1
|
Li S, Wang X, Xiao J, Yi J. SLC7A11, a disulfidptosis-related gene, correlates with multi-omics prognostic analysis in hepatocellular carcinoma. Eur J Med Res 2025; 30:161. [PMID: 40069889 PMCID: PMC11900568 DOI: 10.1186/s40001-025-02411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND This study sought to establish a risk score signature based on disulfidptosis-related genes (DRGs) to predict the prognosis of hepatocellular carcinoma (HCC) patients. METHODS The expression data of DRGs from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) was analyzed to develop and validate a DRG prognostic signature (DRGPS). In vitro, experiments were conducted to explore DRG expressions and roles in HCC tissues and cell lines. HCC tissue microarrays were employed to analyze SLC7A11 expression and its association with clinicopathological characteristics. RESULTS The DRGPS consisted of 5 DRGs (SLC7A11, MATN3, CLEC3B, CCNJL, and PON1). The survival rate of HCC patients in high-risk group was significantly lower than that in low-risk group. The DRGPS was also associated with the modulation of tumor microenvironment (TME), tumor mutation burden (TMB), stemness and chemosensitivity. Furthermore, pan-cancer analysis suggested that the DRGPS risk score was associated with immune infiltration and stemness in multiple cancers. Moreover, our DRGPS had potential for predicting treatment efficacy in HCC patients. Finally, we confirmed that downregulation of SLC7A11, a DRG, inhibited the proliferation and migration of HCC cells, while its high expression correlated with advanced TNM clinical stage and larger tumor size. CONCLUSIONS This study systematically describes a novel DRGPS constructed for predicting HCC prognosis, providing a new approach to risk stratification and treatment options. It also investigates the expression and function of SLC7A11, contributing to further exploration of the molecular mechanism underlying disulfidptosis in HCC, as well as its prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China
| | - Xiaotong Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China
| | - Junbo Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Heumann P, Albert A, Gülow K, Tümen D, Müller M, Kandulski A. Insights in Molecular Therapies for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1831. [PMID: 38791911 PMCID: PMC11120383 DOI: 10.3390/cancers16101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
We conducted a comprehensive review of the current literature of published data and clinical trials (MEDLINE), as well as published congress contributions and active recruiting clinical trials on targeted therapies in hepatocellular carcinoma. Combinations of different agents and medical therapy along with radiological interventions were analyzed for the setting of advanced HCC. Those settings were also analyzed in combination with adjuvant situations after resection or radiological treatments. We summarized the current knowledge for each therapeutic setting and combination that currently is or has been under clinical evaluation. We further discuss the results in the background of current treatment guidelines. In addition, we review the pathophysiological mechanisms and pathways for each of these investigated targets and drugs to further elucidate the molecular background and underlying mechanisms of action. Established and recommended targeted treatment options that already exist for patients are considered for systemic treatment: atezolizumab/bevacizumab, durvalumab/tremelimumab, sorafenib, lenvatinib, cabozantinib, regorafenib, and ramucirumab. Combination treatment for systemic treatment and local ablative treatment or transarterial chemoembolization and adjuvant and neoadjuvant treatment strategies are under clinical investigation.
Collapse
Affiliation(s)
- Philipp Heumann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| |
Collapse
|
3
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Luo X, He X, Zhang X, Zhao X, Zhang Y, Shi Y, Hua S. Hepatocellular carcinoma: signaling pathways, targeted therapy, and immunotherapy. MedComm (Beijing) 2024; 5:e474. [PMID: 38318160 PMCID: PMC10838672 DOI: 10.1002/mco2.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a high mortality rate. It is regarded as a significant public health issue because of its complicated pathophysiology, high metastasis, and recurrence rates. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Traditional treatment methods such as surgical resection, radiotherapy, chemotherapy, and interventional therapies have limited therapeutic effects for HCC patients with recurrence or metastasis. With the development of molecular biology and immunology, molecular signaling pathways and immune checkpoint were identified as the main mechanism of HCC progression. Targeting these molecules has become a new direction for the treatment of HCC. At present, the combination of targeted drugs and immune checkpoint inhibitors is the first choice for advanced HCC patients. In this review, we mainly focus on the cutting-edge research of signaling pathways and corresponding targeted therapy and immunotherapy in HCC. It is of great significance to comprehensively understand the pathogenesis of HCC, search for potential therapeutic targets, and optimize the treatment strategies of HCC.
Collapse
Affiliation(s)
- Xiaoting Luo
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xin He
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xingmei Zhang
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiaohui Zhao
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yuzhe Zhang
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yusheng Shi
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Shengni Hua
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| |
Collapse
|
5
|
Vishakha S, Navneesh N, Kurmi BD, Gupta GD, Verma SK, Jain A, Patel P. An Expedition on Synthetic Methodology of FDA-approved Anticancer Drugs (2018-2021). Anticancer Agents Med Chem 2024; 24:590-626. [PMID: 38288815 DOI: 10.2174/0118715206259585240105051941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 05/29/2024]
Abstract
New drugs being established in the market every year produce specified structures for selective biological targeting. With medicinal insights into molecular recognition, these begot molecules open new rooms for designing potential new drug molecules. In this review, we report the compilation and analysis of a total of 56 drugs including 33 organic small molecules (Mobocertinib, Infigratinib, Sotorasib, Trilaciclib, Umbralisib, Tepotinib, Relugolix, Pralsetinib, Decitabine, Ripretinib, Selpercatinib, Capmatinib, Pemigatinib, Tucatinib, Selumetinib, Tazemetostat, Avapritinib, Zanubrutinib, Entrectinib, Pexidartinib, Darolutamide, Selinexor, Alpelisib, Erdafitinib, Gilteritinib, Larotrectinib, Glasdegib, Lorlatinib, Talazoparib, Dacomitinib, Duvelisib, Ivosidenib, Apalutamide), 6 metal complexes (Edotreotide Gallium Ga-68, fluoroestradiol F-18, Cu 64 dotatate, Gallium 68 PSMA-11, Piflufolastat F-18, 177Lu (lutetium)), 16 macromolecules as monoclonal antibody conjugates (Brentuximabvedotin, Amivantamab-vmjw, Loncastuximabtesirine, Dostarlimab, Margetuximab, Naxitamab, Belantamabmafodotin, Tafasitamab, Inebilizumab, SacituzumabGovitecan, Isatuximab, Trastuzumab, Enfortumabvedotin, Polatuzumab, Cemiplimab, Mogamulizumab) and 1 peptide enzyme (Erwiniachrysanthemi-derived asparaginase) approved by the U.S. FDA between 2018 to 2021. These drugs act as anticancer agents against various cancer types, especially non-small cell lung, lymphoma, breast, prostate, multiple myeloma, neuroendocrine tumor, cervical, bladder, cholangiocarcinoma, myeloid leukemia, gastrointestinal, neuroblastoma, thyroid, epithelioid and cutaneous squamous cell carcinoma. The review comprises the key structural features, approval times, target selectivity, mechanisms of action, therapeutic indication, formulations, and possible synthetic approaches of these approved drugs. These crucial details will benefit the scientific community for futuristic new developments in this arena.
Collapse
Affiliation(s)
- S Vishakha
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - N Navneesh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ankit Jain
- Department of Pharmaceutical Sciences, Texas A & M University, Kingsville, 78363, Texas, United States of America
| | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
6
|
Kumar S, Pandey AK. Potential Molecular Targeted Therapy for Unresectable Hepatocellular Carcinoma. Curr Oncol 2023; 30:1363-1380. [PMID: 36826066 PMCID: PMC9955633 DOI: 10.3390/curroncol30020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers, representing a serious worldwide health concern. The recurrence incidence of hepatocellular carcinoma (HCC) following surgery or ablation is as high as 70%. Thus, the clinical applicability of standard surgery and other locoregional therapy to improve the outcomes of advanced HCC is restricted and far from ideal. The registered trials did not identify a treatment that prolonged recurrence-free survival, the primary outcome of the majority of research. Several investigator-initiated trials have demonstrated that various treatments extend patients' recurrence-free or overall survival after curative therapies. In the past decade, targeted therapy has made significant strides in the treatment of advanced HCC. These targeted medicines produce antitumour effects via specific signals, such as anti-angiogenesis or advancement of the cell cycle. As a typical systemic treatment option, it significantly improves the prognosis of this fatal disease. In addition, the combination of targeted therapy with an immune checkpoint inhibitor is redefining the paradigm of advanced HCC treatment. In this review, we focused on the role of approved targeted medicines and potential therapeutic targets in unresectable HCC.
Collapse
Affiliation(s)
- Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, Punjab, India
- Correspondence: (S.K.); (A.K.P.)
