizyme, Cambridge, MA, USA
| | | | | | - Deyaa Adib
- Clinical Development, Epizyme, Cambridge, MA, USA
| | - Gilles Salles
- Department of Hematology, Lyon-Sud Hospital, University of Lyon, Pierre-Bénite, France
| |
Collapse
|
33
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|
34
|
Morschhauser F, Tilly H, Chaidos A, McKay P, Phillips T, Assouline S, Batlevi CL, Campbell P, Ribrag V, Damaj GL, Dickinson M, Jurczak W, Kazmierczak M, Opat S, Radford J, Schmitt A, Yang J, Whalen J, Agarwal S, Adib D, Salles G. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol 2020; 21:1433-1442. [PMID: 33035457 DOI: 10.1016/s1470-2045(20)30441-1] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Activating mutations of EZH2, an epigenetic regulator, are present in approximately 20% of patients with follicular lymphoma. We investigated the activity and safety of tazemetostat, a first-in-class, oral EZH2 inhibitor, in patients with follicular lymphoma. METHODS This study was an open-label, single-arm, phase 2 trial done at 38 clinics or hospitals in France, the UK, Australia, Canada, Poland, Italy, Ukraine, Germany, and the USA. Eligible patients were adults (≥18 years) with histologically confirmed follicular lymphoma (grade 1, 2, 3a, or 3b) that had relapsed or was refractory to two or more systemic therapies, had an Eastern Cooperative Oncology Group performance status of 0-2, and had sufficient tumour tissue for central testing of EZH2 mutation status. Patients were categorised by EZH2 status: mutant (EZH2mut) or wild-type (EZH2WT). Patients received 800 mg of tazemetostat orally twice per day in continuous 28-day cycles. The primary endpoint was objective response rate based on the 2007 International Working Group criteria for non-Hodgkin lymphoma, assessed by an independent radiology committee. Activity and safety analyses were done in patients who received one dose or more of tazemetostat. This study is registered with ClinicalTrials.gov, NCT01897571, and follow-up is ongoing. FINDINGS Between July 9, 2015, and May 24, 2019, 99 patients (45 in the EZH2mut cohort and 54 in the EZH2WT cohort) were enrolled in the study. At data cutoff for the analysis (Aug 9, 2019), the median follow-up was 22·0 months (IQR 12·0-26·7) for the EZH2mut cohort and 35·9 months (24·9-40·5) for the EZH2WT cohort. The objective response rate was 69% (95% CI 53-82; 31 of 45 patients) in the EZH2mut cohort and 35% (23-49; 19 of 54 patients) in the EZH2WT cohort. Median duration of response was 10·9 months (95% CI 7·2-not estimable [NE]) in the EZH2mut cohort and 13·0 months (5·6-NE) in the EZH2WT cohort; median progression-free survival was 13·8 months (10·7-22·0) and 11·1 months (3·7-14·6). Among all 99 patients, treatment-related grade 3 or worse adverse events included thrombocytopenia (three [3%]), neutropenia (three [3%]), and anaemia (two [2%]). Serious treatment-related adverse events were reported in four (4%) of 99 patients. There were no treatment-related deaths. INTERPRETATION Tazemetostat monotherapy showed clinically meaningful, durable responses and was generally well tolerated in heavily pretreated patients with relapsed or refractory follicular lymphoma. Tazemetostat is a novel treatment for patients with follicular lymphoma. FUNDING Epizyme.
Collapse
Affiliation(s)
- Franck Morschhauser
- Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU de Lille, Université de Lille, Lille, France.
| | - Hervé Tilly
- Department of Hematology and INSERM U1245, Centre Henri Becquerel and Rouen University, Rouen, France
| | - Aristeidis Chaidos
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Hammersmith Hospital & Imperial College Healthcare NHS Trust, London, UK
| | - Pamela McKay
- Department of Hematology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Tycel Phillips
- Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sarit Assouline
- Division of Hematology, Jewish General Hospital, Montreal, QC, Canada; Department of Oncology, McGill University, Montreal, QC, Canada
| | - Connie Lee Batlevi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Campbell
- Department of Clinical Haematology, Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
| | - Vincent Ribrag
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Gandhi Laurent Damaj
- Hematology Institute, Hematologie Clinique, University Hospital School of Medicine, Caen, France
| | - Michael Dickinson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Wojciech Jurczak
- Department of Hematology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Stephen Opat
- Haematology Department, Monash University, Melbourne, VIC, Australia
| | - John Radford
- Department of Medical Oncology, University of Manchester, Manchester, UK; NIHR Manchester Clinical Research Facility, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Anna Schmitt
- Department of Hematology, Institut Bergonié, Bordeaux, France
| | - Jay Yang
- Clinical Development, Epizyme, Cambridge, MA, USA
| | | | | | - Deyaa Adib
- Clinical Development, Epizyme, Cambridge, MA, USA
| | - Gilles Salles
- Department of Hematology, Lyon-Sud Hospital, University of Lyon, Pierre-Bénite, France
| |
Collapse
|
35
|
Gounder M, Schöffski P, Jones RL, Agulnik M, Cote GM, Villalobos VM, Attia S, Chugh R, Chen TWW, Jahan T, Loggers ET, Gupta A, Italiano A, Demetri GD, Ratan R, Davis LE, Mir O, Dileo P, Van Tine BA, Pressey JG, Lingaraj T, Rajarethinam A, Sierra L, Agarwal S, Stacchiotti S. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. Lancet Oncol 2020; 21:1423-1432. [PMID: 33035459 DOI: 10.1016/s1470-2045(20)30451-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Epithelioid sarcoma is a rare and aggressive soft-tissue sarcoma subtype. Over 90% of tumours have lost INI1 expression, leading to oncogenic dependence on the transcriptional repressor EZH2. In this study, we report the clinical activity and safety of tazemetostat, an oral selective EZH2 inhibitor, in patients with epithelioid sarcoma. METHODS In this open-label, phase 2 basket study, patients were enrolled from 32 hospitals and clinics in Australia, Belgium, Canada, France, Germany, Italy, Taiwan, the USA, and the UK into seven cohorts of patients with different INI1-negative solid tumours or synovial sarcoma. Patients eligible for the epithelioid sarcoma cohort (cohort 5) were aged 16 years or older with histologically confirmed, locally advanced or metastatic epithelioid sarcoma; documented loss of INI1 expression by immunohistochemical analysis or biallelic SMARCB1 (the gene that encodes INI1) alterations, or both; and an Eastern Cooperative Oncology Group performance status score of 0-2. Patients received 800 mg tazemetostat orally twice per day in continuous 28-day cycles until disease progression, unacceptable toxicity, or withdrawal of consent. The primary endpoint was investigator-assessed objective response rate measured according to the Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary endpoints were duration of response, disease control rate at 32 weeks, progression-free survival, overall survival, and pharmacokinetic and pharmacodynamic analyses (primary results reported elsewhere). Time to response was also assessed as an exploratory endpoint. Activity and safety were assessed in the modified intention-to-treat population (ie, patients who received one or more doses of tazemetostat). This trial is registered with ClinicalTrials.gov, NCT02601950, and is ongoing. FINDINGS Between Dec 22, 2015, and July 7, 2017, 62 patients with epithelioid sarcoma were enrolled in the study and deemed eligible for inclusion in this cohort. All 62 patients were included in the modified intention-to-treat analysis. Nine (15% [95% CI 7-26]) of 62 patients had an objective response at data cutoff (Sept 17, 2018). At a median follow-up of 13·8 months (IQR 7·8-19·0), median duration of response was not reached (95% CI 9·2-not estimable). 16 (26% [95% CI 16-39]) patients had disease control at 32 weeks. Median time to response was 3·9 months (IQR 1·9-7·4). Median progression-free survival was 5·5 months (95% CI 3·4-5·9), and median overall survival was 19·0 months (11·0-not estimable). Grade 3 or worse treatment-related adverse events included anaemia (four [6%]) and weight loss (two [3%]). Treatment-related serious adverse events occurred in two patients (one seizure and one haemoptysis). There were no treatment-related deaths. INTERPRETATION Tazemetostat was well tolerated and showed clinical activity in this cohort of patients with advanced epithelioid sarcoma characterised by loss of INI1/SMARCB1. Tazemetostat has the potential to improve outcomes in patients with advanced epithelioid sarcoma. A phase 1b/3 trial of tazemetostat plus doxorubicin in the front-line setting is currently underway (NCT04204941). FUNDING Epizyme.