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, University Road, Prayagraj 211002, Uttar Pradesh, India
- Correspondence: (S.K.); (A.K.P.)
| |
Collapse
|
7
|
Selumetinib: a selective MEK1 inhibitor for solid tumor treatment. Clin Exp Med 2022; 23:229-244. [PMID: 35171389 DOI: 10.1007/s10238-021-00783-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
Cancer incidence is rapidly growing. Solid tumors are responsible for a majority of cancers. Recently, molecular-targeted agents have played a significant role in cancer treatment. Ras-Raf-MEK-ERK signaling pathway, is a substantial element in the survival, propagation, and drug resistance of human cancers. MEK is a specific part of the so-called cascade, and ERK proteins are its sole target. Furthermore, their downstream position in the Ras-ERK cascade, is noteworthy to direct their function in patients with upstream mutated genes. MEK1 mutations are responsible for initiating several solid tumors. Selumetinib (AZD6244) is a second-generation, selective, potent, and non-ATP competitive allosteric MEK1 inhibitor. The efficacy of selumetinib in various solid tumors such as colorectal cancer, lung cancer, neurofibroma, and melanoma is investigated. The present paper provides an overview of the MAPK cascade, the role of selumetinib as a MEK1/2 inhibitor, and the related findings of clinical trials for solid tumor treatment.
Collapse
|
8
|
Adamia S, Bhatt S, Wen K, Chyra Z, Fell GG, Tai YT, Pioso MS, Abiatari I, Letai A, Dorfman DM, Hideshima T, Anderson KC. Combination therapy targeting Erk1/2 and CDK4/6i in relapsed refractory multiple myeloma. Leukemia 2022; 36:1088-1101. [PMID: 35082402 PMCID: PMC8979823 DOI: 10.1038/s41375-021-01475-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022]
Abstract
Oncogenic activated RAS mutations have been detected in 50% of de novo and 70% of relapsed multiple myeloma (MM) patients. Translocation t(11;14) involving IgH/CCDN1 and overexpression of cyclin-Ds are early events in MM pathogenesis, enhancing uncontrolled MM cell growth. We hypothesized that targeting both RAS/MAPK pathway molecules including Erk1/2 along with cyclin-Ds enhances MM cytotoxicity and minimizes side effects. Recent studies have demonstrated the high potency of Erk1/2 and CDK4/6 inhibitors in metastatic relapsed cancers, and here we tested anti-MM effects of the Erk1/2 + CDK4/6 inhibitor combination. Our studies showed strong synergistic (IC < 0.5) cytotoxicity of Erk1/2i + CDK4/6i in MM-cells. Erk1/2i + CDK4/6i treatment in a dose-dependent manner arrested MM-cells in the G0/G1 phase and activated mitochondrial apoptotic signaling. Our studies showed that Erk1/2i + CDK4/6i treatment-induced inhibition of key target molecules in Erk1/2 and CDK4/6 signaling, such as c-myc, p-RSK, p-S6, p-RB, and E2F1, suggesting on-target activity of these inhibitors. We identified Erk1/2i + CDK4/6i treatment associated five-gene signature which includes SNRPB and SLC25A5; these genes are involved in RNA processing and mitochondrial metabolism, respectively. Overall, our studies provide the preclinical framework for Erk1/2i + CDK4/6i combination clinical trials to target Ras+CDK pathways to improve patient outcome in MM.
Collapse
Affiliation(s)
- Sophia Adamia
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Shruti Bhatt
- Dana-FArber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pharmacy, National University of Singapore, Singapore, 117559, Singapore
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Zuzana Chyra
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Geoffrey G Fell
- Dana-Farber Cancer Institute, Department of Data science, Boston, MA, 02215, USA
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Marisa S Pioso
- Dana-FArber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Ivane Abiatari
- Ilia State University, School of Medicine, Tbilisi, G409, Georgia
| | - Anthony Letai
- Dana-FArber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - David M Dorfman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Sahu R, Sharma P, Kumar A. An Insight into Cholangiocarcinoma and Recent Advances in its Treatment. J Gastrointest Cancer 2022; 54:213-226. [PMID: 35023010 DOI: 10.1007/s12029-021-00728-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant disease of the epithelial cells of the intrahepatic and extrahepatic bile ducts. This review focuses on various aspects of cholangiocarcinoma such as its associated causes, treatment criteria, and more. METHODS Although it remains a rare malignancy and is the second most common primary malignancy of the liver, the incidence is increasing, especially the incidence of intrahepatic CCA. Several studies suggested that surgery is not only solution; recently, reported targeted drugs may have the potential to become an alternative option. RESULTS This review provides an overview of the current scenario of targeted therapies for CCA, which were tabulated with their current status and it also included its associated causes and its treatment criteria. CONCLUSION Because of its rarity and complexity, surgery remains the preferred treatment in resectable patients. Howerver, the studies suggested that the recently reported drugs may have the potential to be an alternative option for the treatment of CCA and related complications. In addition, this review will certainly benefit the community and researcher for further investigation.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, 201310, Uttar Pradesh, India
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Praveen Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, 201310, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, 201306, Greater Noida, India
| |
Collapse
|
10
|
Anti-Hepatocellular Carcinoma Biomolecules: Molecular Targets Insights. Int J Mol Sci 2021; 22:ijms221910774. [PMID: 34639131 PMCID: PMC8509806 DOI: 10.3390/ijms221910774] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
This report explores the available curative molecules directed against hepatocellular carcinoma (HCC). Limited efficiency as well as other drawbacks of existing molecules led to the search for promising potential alternatives. Understanding of the cell signaling mechanisms propelling carcinogenesis and driven by cell proliferation, invasion, and angiogenesis can offer valuable information for the investigation of efficient treatment strategies. The complexity of the mechanisms behind carcinogenesis inspires researchers to explore the ability of various biomolecules to target specific pathways. Natural components occurring mainly in food and medicinal plants, are considered an essential resource for discovering new and promising therapeutic molecules. Novel biomolecules normally have an advantage in terms of biosafety. They are also widely diverse and often possess potent antioxidant, anti-inflammatory, and anti-cancer properties. Based on quantitative structure-activity relationship studies, biomolecules can be used as templates for chemical modifications that improve efficiency, safety, and bioavailability. In this review, we focus on anti-HCC biomolecules that have their molecular targets partially or completely characterized as well as having anti-cancer molecular mechanisms that are fairly described.
Collapse
|
11
|
Niu M, Yi M, Li N, Wu K, Wu K. Advances of Targeted Therapy for Hepatocellular Carcinoma. Front Oncol 2021; 11:719896. [PMID: 34381735 PMCID: PMC8350567 DOI: 10.3389/fonc.2021.719896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common and fatal malignancies, which is a significant global health problem. The clinical applicability of traditional surgery and other locoregional therapies is limited, and these therapeutic strategies are far from satisfactory in improving the outcomes of advanced HCC. In the past decade, targeted therapy had made a ground-breaking progress in advanced HCC. Those targeted therapies exert antitumor effects through specific signals, including anti-angiogenesis or cell cycle progression. As a standard systemic therapy option, it tremendously improves the survival of this devastating disease. Moreover, the combination of targeted therapy with immune checkpoint inhibitor (ICI) has demonstrated more potent anticancer effects and becomes the hot topic in clinical studies. The combining medications bring about a paradigm shift in the treatment of advanced HCC. In this review, we presented all approved targeted agents for advanced HCC with an emphasis on their clinical efficacy, summarized the advances of multi-target drugs in research for HCC and potential therapeutic targets for drug development. We also discussed the exciting results of the combination between targeted therapy and ICI.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kongju Wu
- Department of Nursing, Medical School of Pingdingshan University, Pingdingshan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
12
|
Wang T, Zhang Q, Wang N, Liu Z, Zhang B, Zhao Y. Research Progresses of Targeted Therapy and Immunotherapy for Hepatocellular Carcinoma. Curr Med Chem 2021; 28:3107-3146. [PMID: 33050856 DOI: 10.2174/0929867327666201013162144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with nearly one million new cases and deaths every year. Owing to the complex pathogenesis, hidden early symptoms, rapidly developing processes, and poor prognosis, the morbidity and mortality of HCC are increasing yearly. With the progress being made in modern medicine, the treatment of HCC is no longer limited to traditional methods. Targeted therapy and immunotherapy have emerged to treat advanced and metastatic HCC in recent years. Since Sorafenib is the first molecular targeting drug against angiogenesis, targeted drugs for HCC are continually emerging. Moreover, immunotherapy plays a vital role in clinical trials. In particular, the application of immune checkpoint inhibitors, which have received increasing attention in the field of cancer treatment, is a possible research path. Interestingly, these two therapies generally complement each other at some stages of HCC, bringing new hope for patients with advanced HCC. In this paper, we discuss the research progress of targeted therapy and immunotherapy for HCC in recent years, which will provide a reference for the further development of drugs for HCC.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiting Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ziqi Liu
- Department of Pharmacy, the PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
13
|
Polyphenols from Broussonetia papyrifera Induce Apoptosis of HepG2 Cells via Inactivation of ERK and AKT Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8841706. [PMID: 33884026 PMCID: PMC8009708 DOI: 10.1155/2021/8841706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/21/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
The extract of Broussonetia papyrifera has been proved to have antitumor activity. However, the underlying mechanism remains unclear. This study aimed to elucidate the mechanism of apoptosis of HepG2 cells induced by polyphenols from Broussonetia papyrifera (PBPs). The results revealed that PBPs inhibited the proliferation of HepG2 cells in a dose-dependent and time-dependent manner. Flow cytometry analysis showed that PBPs increased the apoptosis ratio of HepG2 cells significantly. PBPs increased intracellular reactive oxygen species (ROS) production and decreased intracellular superoxide dismutase (SOD) level of HepG2 cells. PBPs induced cell cycle arrest at G1 phase. Western blotting showed that PBPs upregulated the ratio of Bax/Bcl-2 and the expression level of Caspase-3, and activated p53 in HepG2 cells. The inhibition of proliferative relative signals (protein kinase B, PKB/AKT) and survival relative signals (extracellular signal-regulated kinase, ERK) were also observed in PBP-treated HepG2 cells. Our findings suggest that apoptosis of HepG2 cells induced by PBPs is mitochondria-mediated via inactivation of ERK and AKT signaling pathways.