Collapse
Affiliation(s)
- Mrinal Gounder
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA.
| | - Patrick Schöffski
- Department of General Medical Oncology, and Laboratory of Experimental Oncology, University Hospitals Leuven, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Robin L Jones
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - Mark Agulnik
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Gregory M Cote
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Victor M Villalobos
- Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA; Janssen Pharmaceuticals, Spring House, PA, USA
| | | | - Rashmi Chugh
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Tom Wei-Wu Chen
- National Taiwan University Hospital and Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Thierry Jahan
- University of California San Francisco, San Francisco, CA, USA
| | | | - Abha Gupta
- The Hospital for Sick Children and Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | - George D Demetri
- Dana Farber Cancer Institute and Ludwig Center at Harvard Medical School, Boston, MA, USA
| | | | - Lara E Davis
- Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA
| | - Olivier Mir
- Gustave Roussy Cancer Institute, Paris, France
| | - Palma Dileo
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Brian A Van Tine
- School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Joseph G Pressey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | - Laura Sierra
- Epizyme, Cambridge, MA, USA; Bristol Myers Squibb, Cambridge, MA, USA
| | | | | |
Collapse
|
36
|
DNA methylation identifies genetically and prognostically distinct subtypes of myelodysplastic syndromes. Blood Adv 2020; 3:2845-2858. [PMID: 31582393 DOI: 10.1182/bloodadvances.2019000192] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022] Open
Abstract
Recurrent mutations implicate several epigenetic regulators in the early molecular pathobiology of myelodysplastic syndromes (MDS). We hypothesized that MDS subtypes defined by DNA methylation (DNAm) patterns could enhance our understanding of MDS disease biology and identify patients with convergent epigenetic profiles. Bisulfite padlock probe sequencing was used to measure DNAm of ∼500 000 unique cytosine guanine dinucleotides covering 140 749 nonoverlapping regulatory regions across the genome in bone marrow DNA samples from 141 patients with MDS. Application of a nonnegative matrix factorization (NMF)-based decomposition of DNAm profiles identified 5 consensus clusters described by 5 NMF components as the most stable grouping solution. Each of the 5 NMF components identified by this approach correlated with specific genetic abnormalities and categorized patients into 5 distinct methylation clusters, each largely defined by a single NMF component. Methylation clusters displayed unique differentially methylated regulatory loci enriched for active and bivalent promoters and enhancers. Two clusters were enriched for samples with complex karyotypes, although only one had an increased number of TP53 mutations. Each of the 3 most frequently mutated splicing factors, SF3B1, U2AF1, and SRSF2, was enriched in different clusters. Mutations of ASXL1, EZH2, and RUNX1 were coenriched in the SRSF2-containing cluster. In multivariate analysis, methylation cluster membership remained independently associated with overall survival. Targeted DNAm profiles identify clinically relevant subtypes of MDS not otherwise distinguished by mutations or clinical features. Patients with diverse genetic lesions can converge on common DNAm states with shared pathogenic mechanisms and clinical outcomes.
Collapse
|
37
|
Zhang M, Zhang JY, Sun MQ, Lu P, Liu JX. Realgar (α-As 4S 4) Treats Myelodysplasic Syndromes through Reducing DNA Hypermethylation. Chin J Integr Med 2020; 28:281-288. [PMID: 32418175 DOI: 10.1007/s11655-020-3263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 11/26/2022]
Abstract
DNA hypermethylation is an epigenetic modification that plays a critical role in the oncogenesis of myelodysplastic syndromes (MDS). Aberrant DNA methylation represses the transcription of promotors of tumor suppressor genes, inducing gene silencing. Realgar (α-As4S4) is a traditional medicine used for the treatment of various diseases in the ancient time. Realgar was reported to have efficacy for acute promyelocytic leukemia (APL). It has been demonstrated that realgar could efficiently reduce DNA hypermethylation of MDS. This review discusses the mechanisms of realgar on inhibiting DNA hypermethylation of MDS, as well as the species and metabolisms of arsenic in vivo.
Collapse
Affiliation(s)
- Miao Zhang
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences and Beijing Key Lab of Traditional Chinese Medicine Pharmacology, Beijing, 100091, China
| | - Jia-Yi Zhang
- Education Sector, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ming-Qian Sun
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences and Beijing Key Lab of Traditional Chinese Medicine Pharmacology, Beijing, 100091, China
| | - Peng Lu
- Medical Administration Division, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jian-Xun Liu
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences and Beijing Key Lab of Traditional Chinese Medicine Pharmacology, Beijing, 100091, China.
| |
Collapse
|
38
|
Novel combinations to improve hematopoiesis in myelodysplastic syndrome. Stem Cell Res Ther 2020; 11:132. [PMID: 32197634 PMCID: PMC7083030 DOI: 10.1186/s13287-020-01647-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndrome (MDS) represents a heterogeneous group of clonal hematopoietic disorders, which is characterized by cytopenias in the peripheral blood and bone marrow dysplasia due to ineffective hematopoiesis. Patients with MDS have an increased risk of transformation to acute myeloid leukemia (AML). Although the molecular basis of MDS is heterogeneous, several studies demonstrated the significant contribution of the dysregulated immune system in accelerating MDS progression. The immunosuppressive tumor microenvironment is shown to induce tolerance of MDS blasts, which may result in a further accumulation of genetic aberrations and lead to the disease progression. Increasing evidence shows an expansion of myeloid-derived suppressor cells (MDSCs), a population of inflammation-associated immature cells, in patients with MDS. Interestingly, the increased MDSC populations are shown to be correlated with a risk of disease progression in MDS. In addition, MDS is highly prevalent in aged individuals with non-hematology co-morbidities who are fragile for chemotherapy. Increasing research effort is devoting to identify novel agents to specific targeting of the MDSC population for MDS treatment.
Collapse
|
39
|
Dahn ML, Cruickshank BM, Jackson AJ, Dean C, Holloway RW, Hall SR, Coyle KM, Maillet H, Waisman DM, Goralski KB, Giacomantonio CA, Weaver ICG, Marcato P. Decitabine Response in Breast Cancer Requires Efficient Drug Processing and Is Not Limited by Multidrug Resistance. Mol Cancer Ther 2020; 19:1110-1122. [PMID: 32156786 DOI: 10.1158/1535-7163.mct-19-0745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 11/16/2022]
Abstract
Dysregulation of DNA methylation is an established feature of breast cancers. DNA demethylating therapies like decitabine are proposed for the treatment of triple-negative breast cancers (TNBC) and indicators of response need to be identified. For this purpose, we characterized the effects of decitabine in a panel of 10 breast cancer cell lines and observed a range of sensitivity to decitabine that was not subtype specific. Knockdown of potential key effectors demonstrated the requirement of deoxycytidine kinase (DCK) for decitabine response in breast cancer cells. In treatment-naïve breast tumors, DCK was higher in TNBCs, and DCK levels were sustained or increased post chemotherapy treatment. This suggests that limited DCK levels will not be a barrier to response in patients with TNBC treated with decitabine as a second-line treatment or in a clinical trial. Methylome analysis revealed that genome-wide, region-specific, tumor suppressor gene-specific methylation, and decitabine-induced demethylation did not predict response to decitabine. Gene set enrichment analysis of transcriptome data demonstrated that decitabine induced genes within apoptosis, cell cycle, stress, and immune pathways. Induced genes included those characterized by the viral mimicry response; however, knockdown of key effectors of the pathway did not affect decitabine sensitivity suggesting that breast cancer growth suppression by decitabine is independent of viral mimicry. Finally, taxol-resistant breast cancer cells expressing high levels of multidrug resistance transporter ABCB1 remained sensitive to decitabine, suggesting that the drug could be used as second-line treatment for chemoresistant patients.
Collapse
Affiliation(s)
- Margaret L Dahn
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Ainsleigh J Jackson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cheryl Dean
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryan W Holloway
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Steven R Hall
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Krysta M Coyle
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hillary Maillet
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David M Waisman
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carman A Giacomantonio
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Halifax, Nova Scotia, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
40
|
Ahmed AA, Adam Essa ME. Epigenetic alterations in female urogenital organs cancer: Premise, properties, and perspectives. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Impact of clinical features, cytogenetics, genetic mutations, and methylation dynamics of CDKN2B and DLC-1 promoters on treatment response to azacitidine. Ann Hematol 2020; 99:527-537. [DOI: 10.1007/s00277-020-03932-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022]
|
42
|
Paubelle E, Zylbersztejn F, Maciel TT, Carvalho C, Mupo A, Cheok M, Lieben L, Sujobert P, Decroocq J, Yokoyama A, Asnafi V, Macintyre E, Tamburini J, Bardet V, Castaigne S, Preudhomme C, Dombret H, Carmeliet G, Bouscary D, Ginzburg YZ, de Thé H, Benhamou M, Monteiro RC, Vassiliou GS, Hermine O, Moura IC. Vitamin D Receptor Controls Cell Stemness in Acute Myeloid Leukemia and in Normal Bone Marrow. Cell Rep 2020; 30:739-754.e4. [PMID: 31968250 DOI: 10.1016/j.celrep.2019.12.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/24/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Vitamin D (VD) is a known differentiating agent, but the role of VD receptor (VDR) is still incompletely described in acute myeloid leukemia (AML), whose treatment is based mostly on antimitotic chemotherapy. Here, we present an unexpected role of VDR in normal hematopoiesis and in leukemogenesis. Limited VDR expression is associated with impaired myeloid progenitor differentiation and is a new prognostic factor in AML. In mice, the lack of Vdr results in increased numbers of hematopoietic and leukemia stem cells and quiescent hematopoietic stem cells. In addition, malignant transformation of Vdr-/- cells results in myeloid differentiation block and increases self-renewal. Vdr promoter is methylated in AML as in CD34+ cells, and demethylating agents induce VDR expression. Association of VDR agonists with hypomethylating agents promotes leukemia stem cell exhaustion and decreases tumor burden in AML mouse models. Thus, Vdr functions as a regulator of stem cell homeostasis and leukemic propagation.