Collapse
|
14
|
Clinical Pharmacokinetics and Pharmacodynamics of Selumetinib. Clin Pharmacokinet 2020; 60:283-303. [PMID: 33354735 DOI: 10.1007/s40262-020-00967-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Selumetinib, a highly specific mitogen-activated protein kinase 1/2 inhibitor, is approved for children older than 2 years of age with neurofibromatosis 1 who have inoperable plexiform neurofibromas. By selectively binding to mitogen-activated protein kinase 1/2 proteins, selumetinib can arrest the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway that regulates critical cellular responses. Selumetinib has shown promising results as a single agent or in combination with conventional chemotherapy and other targeted therapies both preclinically and clinically, in multiple cancers including pediatric low-grade glioma, non-small cell lung cancer, and melanoma, among others. The pharmacokinetic profiles of selumetinib and its active metabolite N-desmethyl selumetinib have been well characterized in both adults and children. Both compounds exhibited rapid absorption and mean terminal elimination half-lives of about 7.5 h, with minimal accumulation at steady state. Three population pharmacokinetic models have been developed in adults and children, characterizing large inter- and intra-patient variabilities, and identifying significant covariates including food intake on selumetinib absorption, weight metrics, age, co-administration of cytochrome modulators, and Asian ethnicity on selumetinib apparent oral clearance. The most common side effects associated with selumetinib are dermatologic, gastrointestinal toxicities, and fatigue. Most toxicities are mild or moderate, generally tolerated and manageable. Cardiovascular and ocular toxicities remain less frequent but can be potentially more severe and require close monitoring. Overall, selumetinib exhibits a favorable safety profile and pharmacokinetic properties, with promising activity in multiple solid tumors, supporting current and further evaluation in combination with conventional chemotherapy and other targeted agents.
Collapse
|
15
|
Chow AKM, Yau SWL, Ng L. Novel molecular targets in hepatocellular carcinoma. World J Clin Oncol 2020; 11:589-605. [PMID: 32879846 PMCID: PMC7443834 DOI: 10.5306/wjco.v11.i8.589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is a leading cause of cancer and cancer-related deaths. The therapeutic efficacy of locoregional and systemic treatment in patients with advanced HCC remains low, which results in a poor prognosis. The development of sorafenib for the treatment of HCC has resulted in a new era of molecular targeted therapy for this disease. However, the median overall survival was reported to be barely higher in the sorafenib treatment group than in the control group. Hence, in this review we describe the importance of developing more effective targeted therapies for the management of advanced HCC. Recent investigations of molecular signaling pathways in several cancers have provided some insights into developing molecular therapies that target critical members of these signaling pathways. Proteins involved in the Hedgehog and Notch signaling pathways, Polo-like kinase 1, arginine, histone deacetylases and Glypican-3 can be potential targets in the treatment of HCC. Monotherapy has limited therapeutic efficacy due to the development of inhibitory feedback mechanisms and induction of chemoresistance. Thus, emphasis is now on the development of personalized and combination molecular targeted therapies that can serve as ideal therapeutic strategies for improved management of HCC.
Collapse
Affiliation(s)
- Ariel Ka-Man Chow
- School of Nursing and Health Studies, The Open University of Hong Kong, Hong Kong, China
| | - Simon Wing-Lung Yau
- School of Nursing and Health Studies, The Open University of Hong Kong, Hong Kong, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Tang L, Chen R, Xu X. Synthetic lethality: A promising therapeutic strategy for hepatocellular carcinoma. Cancer Lett 2020; 476:120-128. [PMID: 32070778 DOI: 10.1016/j.canlet.2020.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC), the main cause of liver cancer-related death, is one of the main cancers in terms of incidence and mortality. However, HCC is difficult to target and develops strong drug resistance. Therefore, a new treatment strategy is urgently needed. The clinical application of the concept of synthetic lethality in recent years provides a new therapeutic direction for the accurate treatment of HCC. Here, we introduce the concept of synthetic lethality, the screening used to study synthetic lethality, and the identified and potential genetic interactions that induce synthetic lethality in HCC. In addition, we propose opportunities and challenges for translating synthetic lethal interactions to the clinical treatment of HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| |
Collapse
|
17
|
Dai Q, Zhang C, Yuan Z, Sun Q, Jiang Y. Current discovery strategies for hepatocellular carcinoma therapeutics. Expert Opin Drug Discov 2019; 15:243-258. [PMID: 31809618 DOI: 10.1080/17460441.2020.1696769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiuzi Dai
- Department of Chemistry, Tsinghua University, Beijing, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
| | - Cunlong Zhang
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Zigao Yuan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Qinsheng Sun
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Yuyang Jiang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
18
|
Abstract
Identification of novel therapeutic targets has improved diagnostics and treatment of many diseases. Many innovative treatment strategies have been developed based on the newly identified biomarkers and key molecules. Most of the research focused on ways to manipulate signaling pathways by activating or suppressing them, validate new therapeutic targets for treatment, and epigenetic treatment of diseases. With the identification of aberrations in multiple growth pathways, the focus then shifted to the small molecules involved in these pathways for targeted therapy. In this communication/short review, we highlight the importance of identification of abnormal activation of the mitogen-activated protein kinase (MAPK), ERK1/2, and its upstream mediator MEK1/2, in erythrocytes in patients with sickle cell disease (SCD) critical for the adhesive interactions of these cells with the endothelium, and leukocytes promoting circulatory obstruction leading to tissue ischemia and infraction. We also discuss how targeting this signaling cascade with MEK1/2 inhibitors can reverse acute vasoocclusive crises in SCD.
Collapse
Affiliation(s)
- Rahima Zennadi
- Division of Hematology and Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University Medical Center, North Carolina, USA
| |
Collapse
|
19
|
Li Z, Zhou W, Zhang Y, Sun W, Yung MMH, Sun J, Li J, Chen CW, Li Z, Meng Y, Chai J, Zhou Y, Liu SS, Cheung ANY, Ngan HYS, Chan DW, Zheng W, Zhu W. ERK Regulates HIF1α-Mediated Platinum Resistance by Directly Targeting PHD2 in Ovarian Cancer. Clin Cancer Res 2019; 25:5947-5960. [PMID: 31285371 PMCID: PMC7449248 DOI: 10.1158/1078-0432.ccr-18-4145] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/18/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Up to 80% of patients with ovarian cancer develop platinum resistance over time to platinum-based chemotherapy. Increased HIF1α level is an important mechanism governing platinum resistance in platinum-resistant ovarian cancer (PROC). However, the mechanism regulating HIF1α stability in PROC remains largely unknown. Here, we elucidate the mechanism of HIF1α stability regulation in PROC and explore therapeutic approaches to overcome cisplatin resistance in ovarian cancer. EXPERIMENTAL DESIGN We first used a quantitative high-throughput combinational screen (qHTCS) to identify novel drugs that could resensitize PROC cells to cisplatin. Next, we evaluated the combination efficacy of inhibitors of HIF1α (YC-1), ERK (selumetinib), and TGFβ1 (SB431542) with platinum drugs by in vitro and in vivo experiments. Moreover, a novel TGFβ1/ERK/PHD2-mediated pathway regulating HIF1α stability in PROC was discovered. RESULTS YC-1 and selumetinib resensitized PROC cells to cisplatin. Next, the prolyl hydroxylase domain-containing protein 2 (PHD2) was shown to be a direct substrate of ERK. Phosphorylation of PHD2 by ERK prevents its binding to HIF1α, thus inhibiting HIF1α hydroxylation and degradation-increasing HIF1α stability. Significantly, ERK/PHD2 signaling in PROC cells is dependent on TGFβ1, promoting platinum resistance by stabilizing HIF1α. Inhibition of TGFβ1 by SB431542, ERK by selumetinib, or HIF1α by YC-1 efficiently overcame platinum resistance both in vitro and in vivo. The results from clinical samples confirm activation of the ERK/PHD2/HIF1α axis in patients with PROC, correlating highly with poor prognoses for patients. CONCLUSIONS HIF1α stabilization is regulated by TGFβ1/ERK/PHD2 axis in PROC. Hence, inhibiting TGFβ1, ERK, or HIF1α is potential strategy for treating patients with PROC.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Wei Zhou
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
- Department of Colorectal Surgery, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Wei Sun
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Mingo M H Yung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Jing Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Chi-Wei Chen
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Yunxiao Meng
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Jie Chai
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Yuan Zhou
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Stephanie S Liu
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Annie N Y Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David W Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Wei Zheng
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland.