Collapse
Affiliation(s)
- Etienne Paubelle
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France; Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France; Department of Clinical Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France.
| | - Florence Zylbersztejn
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France; Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France
| | - Thiago Trovati Maciel
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France
| | - Caroline Carvalho
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France
| | - Annalisa Mupo
- Haematological Cancer Genetics, Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton Cambridge CB10 1SA, UK
| | - Meyling Cheok
- Centre of Research Jean-Pierre Aubert, INSERM UMR 837, 59000 Lille, France
| | - Liesbet Lieben
- Laboratory of Experimental Medicine and Endocrinology, KU Leuven 3000, Belgium
| | - Pierre Sujobert
- Institut Cochin, Département d'Immuno-Hématologie, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, INSERM U1016 Paris, France; Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Justine Decroocq
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France; Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France
| | - Akihiko Yokoyama
- National Cancer Center Research Institute, Chiba 277-8577, Japan
| | - Vahid Asnafi
- Department of Biological Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France
| | - Elizabeth Macintyre
- Department of Biological Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France
| | - Jérôme Tamburini
- Institut Cochin, Département d'Immuno-Hématologie, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, INSERM U1016 Paris, France; Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Valérie Bardet
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France; Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France
| | - Sylvie Castaigne
- Department of Hematology, Hôpital Mignot, 78150 Le Chesnay, France
| | - Claude Preudhomme
- Centre of Research Jean-Pierre Aubert, INSERM UMR 837, 59000 Lille, France
| | - Hervé Dombret
- Department of Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France
| | - Geert Carmeliet
- Laboratory of Experimental Medicine and Endocrinology, KU Leuven 3000, Belgium
| | - Didier Bouscary
- Institut Cochin, Département d'Immuno-Hématologie, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, INSERM U1016 Paris, France; Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Yelena Z Ginzburg
- Erythropoiesis Laboratory, LFKRI, New York Blood Center, New York, NY, USA
| | - Hughes de Thé
- Molecular Virology and Pathology, INSERM UMR 944, 75010 Paris, France; Molecular Virology and Pathology, CNRS 7212, 75010 Paris, France
| | - Marc Benhamou
- INSERM U1149, Center for Research on Inflammation, 75018 Paris, France
| | - Renato C Monteiro
- INSERM U1149, Center for Research on Inflammation, 75018 Paris, France
| | - George S Vassiliou
- Haematological Cancer Genetics, Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton Cambridge CB10 1SA, UK
| | - Olivier Hermine
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France; Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France; Department of Clinical Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France; Laboratory of Excellence GR-Ex, 75015 Paris, France.
| | - Ivan C Moura
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France; Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, 75015 Paris, France; Laboratory of Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
43
|
Aberrant DNA Methylation in Acute Myeloid Leukemia and Its Clinical Implications. Int J Mol Sci 2019; 20:ijms20184576. [PMID: 31527484 PMCID: PMC6770227 DOI: 10.3390/ijms20184576] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease that is characterized by distinct cytogenetic or genetic abnormalities. Recent discoveries in cancer epigenetics demonstrated a critical role of epigenetic dysregulation in AML pathogenesis. Unlike genetic alterations, the reversible nature of epigenetic modifications is therapeutically attractive in cancer therapy. DNA methylation is an epigenetic modification that regulates gene expression and plays a pivotal role in mammalian development including hematopoiesis. DNA methyltransferases (DNMTs) and Ten-eleven-translocation (TET) dioxygenases are responsible for the dynamics of DNA methylation. Genetic alterations of DNMTs or TETs disrupt normal hematopoiesis and subsequently result in hematological malignancies. Emerging evidence reveals that the dysregulation of DNA methylation is a key event for AML initiation and progression. Importantly, aberrant DNA methylation is regarded as a hallmark of AML, which is heralded as a powerful epigenetic marker in early diagnosis, prognostic prediction, and therapeutic decision-making. In this review, we summarize the current knowledge of DNA methylation in normal hematopoiesis and AML pathogenesis. We also discuss the clinical implications of DNA methylation and the current therapeutic strategies of targeting DNA methylation in AML therapy.
Collapse
|
44
|
Duchmann M, Itzykson R. Clinical update on hypomethylating agents. Int J Hematol 2019; 110:161-169. [PMID: 31020568 DOI: 10.1007/s12185-019-02651-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Hypomethylating agents (HMAs), azacitidine and decitabine, are standards of care in higher-risk myelodysplastic syndromes and in acute myeloid leukemia patients ineligible for intensive therapy. Over the last 10 years, research efforts have sought to better understand their mechanism of action, both at the molecular and cellular level. These efforts have yet to robustly identify biomarkers for these agents. The clinical activity of HMAs in myeloid neoplasms has been firmly established now but still remains of limited magnitude. Besides optimized use at different stages of the disease, most of the expected clinical progress with HMAs will come from the development of second-generation compounds orally available and/or with improved pharmacokinetics, and from the search, so far mostly empirical, of HMA-based synergistic drug combinations.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/administration & dosage
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Azacitidine/administration & dosage
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Clinical Trials as Topic
- DNA Methylation/drug effects
- Decitabine/chemistry
- Decitabine/pharmacology
- Decitabine/therapeutic use
- Drug Administration Schedule
- Drug Combinations
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Uridine/administration & dosage
- Uridine/analogs & derivatives
- Uridine/pharmacology
- Uridine/therapeutic use
Collapse
Affiliation(s)
- Matthieu Duchmann
- INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France
- Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Raphael Itzykson
- INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France.
- Clinical Hematology Department, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Avenue Claude Vellefaux, 75010, Paris, France.
| |
Collapse
|
45
|
Tobiasson M, Kittang AO. Treatment of myelodysplastic syndrome in the era of next-generation sequencing. J Intern Med 2019; 286:41-62. [PMID: 30869816 DOI: 10.1111/joim.12893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing (NGS) is rapidly changing the clinical care of patients with myelodysplastic syndrome (MDS). NGS can be used for various applications: (i) in the diagnostic process to discriminate between MDS and other diseases such as aplastic anaemia, myeloproliferative disorders and idiopathic cytopenias; (ii) for classification, for example, where the presence of SF3B1 mutation is one criterion for the ring sideroblast anaemia subgroups in the World Health Organization 2016 classification; (iii) for identification of patients suitable for targeted therapy (e.g. IDH1/2 inhibitors); (iv) for prognostication, for example, where specific mutations (e.g. TP53 and RUNX1) are associated with inferior prognosis, whereas others (e.g. SF3B1) are associated with superior prognosis; and (v) to monitor patients for progression or treatment failure. Most commonly, targeted sequencing for genes (normally 50-100 genes) reported to be recurrently mutated in myeloid disease is used. At present, NGS is rarely incorporated into clinical guidelines although an increasing number of studies have demonstrated the benefit of using NGS in the clinical management of MDS patients.