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| |
Collapse
|
20
|
Zhou X, Zhu A, Gu X, Xie G. Inhibition of MEK suppresses hepatocellular carcinoma growth through independent MYC and BIM regulation. Cell Oncol (Dordr) 2019; 42:369-380. [DOI: 10.1007/s13402-019-00432-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
|
21
|
Huynh H, Ong R, Goh KY, Lee LY, Puehler F, Scholz A, Politz O, Mumberg D, Ziegelbauer K. Sorafenib/MEK inhibitor combination inhibits tumor growth and the Wnt/β‑catenin pathway in xenograft models of hepatocellular carcinoma. Int J Oncol 2019; 54:1123-1133. [PMID: 30747223 DOI: 10.3892/ijo.2019.4693] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
Mutations affecting the Wnt/β‑catenin pathway have been identified in 26‑40% of hepatocellular carcinoma (HCC) cases. Aberrant activation of this pathway leads to uncontrolled cell proliferation and survival. Thus, identifying Wnt/β‑catenin pathway inhibitors may benefit a subset of patients with HCC. In the present study, the effects of sorafenib and a MEK inhibitor on tumor growth and Wnt/β‑catenin signaling in HCC models were evaluated. A β‑catenin mutant and β‑catenin wild‑type HCC models were treated once daily with i) 10 mg/kg sorafenib, ii) 15 mg/kg refametinib (or 25 mg/kg selumetinib), or iii) sorafenib/refametinib. Western blotting was employed to determine changes in biomarkers relevant to Wnt/β‑catenin signaling. Apoptosis, cell proliferation and β‑catenin localization were analyzed by immunohistochemistry. Sorafenib/refametinib markedly inhibited tumor growth and cell proliferation, and caused cell death in naïve and sorafenib‑resistant HCC models. Despite similar total β‑catenin levels, significant reductions in phosphorylated (p)‑RanBP3 Ser58, p‑β‑catenin Tyr142, active β‑catenin and β‑catenin target genes were observed in sorafenib/refametinib‑treated tumors. Greater levels of β‑catenin in sorafenib/refametinib‑treated tumors were accumulated at the membrane, as compared with in the control. In vitro, sorafenib/refametinib inhibited the Wnt/β‑catenin pathway and suppressed Wnt‑3A‑induced p‑low‑density lipoprotein receptor‑related protein 6 Ser1490, p‑RanBP3 Ser58 and p‑β‑catenin Tyr142 in HCC cells. Combination of sorafenib and refametinib inhibits the growth of naïve and sorafenib resistant HCC tumors in association with active suppression of β‑catenin signaling regardless of β‑catenin mutational status. Thus, the sorafenib/MEK inhibitor combination may represent an alternative treatment for patients with HCC whose tumors develop resistance to sorafenib therapy.
Collapse
Affiliation(s)
- Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore 169610, Republic of Singapore
| | - Richard Ong
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore 169610, Republic of Singapore
| | - Kah Yong Goh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore 169610, Republic of Singapore
| | - Liek Yeow Lee
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore 169610, Republic of Singapore
| | | | - Arne Scholz
- R&D Pharmaceuticals, Bayer AG, D‑13353 Berlin, Germany
| | - Oliver Politz
- R&D Pharmaceuticals, Bayer AG, D‑13353 Berlin, Germany
| | | | | |
Collapse
|
22
|
Shi JJ, Dang SS. Recent advances in molecular targeted therapy of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2018; 26:2008-2017. [DOI: 10.11569/wcjd.v26.i34.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of mortality from any type of cancer, and its mortality has risen in recent years in China. Because of its insidious onset, rapid progression, and poor prognosis, HCC has become a hot and difficult research topic. HCC therapy, especially the use and research of molecular targeted drugs, has achived significant advances and opened up a new avenue for the treatment of HCC. In this paper, we will describe the recent advances in the research of of signaling pathways and potential molecular targets, the clinical use of molecular targeted drugs, and new molecular targeted drugs for HCC.
Collapse
Affiliation(s)
- Juan-Juan Shi
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| |
Collapse
|
23
|
mTOR and ERK regulate VKORC1 expression in both hepatoma cells and hepatocytes which influence blood coagulation. Clin Exp Med 2018; 19:121-132. [PMID: 30306378 DOI: 10.1007/s10238-018-0528-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/22/2018] [Indexed: 02/08/2023]
Abstract
Deficiency of γ-glutamyl carboxylation of coagulation factors, as evidenced by the elevated level of Des-γ-carboxyl prothrombin (DCP), is a common feature in hepatocellular carcinoma patients. Additionally, treatment of cancer patients with mTOR inhibitors significantly increases hemorrhagic events. However, the underlying mechanisms remain unknown. In the present study, Vitamin K epoxide reductase complex subunit 1 (VKORC1) was found to be significantly down-regulated in clinical hepatoma tissues and most tested hepatoma cell lines. In vitro investigations showed that VKORC1 expression was promoted by p-mTOR at the translational level and repressed by p-ERK at the transcriptional level. By exploring Hras12V transgenic mice, a hepatic tumor model, VKROC1 was significantly down-regulated in hepatic tumors and showed prolonged activated partial prothrombin time (APTT). In vivo investigations further showed that VKORC1 expression was promoted by p-mTOR and repressed by p-ERK in both hepatoma and hepatocytes. Consistently, APTT and prothrombin time were significantly prolonged under the mTOR inhibitor treatment and significantly shortened under the ERK inhibitor treatment. Conclusively, these findings indicate that mTOR and ERK play crucial roles in controlling VKORC1 expression in both hepatoma and hepatocytes, which provides a valuable molecular basis for preventing hemorrhage in clinical therapies.
Collapse
|
24
|
Burmi RS, Maginn EN, Gabra H, Stronach EA, Wasan HS. Combined inhibition of the PI3K/mTOR/MEK pathway induces Bim/Mcl-1-regulated apoptosis in pancreatic cancer cells. Cancer Biol Ther 2018; 20:21-30. [PMID: 30261145 PMCID: PMC6343713 DOI: 10.1080/15384047.2018.1504718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) progression and chemotherapy insensitivity have been associated with aberrant PI3K/mTOR/MEK signalling. However, cell death responses activated by inhibitors of these pathways can differ – contextually varying with tumour genetic background. Here, we demonstrate that combining the dual PI3K/mTOR inhibitor PF5212384 (PF384) and MEK inhibitor PD325901 (PD901) more effectively induces apoptosis compared with either agent alone, independent of KRAS mutational status in PDAC cell lines. Additionally, a non-caspase dependent decrease in cell viability upon PF384 treatment was observed, and may be attributed to autophagy and G0/G1 cell cycle arrest. Using reverse phase protein arrays, we identify key molecular events associated with the conversion of cytostatic responses (elicited by single inhibitor treatments) into a complete cell death response when PF384 and PD901 are combined. This response was also independent of KRAS mutation, occurring in both BxPC3 (KRAS wildtype) and MIA-PaCa-2 (KRASG12C mutated) cells. In both cell lines, Bim expression increased in response to PF384/PD901 treatment (by 60% and 48%, respectively), while siRNA-mediated silencing of Bim attenuated the apoptosis induced by combination treatment. In parallel, Mcl-1 levels decreased by 36% in BxPC3, and 30% in MIA-PaCa-2 cells. This is consistent with a functional role for Mcl-1, and siRNA-mediated silencing enhanced apoptosis in PF384/PD901-treated MIA-PaCa-2 cells, whilst Mcl-1 overexpression decreased apoptosis induction by 24%. Moreover, a novel role was identified for PDCD4 loss in driving the apoptotic response to PF384/PD901 in BxPC3 and MIA-PaCa-2 cell lines. Overall, our data indicates PF384/PD901 co-treatment activates the same apoptotic mechanism in wild-type or KRAS mutant PDAC cells.
Collapse
Affiliation(s)
- Rajpal S Burmi
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| | - Elaina N Maginn
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| | - Hani Gabra
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom.,b Clinical Discovery Unit , Early Clinical Development, AstraZeneca , Cambridge , United Kingdom
| | - Euan A Stronach
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| | - Harpreet S Wasan
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| |
Collapse
|
25
|
Way GP, Sanchez-Vega F, La K, Armenia J, Chatila WK, Luna A, Sander C, Cherniack AD, Mina M, Ciriello G, Schultz N, Sanchez Y, Greene CS. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Rep 2018; 23:172-180.e3. [PMID: 29617658 PMCID: PMC5918694 DOI: 10.1016/j.celrep.2018.03.046] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these "hidden responders" may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders.
Collapse
Affiliation(s)
- Gregory P Way
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francisco Sanchez-Vega
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Konnor La
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joshua Armenia
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Walid K Chatila
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Augustin Luna
- cBio Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chris Sander
- cBio Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew D Cherniack
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marco Mina
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yolanda Sanchez
- Department of Molecular Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int 2018; 18:44. [PMID: 29568237 PMCID: PMC5859782 DOI: 10.1186/s12935-018-0538-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/12/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, accounting for almost 90% of total liver cancer burden. Surgical resection followed by adjuvant and systemic chemotherapy are the most meticulously followed treatment procedures but the complex etiology and high metastatic potential of the disease renders surgical treatment futile in majority of the cases. Another hindrance to the scenario is the acquired resistance to drugs resulting in relapse of the disease. Hence, to provide insights into development of novel therapeutic targets and diagnostic biomarkers, this review focuses on the various molecular mechanisms underlying chemoresistance in HCC. We have provided a comprehensive summary of the various strategies adopted by HCC cells, extending from apoptosis evasion, autophagy activation, drug expulsion to epigenetic transformation as modes of therapy resistance. The role of stem cells in imparting chemoresistance is also discussed. Furthermore, the review also focuses on how this knowledge might be exploited for the development of an effective, prospective therapy against HCC.
Collapse
Affiliation(s)
- K Lohitesh
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| | - Rajdeep Chowdhury
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| | - Sudeshna Mukherjee
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| |
Collapse
|
27
|
Ramakrishnan V, D'Souza A. Signaling Pathways and Emerging Therapies in Multiple Myeloma. Curr Hematol Malig Rep 2017; 11:156-64. [PMID: 26922744 DOI: 10.1007/s11899-016-0315-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple myeloma (MM) is a devastating malignancy of antibody-producing plasma cells. In the absence of a single unifying genetic event contributing to disease manifestation, efforts have focused on understanding signaling events deregulated in myeloma plasma cells. MM cells are dependent on both cellular and non-cellular components of the tumor microenvironment such as bone marrow stromal cells, endothelial cells, and cytokines such as interleukin 6 (IL6), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF) for their growth and survival. The cumulative effect of such interactions is the aberrant activation of numerous signal transduction pathways within the MM plasma cells leading to uncontrolled growth and prevention of apoptosis. Here, we will review our current understanding of some of the key signal transduction pathways dysregulated in MM and emerging therapies targeting these pathways in MM.
Collapse
Affiliation(s)
- Vijay Ramakrishnan
- Division of Hematology, Mayo Clinic, 200, First Street SW, Rochester, MN, 55905, USA.
| | - Anita D'Souza
- Medical College of Wisconsin Milwaukee, Milwaukee, WI, 53226, USA.
| |
Collapse
|
28
|
de Rosamel L, Blanc JF. Emerging tyrosine kinase inhibitors for the treatment of hepatocellular carcinoma. Expert Opin Emerg Drugs 2017; 22:175-190. [PMID: 28604110 DOI: 10.1080/14728214.2017.1336538] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the fifth most diagnosed cancer in the world and the third leading cause of death. Unfortunately, when diagnosed two thirds of patients have an advanced disease for which only palliative treatment can be proposed and most likely systemic therapy. Areas covered: As of today only one systemic therapy is validated in the treatment of advanced HCC, a tyrosine kinase inhibitor (TKI): Sorafenib. Treatment options are therefore lacking. With the advent of Sorafenib other TKIs have been studied with some disappointing results. Many explanations can be found to the failure of these tested TKIs such as the underlying cirrhosis leading to rapidly serious adverse events, or trial design imperfections. Expert opinion: Taking into account these failures, new trials with more appropriate designs have led to recent success with multi-target TKIs (Regorafenib and Lenvatinib). This multi-target approach allows to overcome the molecular heterogeneity of advanced HCC which is associated with multiple simultaneously dysregulated signaling pathways. On the contrary, another lead is to study target a specific TKI such as c-MET inhibitors or TGFβR inhibitors in HCC sub-populations with promising results in early phase trials. These results will have to be validated in the ongoing phase III trials.
Collapse
Affiliation(s)
- Laure de Rosamel
- a Service d'Hépato-Gastroentérologie et d'Oncologie Digestive , Hôpital Haut-Lévêque, CHU , Pessac , France
| | - Jean-Frederic Blanc
- a Service d'Hépato-Gastroentérologie et d'Oncologie Digestive , Hôpital Haut-Lévêque, CHU , Pessac , France
| |
Collapse
|
29
|
Galanina N, Smith SM, Liao C, Petrich A, Libao B, Gartenhaus R, Westin JR, Cohen KS, Knost JA, Stadler WM, Doyle A, Karrison T, Gordon LI, Evens AM. University of Chicago phase II consortium trial of selumetinib (MEKi) demonstrates low tolerability and efficacy in relapsed DLBCL. Br J Haematol 2017; 181:264-267. [PMID: 28419407 DOI: 10.1111/bjh.14544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natalie Galanina
- Department of Hematology/Oncology, University of California San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Sonali M Smith
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Chuanhong Liao
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Adam Petrich
- Division of Hematology/Oncology Northwestern University, Chicago, IL, USA
| | - Bernadette Libao
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Ronald Gartenhaus
- Department of Hematology/Oncology, University of Maryland, Baltimore, MD, USA
| | | | - Kenneth S Cohen
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | | | - Walter M Stadler
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | | | - Theodore Karrison
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Leo I Gordon
- Division of Hematology/Oncology Northwestern University, Chicago, IL, USA
| | - Andrew M Evens
- Division of Hematology/OncologyTufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
30
|
Lin S, Hoffmann K, Gao C, Petrulionis M, Herr I, Schemmer P. Melatonin promotes sorafenib-induced apoptosis through synergistic activation of JNK/c-jun pathway in human hepatocellular carcinoma. J Pineal Res 2017; 62. [PMID: 28178378 DOI: 10.1111/jpi.12398] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
Melatonin has been shown to exert anticancer activity on hepatocellular carcinoma (HCC) through its antiproliferative and pro-apoptotic effect in both experimental and clinical studies, and sorafenib is the only approved drug for the systemic treatment of HCC. Thus, this study was designed to investigate the combined effect of melatonin and sorafenib on proliferation, apoptosis, and its possible mechanism in human HCC. Here, we found that both melatonin and sorafenib resulted in a dose-dependent growth inhibition of HuH-7 cells after 48 hours treatment, and the combination of them enhanced the growth inhibition in a synergistic manner. Colony formation assay indicated that co-treatment of HuH-7 cells with melatonin and sorafenib significantly decreased the clonogenicity compared to the treatment with single agent. Furthermore, FACS and TUNEL assay confirmed that melatonin synergistically augmented the sorafenib-induced apoptosis after 48 hours incubation, which was in accordance with the activation of caspase-3 and the JNK/c-jun pathway. Inhibition of JNK/c-jun pathway with its inhibitor SP600125 reversed the phosphorylation of c-jun and the activation of caspase-3 induced by co-treatment of HuH-7 cells with melatonin and sorafenib in a dose-dependent manner. Furthermore, SP600125 exhibited protective effect against apoptosis induced by the combination of melatonin and sorafenib. This study demonstrates that melatonin in combination with sorafenib synergistically inhibits proliferation and induces apoptosis in human HCC cells; therefore, supplementation of sorafenib with melatonin may serve as a potential therapeutic choice for advanced HCC.
Collapse
Affiliation(s)
- Shibo Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Katrin Hoffmann
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Chao Gao
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Marius Petrulionis
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ingrid Herr
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schemmer
- Department of Surgery, Division of Transplant Surgery, Medical University of Graz, Austria
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
31
|
Patel YT, Daryani VM, Patel P, Zhou D, Fangusaro J, Carlile DJ, Martin PD, Aarons L, Stewart CF. Population Pharmacokinetics of Selumetinib and Its Metabolite N-desmethyl-selumetinib in Adult Patients With Advanced Solid Tumors and Children With Low-Grade Gliomas. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:305-314. [PMID: 28326681 PMCID: PMC5445231 DOI: 10.1002/psp4.12175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 01/09/2023]
Abstract
Selumetinib (AZD6244, ARRY‐142886), a mitogen activated protein kinases (MEK1 and 2) inhibitor, has been granted orphan drug designation for differentiated thyroid cancer. The primary aim of this analysis was to characterize the population pharmacokinetics of selumetinib and its active metabolite N‐desmethyl‐selumetinib in patients with cancer. Concentration–time data from adult and pediatric clinical trials were pooled to develop a population pharmacokinetic model using a sequential approach where selumetinib and N‐desmethyl‐selumetinib data were modeled separately. A sequential zero‐ and first‐order absorption with lag time with a two‐compartment model for selumetinib and a two‐compartment model for N‐desmethyl‐selumetinib best described the concentration–time data. Intrapatient variability in absorption was higher than interpatient variability. The apparent drug clearance (CL/F) from the central compartment was 13.5 L/hr (RSE 4.9%). Significant covariates for CL/F were age, alanine aminotransferase, and body surface area. This study confirms that flat dosing is appropriate in adults, whereas body‐surface area based dosing should be used in pediatric patients.