Collapse
Affiliation(s)
- M Tobiasson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.,Institution of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - A O Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
46
|
Asano M, Ohyashiki JH, Kobayashi-Kawana C, Umezu T, Imanishi S, Azuma K, Akahane D, Fujimoto H, Ito Y, Ohyashiki K. A novel non-invasive monitoring assay of 5-azacitidine efficacy using global DNA methylation of peripheral blood in myelodysplastic syndrome. Drug Des Devel Ther 2019; 13:1821-1833. [PMID: 31239639 PMCID: PMC6553951 DOI: 10.2147/dddt.s195071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/04/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: Monitoring response and resistance to 5-azacitidine (AZA) is essential when treating patients with myelodysplastic syndrome (MDS). To quantify methylated DNA not only in the promoter region but also in the gene body, we established a single-molecule methylation assay (SMMA). Patients and methods: We first investigated the methylation extent (expressed as methylation index [MI]) by SMMA among 28 MDS and 6 post-MDS acute myeloid leukemia patients. We then analyzed the MI in 13 AZA-treated patients. Results: Whole-blood DNA from all 34 patients had low MI values compared with healthy volunteers (P<0.0001). DNA hypomethylation in MDS patients was more evident in neutrophils (P=0.0008) than in peripheral mononuclear cells (P=0.0713). No consistent pattern of genome-wide DNA hypomethylation was found among MDS subtypes or revised International Prognostic Scoring System (IPSS-R) categories; however, we found that the MI was significantly increased for patients at very high risk who were separated by the new cytogenetic scoring system for IPSS-R (P=0.0398). There was no significant difference in MI before AZA, regardless of the response to AZA (P=0.8689); however, sequential measurement of MI in peripheral blood demonstrated that AZA non-responders did not have normalized MI at the time of next course of AZA (P=0.0352). Conclusion: Our results suggest that sequential SMMA of peripheral blood after AZA may represent a non-invasive monitoring marker for AZA efficacy in MDS patients.
Collapse
Affiliation(s)
- Michiyo Asano
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Junko H Ohyashiki
- Department of Advanced Cellular Therapy, Tokyo Medical University, Tokyo, Japan
| | | | - Tomohiro Umezu
- Department of Hematology, Tokyo Medical University, Tokyo, Japan.,Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satoshi Imanishi
- Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Kenko Azuma
- Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Hiroaki Fujimoto
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Yoshikazu Ito
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
47
|
Combination of decitabine, idarubicin, cytarabine, and G-CSF (DIAG) regimen for the treatment of high-risk myelodysplastic syndrome and acute myeloid leukemia. Ann Hematol 2019; 98:2223-2225. [PMID: 30980106 DOI: 10.1007/s00277-019-03674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/17/2019] [Indexed: 10/27/2022]
|
48
|
Hayashi Y, Harada Y, Kagiyama Y, Nishikawa S, Ding Y, Imagawa J, Shingai N, Kato N, Kitaura J, Hokaiwado S, Maemoto Y, Ito A, Matsui H, Kitabayashi I, Iwama A, Komatsu N, Kitamura T, Harada H. NUP98-HBO1-fusion generates phenotypically and genetically relevant chronic myelomonocytic leukemia pathogenesis. Blood Adv 2019; 3:1047-1060. [PMID: 30944097 PMCID: PMC6457235 DOI: 10.1182/bloodadvances.2018025007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) constitutes a hematopoietic stem cell (HSC) disorder characterized by prominent monocytosis and myelodysplasia. Although genome sequencing has revealed the CMML mutation profile, the mechanism of disease development remains unclear. Here we show that aberrant histone acetylation by nucleoporin-98 (NUP98)-HBO1, a newly identified fusion in a patient with CMML, is sufficient to generate clinically relevant CMML pathogenesis. Overexpression of NUP98-HBO1 in murine HSC/progenitors (HSC/Ps) induced diverse CMML phenotypes, such as severe leukocytosis, increased CD115+ Ly6Chigh monocytes (an equivalent subpopulation to human classical CD14+ CD16- monocytes), macrocytic anemia, thrombocytopenia, megakaryocyte-lineage dysplasia, splenomegaly, and cachexia. A NUP98-HBO1-mediated transcriptional signature in human CD34+ cells was specifically activated in HSC/Ps from a CMML patient cohort. Besides critical determinants of monocytic cell fate choice in HSC/Ps, an oncogenic HOXA9 signature was significantly activated by NUP98-HBO1 fusion through aberrant histone acetylation. Increased HOXA9 gene expression level with disease progression was confirmed in our CMML cohort. Genetic disruption of NUP98-HBO1 histone acetyltransferase activity abrogated its leukemogenic potential and disease development in human cells and a mouse model. Furthermore, treatment of azacytidine was effective in our CMML mice. The recapitulation of CMML clinical phenotypes and gene expression profile by the HBO1 fusion suggests our new model as a useful platform for elucidating the central downstream mediators underlying diverse CMML-related mutations and testing multiple compounds, providing novel therapeutic potential.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Department of Clinical Laboratory Medicine, Bunkyo Gakuin University, Tokyo, Japan
| | - Yuki Kagiyama
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Sayuri Nishikawa
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ye Ding
- Division of Oncology and Hematology, Edogawa Hospital, Tokyo, Japan