Collapse
Affiliation(s)
- Y T Patel
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - V M Daryani
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN; currently at Gilead Sciences, San Francisco, California, USA
| | - P Patel
- Manchester Pharmacy School, University of Manchester, Manchester, UK
| | - D Zhou
- Quantitative Clinical Pharmacology, AstraZeneca Pharmaceuticals, Waltham, Massachusetts, USA
| | - J Fangusaro
- Ann and Robert H. Lurie Children's Hospital of Chicago and the Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - D J Carlile
- Innovative Medicine and Early Development, AstraZeneca, Da Vinci Building, Melbourn Science Park, Cambridge, UK, AstraZeneca, UK
| | - P D Martin
- Quantitative Clinical Pharmacology, AstraZeneca, Cheshire, UK; currently at Sandoz, Clinical Pharmacology, Holzkirchen, Germany
| | - L Aarons
- Manchester Pharmacy School, University of Manchester, Manchester, UK
| | - C F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
32
|
Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy. Int J Mol Sci 2017. [PMID: 28216578 DOI: 10.3390/ijms18020405.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive-regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu.
Collapse
|
33
|
Tahmasebi Birgani M, Carloni V. Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy. Int J Mol Sci 2017; 18:ijms18020405. [PMID: 28216578 PMCID: PMC5343939 DOI: 10.3390/ijms18020405] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive–regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu.
Collapse
Affiliation(s)
- Maryam Tahmasebi Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 63461, Iran.
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.
| |
Collapse
|
34
|
Schmid I, von Schweinitz D. Pediatric hepatocellular carcinoma: challenges and solutions. J Hepatocell Carcinoma 2017; 4:15-21. [PMID: 28144610 PMCID: PMC5248979 DOI: 10.2147/jhc.s94008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a very rare entity in children, making it nearly impossible to orchestrate Phase II/III studies even as multinational cooperative trials. In contrast to adults, nearly 50% of the children have a response (α-fetoprotein decline and/or tumor shrinkage) to chemotherapeutic agents such as cisplatin and doxorubicin (PLADO), demonstrating that HCC in childhood can be chemotherapy sensitive. As a result, the main treatment options in pediatric HCC focus on systemic drug therapies and resection as the central therapy. In nonmetastatic patients with complete resection upfront, the 5-year event-free survival and overall survival has reached 80%–90%. In almost all reported studies, children received adjuvant chemotherapy (mostly PLADO), but it has never been proven that postoperative chemotherapy is superior to observation. No data are available for the effects of sorafenib. The 3-year survival is <20% in children with unresectable HCC independent of the chemotherapy given preoperatively. Currently, PLADO in combination with sorafenib is recommended with the goal of achieving operability status. Alternatively, data are promising for the combination of sorafenib with gemcitabine and oxaliplatin. For children with nonresectable and nonmetastastic liver tumors, it has been shown that the Milan criteria regarding liver transplantation are not applicable – individual decisions have to be made. Transarterial chemoembolization could be offered to patients with chemotherapy-resistant liver tumors for palliative care or potentially to achieve surgical resectability, and therefore cure. Information about the feasibility or effects of new agents or approaches as discussed in adult HCC patients is not available for childhood HCC. Research has to be done for characterizing the molecular and genomic mechanisms of pediatric HCC to support the development of novel therapeutic approaches and the implementation of personalized medicine.
Collapse
Affiliation(s)
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
35
|
Yang S, Liu G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett 2017; 13:1041-1047. [PMID: 28454211 DOI: 10.3892/ol.2017.5557] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
Although the biological basis of hepatocellular carcinoma (HCC) remains unclear, effective treatments and improvement of the survival rate remain worthwhile research goals. Abnormal protein signaling pathways contributing to uncontrolled cell proliferation, differentiation, survival and apoptosis are biomarkers of the carcinogenic process. Certain mutated components or overexpression of the rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway are increasingly being studied in HCC carcinogenesis. The present review addresses the effect of the Ras/Raf/MEK/ERK signaling pathway on the pathogenesis of HCC, and provides an update on the preclinical and clinical development of various inhibitors targeting this core signaling pathway, which include various Ras inhibitors, Raf inhibitors and MEK inhibitors for HCC.
Collapse
Affiliation(s)
- Sufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical Collage, Shantou, Guangdong 515041, P.R. China
| | - Guohua Liu
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical Collage, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
36
|
Dymond AW, Martin P, So K, Huang Y, Severin P, Holmes V, Mariani G, Marbury T. Pharmacokinetics of a Single Oral Dose of the MEK1/2 Inhibitor Selumetinib in Subjects With End-Stage Renal Disease or Varying Degrees of Hepatic Impairment Compared With Healthy Subjects. J Clin Pharmacol 2016; 57:592-605. [PMID: 28019010 PMCID: PMC5412920 DOI: 10.1002/jcph.848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/28/2016] [Indexed: 11/26/2022]
Abstract
Two phase I open‐label studies were conducted to investigate the pharmacokinetics (PK), safety, and tolerability of single oral doses of selumetinib in subjects with end‐stage renal disease (ESRD) undergoing hemodialysis and subjects with varying degrees of hepatic impairment; both studies included a matched control group comprised of healthy individuals. In the renal impairment study, subjects received single doses of selumetinib 50 mg; those with ESRD received selumetinib before and after dialysis (with a between‐treatment washout period of ≥7 days). In the hepatic impairment study, subjects received varying single doses of selumetinib (20‐50 mg) depending on liver dysfunction (mild, moderate, or severe as per Child‐Pugh classification). PK, safety, and tolerability data were collected from both studies. Overall, 24 subjects were included in the renal impairment study (ESRD, N = 12; healthy subjects, N = 12). Selumetinib exposure (AUC and Cmax) was not increased in the ESRD group vs healthy subjects. Selumetinib exposure was lower when selumetinib was dosed before vs after dialysis, although individual exposure was variable. Overall, 32 subjects were included in the hepatic impairment study (mild, moderate, and severe impairment, N = 8 per group; healthy subjects, N = 8). Generally, dose‐normalized total selumetinib exposure was increased by 25% to 59% in subjects with moderate and severe hepatic impairment compared with healthy subjects. Increasing Child‐Pugh score, decreasing serum albumin, and increasing prothrombin time correlated with increasing unbound selumetinib exposure. In both studies, selumetinib was well tolerated with no new safety concerns. These studies will inform dose adjustment considerations in patients.
Collapse
|
37
|
Talbert EE, Yang J, Mace TA, Farren MR, Farris AB, Young GS, Elnaggar O, Che Z, Timmers CD, Rajasekera P, Maskarinec JM, Bloomston M, Bekaii-Saab T, Guttridge DC, Lesinski GB. Dual Inhibition of MEK and PI3K/Akt Rescues Cancer Cachexia through both Tumor-Extrinsic and -Intrinsic Activities. Mol Cancer Ther 2016; 16:344-356. [PMID: 27811010 DOI: 10.1158/1535-7163.mct-16-0337] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022]
Abstract
Involuntary weight loss, a part of the cachexia syndrome, is a debilitating comorbidity of cancer and currently has no treatment options. Results from a recent clinical trial at our institution showed that biliary tract cancer patients treated with a MEK inhibitor exhibited poor tumor responses but surprisingly gained weight and increased their skeletal muscle mass. This implied that MEK inhibition might be anticachectic. To test this potential effect of MEK inhibition, we utilized the established Colon-26 model of cancer cachexia and the MEK1/2 inhibitor MEK162. Results showed that MEK inhibition effectively prevented muscle wasting. Importantly, MEK162 retained its ability to spare muscle loss even in mice bearing a Colon-26 clone resistant to the MEK inhibitor, demonstrating that the effects of blocking MEK are at least in part independent of the tumor. Because single-agent MEK inhibitors have been limited as a first-line targeted therapy due to compensatory activation of other oncogenic signaling pathways, we combined MEK162 with the PI3K/Akt inhibitor buparlisib. Results showed that this combinatorial treatment significantly reduced tumor growth due to a direct activity on Colon-26 tumor cells in vitro and in vivo, while also preserving skeletal muscle mass. Together, our results suggest that as a monotherapy, MEK inhibition preserves muscle mass, but when combined with a PI3K/Akt inhibitor exhibits potent antitumor activity. Thus, combinatorial therapy might serve as a new approach for the treatment of cancer cachexia. Mol Cancer Ther; 16(2); 344-56. ©2016 AACRSee related article by Kobayashi et al., p. 357.
Collapse
Affiliation(s)
- Erin E Talbert
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.,Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Jennifer Yang
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.,Molecular, Cellular, and Developmental Biology Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Thomas A Mace
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.,Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Matthew R Farren
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.,Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Alton B Farris
- Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30307, USA
| | - Gregory S Young
- Center for Biostatistics, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Omar Elnaggar
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Zheng Che
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Cynthia D Timmers
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Priyani Rajasekera
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Jennifer M Maskarinec
- Biomedical Science Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Mark Bloomston
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.,Division of Surgical Oncology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Tanios Bekaii-Saab
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Denis C Guttridge
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.,Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.,Molecular, Cellular, and Developmental Biology Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Gregory B Lesinski
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.,Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
38
|
Bernabé R, Patrao A, Carter L, Blackhall F, Dean E. Selumetinib in the treatment of non-small-cell lung cancer. Future Oncol 2016; 12:2545-2560. [PMID: 27467210 DOI: 10.2217/fon-2016-0132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The RAS-RAF-MEK-ERK pathway regulates processes involved in the proliferation and survival of cells. KRAS mutations, prevalent in approximately 30% of patients with non-small-cell lung cancer (NSCLC), result in constitutive activation of the pathway. Selumetinib (AZD6244, ARRY-142886) is a potent and selective inhibitor of MEK1/2 which has demonstrated significant efficacy in combination with docetaxel in patients with KRAS mutant pretreated advanced NSCLC. Several trials in combination with other chemotherapy and targeted therapy regimens in lung cancer are ongoing. We review the development of selumetinib in patients with NSCLC, summarize the pharmacodynamic, pharmacokinetic and tolerability characteristics, and the available clinical trial data to understand the role of selumetinib in the treatment of NSCLC.
Collapse
Affiliation(s)
- Reyes Bernabé
- The Christie NHS Foundation Trust, Manchester, UK
- Hospital Valme, Seville, Spain
| | - Ana Patrao
- The Christie NHS Foundation Trust, Manchester, UK
| | | | - Fiona Blackhall
- The Christie NHS Foundation Trust, Manchester, UK
- The University of Manchester, Manchester, UK
| | - Emma Dean
- The Christie NHS Foundation Trust, Manchester, UK
- The University of Manchester, Manchester, UK
| |
Collapse
|
39
|
Jamieson D, Griffin MJ, Sludden J, Drew Y, Cresti N, Swales K, Merriman M, Allen R, Bevan P, Buerkle M, Mala C, Coyle V, Rodgers L, Dean E, Greystoke A, Banerji U, Wilson RH, Evans TRJ, Anthoney A, Ranson M, Boddy AV, Plummer R. A phase I pharmacokinetic and pharmacodynamic study of the oral mitogen-activated protein kinase kinase (MEK) inhibitor, WX-554, in patients with advanced solid tumours. Eur J Cancer 2016; 68:1-10. [PMID: 27693888 DOI: 10.1016/j.ejca.2016.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/15/2016] [Accepted: 08/27/2016] [Indexed: 11/15/2022]
Abstract
PURPOSE We performed a multi-centre phase I study to assess the safety, pharmacokinetics (PK) and pharmacodynamics (PD) of the orally available small molecule mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, WX-554, and to determine the optimal biological dose for subsequent trials. EXPERIMENTAL DESIGN Patients with treatment-refractory, advanced solid tumours, with adequate performance status and organ function were recruited to a dose-escalation study in a standard 3 + 3 design. The starting dose was 25 mg orally once weekly with toxicity, PK and PD guided dose-escalation with potential to explore alternative schedules. RESULTS Forty-one patients with advanced solid tumours refractory to standard therapies and with adequate organ function were recruited in eight cohorts up to doses of 150 mg once weekly and 75 mg twice weekly. No dose-limiting toxicities were observed during the study, and a maximum tolerated dose (MTD) was not established. The highest dose cohorts demonstrated sustained inhibition of extracellular signal-regulated kinase (ERK) phosphorylation in peripheral blood mononuclear cells following ex-vivo phorbol 12-myristate 13-acetate stimulation. There was a decrease of 70 ± 26% in mean phosphorylated (p)ERK in C1 day 8 tumour biopsies when compared with pre-treatment tumour levels in the 75 mg twice a week cohort. Prolonged stable disease (>6 months) was seen in two patients, one with cervical cancer and one with ampullary carcinoma. CONCLUSIONS WX-554 was well tolerated, and an optimal biological dose was established for further investigation in either a once or twice weekly regimens. The recommended phase 2 dose is 75 mg twice weekly.
Collapse
Affiliation(s)
- David Jamieson
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Melanie J Griffin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Julieann Sludden
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Yvette Drew
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; Northern Centre for Cancer Care, Newcastle Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
| | - Nicola Cresti
- Northern Centre for Cancer Care, Newcastle Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
| | - Karen Swales
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | | | | | - Paul Bevan
- WILEX AG, Grillparzerstr. 18, 81675, Munich, Germany
| | | | - Carola Mala
- WILEX AG, Grillparzerstr. 18, 81675, Munich, Germany
| | - Vicky Coyle
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK; Northern Ireland Cancer Center, Belfast City Hospital, Belfast, UK
| | - Lisa Rodgers
- Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, G12 OYN, UK
| | - Emma Dean
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, M20 4BX, UK
| | - Alastair Greystoke
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; Northern Centre for Cancer Care, Newcastle Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
| | - Udai Banerji
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Richard H Wilson
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK; Northern Ireland Cancer Center, Belfast City Hospital, Belfast, UK
| | - T R Jeffery Evans
- Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, G12 OYN, UK
| | - Alan Anthoney
- St. James's Institute of Oncology, Beckett Street, Leeds, LS9 7TF, UK
| | - Malcolm Ranson
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, M20 4BX, UK
| | - Alan V Boddy
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ruth Plummer
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; Northern Centre for Cancer Care, Newcastle Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK.
| |
Collapse
|
40
|
Tai WM, Yong WP, Lim C, Low LS, Tham CK, Koh TS, Ng QS, Wang WW, Wang LZ, Hartano S, Thng CH, Huynh H, Lim KT, Toh HC, Goh BC, Choo SP. A phase Ib study of selumetinib (AZD6244, ARRY-142886) in combination with sorafenib in advanced hepatocellular carcinoma (HCC). Ann Oncol 2016; 27:2210-2215. [PMID: 27681866 DOI: 10.1093/annonc/mdw415] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Treatment with sorafenib, although associated with inhibition of tumour growth and angiogenesis in in vivo studies, leads to up-regulation of pERK. The addition of MEK inhibition could potentially abrogate this effect and potentiate anti-tumour activity. This phase I study investigated the maximum tolerated dose (MTD), safety, tolerability, pharmacokinetics (PK) and biomarker correlates of selumetinib combined with sorafenib in patients with advanced hepatocellular carcinoma (HCC). METHODS Patients with Child-Pugh (CP) score ≤7 were treated with 400 mg twice daily of sorafenib with escalating doses of selumetinib in a 3 + 3 study design. The dose-limiting toxicity (DLT) evaluation period was 28 days. PK of selumetinib was determined. Angiogenic effect was evaluated with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). RESULTS Twenty-seven patients of Asian ethnicity were enrolled. The MTD was selumetinib 75 mg daily with sorafenib 400 mg twice daily. DLT included grade 3 transaminitis, diarrhoea and fatigue. Most common treatment-related adverse events at MTD (all grades) were diarrhoea (85%), rash (59%), hypertension (44%), fatigue (30%), anorexia (22%) and hand-foot syndrome (22%). Four patients (15%) had PR and 13 (48%) had SD. PR or SD was observed for ≥6 months in seven patients. The median overall survival was 14.4 months. Selumetinib exposures in combination with sorafenib were comparable to other monotherapy studies. A reduction in permeability-surface area product noted in DCE-MRI with treatment correlated with worse survival outcomes. CONCLUSION The MTD of selumetinib was 75 mg daily when combined with sorafenib 400 mg twice a day in CP ≤7 HCC. Acceptable adverse events and encouraging anti-tumour activity warrant further evaluation. DCE-MRI findings deserve prospective evaluation. CLINICALTRIALSGOV IDENTIFIER NCT01029418.