| | - Jun Imagawa
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Naoki Shingai
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoko Kato
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jiro Kitaura
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shintaro Hokaiwado
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Maemoto
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan; and
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
49
|
Cen D, Xu L, Zhang S, Chen Z, Huang Y, Li Z, Liang B. Renal cell carcinoma: predicting RUNX3 methylation level and its consequences on survival with CT features. Eur Radiol 2019; 29:5415-5422. [PMID: 30877466 DOI: 10.1007/s00330-019-06049-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/01/2019] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE To investigate associations between CT imaging features, RUNX3 methylation level, and survival in clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS Patients were divided into high RUNX3 methylation and low RUNX3 methylation groups according to RUNX3 methylation levels (the threshold was identified by using X-tile). The CT scanning data from 106 ccRCC patients were retrospectively analyzed. The relationship between RUNX3 methylation level and overall survivals was evaluated using the Kaplan-Meyer analysis and Cox regression analysis (univariate and multivariate). The relationship between RUNX3 methylation level and CT features was evaluated using chi-square test and logistic regression analysis (univariate and multivariate). RESULTS β value cutoff of 0.53 to distinguish high methylation (N = 44) from low methylation tumors (N = 62). Patients with lower levels of methylation had longer median overall survival (49.3 vs. 28.4) months (low vs. high, adjusted hazard ratio [HR] 4.933, 95% CI 2.054-11.852, p < 0.001). On univariate logistic regression analysis, four risk factors (margin, side, long diameter, and intratumoral vascularity) were associated with RUNX3 methylation level (all p < 0.05). Multivariate logistic regression analysis found that three risk factors (side: left vs. right, odds ratio [OR] 2.696; p = 0.024; 95% CI 1.138-6.386; margin: ill-defined vs. well-defined, OR 2.685; p = 0.038; 95% CI 1.057-6.820; and intratumoral vascularity: yes vs. no, OR 3.286; p = 0.008; 95% CI 1.367-7.898) were significant independent predictors of high methylation tumors. This model had an area under the receiver operating characteristic curve (AUC) of 0.725 (95% CI 0.623-0.827). CONCLUSIONS Higher levels of RUNX3 methylation are associated with shorter survival in ccRCC patients. And presence of intratumoral vascularity, ill-defined margin, and left side tumor were significant independent predictors of high methylation level of RUNX3 gene. KEY POINTS • RUNX3 methylation level is negatively associated with overall survival in ccRCC patients. • Presence of intratumoral vascularity, ill-defined margin, and left side tumor were significant independent predictors of high methylation level of RUNX3 gene.
Collapse
Affiliation(s)
- Dongzhi Cen
- Department of Radiation Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Li Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & The Second Clinical College of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China.
| | - Siwei Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & The Second Clinical College of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China.
| | - Zhiguang Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & The Second Clinical College of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Yan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & The Second Clinical College of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Ziqi Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & The Second Clinical College of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Bo Liang
- Department of Radiation Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China
| |
Collapse
|
50
|
Stomper J, Lübbert M. Can we predict responsiveness to hypomethylating agents in AML? Semin Hematol 2019; 56:118-124. [PMID: 30926087 DOI: 10.1053/j.seminhematol.2019.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 11/11/2022]
Abstract
DNA-hypomethylating agents (HMAs) were developed as nonintensive treatment alternatives to standard chemotherapy in older, unfit patients with acute myeloid leukemia and myelodysplastic syndrome. Given their distinct effects on the methylome and transcriptome of malignant cells compared to cytarabine (Ara-C) and other cytotoxic drugs not inhibiting DNA methyltransferases, it is of great interest to define their specific clinical ``signature.'' Here, we present and discuss clinical, genetic, and epigenetic predictors of responsiveness to HMAs. Indeed, mounting evidence supports the notion that HMAs are not "just another kind of low-dose Ara-C." Not only patient factors (age, performance status, comorbidities, etc.), blast counts, and early platelet response, but also adverse genetics (monosomal karyotype and/or a TP53 mutation) have predictive potential. Given the surprising-and initially counterintuitive-responses observed in patients with the latter features, these are subject to mechanistic studies to elucidate their as yet unresolved interaction with HMAs. Finally, other potential biomarkers for HMA response such as elevated fetal hemoglobin might also contribute to overcome the present challenges in predicting responsiveness to HMAs.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; German Cancer Research Consortium (DKTK), Freiburg, Germany.
| |
Collapse
|