Collapse
Affiliation(s)
- W M Tai
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - W P Yong
- Department of Haematology-Oncology, National University Health System, Singapore
| | - C Lim
- Divisions of Clinical Trials and Epidemiological Sciences
| | - L S Low
- Divisions of Clinical Trials and Epidemiological Sciences
| | - C K Tham
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - T S Koh
- Oncologic Imaging, National Cancer Centre Singapore, Singapore
| | - Q S Ng
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - W W Wang
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - L Z Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - S Hartano
- SingHealth Duke-NUS Radiological Sciences Academic Clinical Program, Singapore
| | - C H Thng
- Oncologic Imaging, National Cancer Centre Singapore, Singapore
| | - H Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre Singapore, Singapore
| | - K T Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - H C Toh
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - B C Goh
- Department of Haematology-Oncology, National University Health System, Singapore
| | - S P Choo
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore
| |
Collapse
|
41
|
Integrating Domain Specific Knowledge and Network Analysis to Predict Drug Sensitivity of Cancer Cell Lines. PLoS One 2016; 11:e0162173. [PMID: 27607242 PMCID: PMC5015856 DOI: 10.1371/journal.pone.0162173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/18/2016] [Indexed: 12/20/2022] Open
Abstract
One of fundamental challenges in cancer studies is that varying molecular characteristics of different tumor types may lead to resistance to certain drugs. As a result, the same drug can lead to significantly different results in different types of cancer thus emphasizing the need for individualized medicine. Individual prediction of drug response has great potential to aid in improving the clinical outcome and reduce the financial costs associated with prescribing chemotherapy drugs to which the patient's tumor might be resistant. In this paper we develop a network based classifier (NBC) method for predicting sensitivity of cell lines to anticancer drugs from transcriptome data. In the literature, this strategy has been used for predicting cancer types. Here, we extend it to estimate sensitivity of cells from different tumor types to various anticancer drugs. Furthermore, we incorporate domain specific knowledge such as the use of apoptotic gene list and clinical dose information in our method to impart biological significance to the prediction. Our experimental results suggest that our network based classifier (NBC) method outperforms existing classifiers in estimating sensitivity of cell lines for different drugs.
Collapse
|
42
|
Quan-Jun Y, Yan H, Yong-Long H, Li-Li W, Jie L, Jin-Lu H, Jin L, Peng-Guo C, Run G, Cheng G. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation. Mol Cancer Ther 2016; 16:334-343. [PMID: 27599525 DOI: 10.1158/1535-7163.mct-16-0324] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 11/16/2022]
Abstract
Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR.
Collapse
Affiliation(s)
- Yang Quan-Jun
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Huo Yan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Han Yong-Long
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Wan Li-Li
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Li Jie
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Huang Jin-Lu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Lu Jin
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Chen Peng-Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Gan Run
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Guo Cheng
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China.
| |
Collapse
|
43
|
Zhang B, Finn RS. Personalized Clinical Trials in Hepatocellular Carcinoma Based on Biomarker Selection. Liver Cancer 2016; 5:221-32. [PMID: 27493897 PMCID: PMC4960351 DOI: 10.1159/000367763] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Since the approval of sorafenib there have been numerous failures of new agents in Phase III studies for treatment of advanced hepatocellular carcinoma (HCC). These studies have generally ignored the molecular heterogeneity of HCC and they have not enrolled patients based on predictive markers of response. The development of molecular targeted therapeutics in HCC needs to model the approach that has been taken with great success in other solid tumors, to decrease the likelihood of failure in future studies. SUMMARY Here we review the paradigm taken with novel targeted agents in other solid tumors and highlight ongoing studies in HCC that are incorporating biomarkers in clinical development. KEY MESSAGES With the appreciation of the molecular diversity of HCC, clinical development of new agents in HCC will need to be targeted towards those patients who are most likely to benefit. This strategy, based on biomarkers for patient selection, is more likely to yield positive results and mitigate the risk of continued negative Phase III studies.
Collapse
Affiliation(s)
| | - Richard S. Finn
- *Richard S. Finn, MD, Division of Hematology Oncology Geffen School of Medicine at UCLA, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA 90404 (USA), Tel. +01 310 586 2091, E-Mail
| |
Collapse
|
44
|
Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, Gores G. Hepatocellular carcinoma. Nat Rev Dis Primers 2016; 2:16018. [PMID: 27158749 DOI: 10.1038/nrdp.2016.18] [Citation(s) in RCA: 1813] [Impact Index Per Article: 201.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver cancer is the second leading cause of cancer-related deaths globally and has an incidence of approximately 850,000 new cases per year. Hepatocellular carcinoma (HCC) represents approximately 90% of all cases of primary liver cancer. The main risk factors for developing HCC are well known and include hepatitis B and C virus infection, alcohol intake and ingestion of the fungal metabolite aflatoxin B1. Additional risk factors such as non-alcoholic steatohepatitis are also emerging. Advances in the understanding of the molecular pathogenesis of HCC have led to identification of critical driver mutations; however, the most prevalent of these are not yet druggable targets. The molecular classification of HCC is not established, and the Barcelona Clinic Liver Cancer staging classification is the main clinical algorithm for the stratification of patients according to prognosis and treatment allocation. Surveillance programmes enable the detection of early-stage tumours that are amenable to curative therapies - resection, liver transplantation or local ablation. At more developed stages, only chemoembolization (for intermediate HCC) and sorafenib (for advanced HCC) have shown survival benefits. There are major unmet needs in HCC management that might be addressed through the discovery of new therapies and their combinations for use in the adjuvant setting and for intermediate- and advanced-stage disease. Moreover, biomarkers for therapy stratification, patient-tailored strategies targeting driver mutations and/or activating signalling cascades, and validated measurements of quality of life are needed. Recent failures in the testing of systemic drugs for intermediate and advanced stages have indicated a need to refine trial designs and to define novel approaches.
Collapse
Affiliation(s)
- Josep M Llovet
- Liver Cancer Program, Division of Liver Diseases and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, Madison Avenue 1425, 11F-70, Box 1123, New York, New York 10029, USA.,Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, IDIBAPS - Hospital Clinic, CIBERehd, University of Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Jessica Zucman-Rossi
- INSERM, UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Equipe Labellisée Ligue Contre le Cancer, Institut Universitaire d'Haematologie, Paris, France.,Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,Université Paris 13, Sorbonne Paris Cité, Unité de Formation et de Recherche Santé, Médecine, Biologie Humaine, Bobigny, France.,Université Paris Diderot, Paris, France
| | - Eli Pikarsky
- Lautenberg Center for Immunology and Cancer Research and Department of Pathology, Hebrew University Hadassah-Medical School, Jerusalem, Israel
| | - Bruno Sangro
- Liver Unit, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Pamplona, Spain
| | - Myron Schwartz
- Liver Cancer Program, Division of Liver Diseases and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, Madison Avenue 1425, 11F-70, Box 1123, New York, New York 10029, USA
| | - Morris Sherman
- Department of Gastroenterology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Gregory Gores
- Mayo Clinic, Mayo College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
45
|
Thillai K, Ross P, Sarker D. Molecularly targeted therapy for advanced hepatocellular carcinoma - a drug development crisis? World J Gastrointest Oncol 2016; 8:173-85. [PMID: 26909132 PMCID: PMC4753168 DOI: 10.4251/wjgo.v8.i2.173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma is the fastest growing cause of cancer related death globally. Sorafenib, a multi-targeted kinase inhibitor, is the only drug proven to improve outcomes in patients with advanced disease offering modest survival benefit. Although comprehensive genomic mapping has improved understanding of the genetic aberrations in hepatocellular cancer (HCC), this knowledge has not yet impacted clinical care. The last few years have seen the failure of several first and second line phase III clinical trials of novel molecularly targeted therapies, warranting a change in the way new therapies are investigated in HCC. Potential reasons for these failures include clinical and molecular heterogeneity, trial design and a lack of biomarkers. This review discusses the current crisis in HCC drug development and how we should learn from recent trial failures to develop a more effective personalised treatment paradigm for patients with HCC.
Collapse
|
46
|
Archibald M, Pritchard T, Nehoff H, Rosengren RJ, Greish K, Taurin S. A combination of sorafenib and nilotinib reduces the growth of castrate-resistant prostate cancer. Int J Nanomedicine 2016; 11:179-200. [PMID: 26811677 PMCID: PMC4712974 DOI: 10.2147/ijn.s97286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) remains incurable due to the lack of effective therapies. Several tyrosine kinases have been implicated in the development and growth of CRPC, as such targeting these kinases may offer an alternative therapeutic strategy. We established the combination of two tyrosine kinase inhibitors (TKIs), sorafenib and nilotinib, as the most cytotoxic. In addtion, to improve their bioavailability and reduce their metabolism, we encapsulated sorafenib and nilotinib into styrene-co-maleic acid micelles. The micelles' charge, size, and release rate were characterized. We assessed the effect of the combination on the cytotoxicity, cell cycle, apoptosis, protein expression, tumor spheroid integrity, migration, and invasion. The micelles exhibited a mean diameter of 100 nm, a neutral charge, and appeared highly stable. The micellar TKIs promoted greater cytotoxicity, decreased cell proliferation, and increased apoptosis relative to the free TKIs. In addition, the combination reduced the expression and activity of several tyrosine kinases and reduced tumor spheroid integrity and metastatic potential of CRPC cell lines more efficiently than the single treatments. The combination increased the therapeutic potential and demonstrated the relevance of a targeted combination therapy for the treatment of CRPC. In addition, the efficacy of the encapsulated drugs provides the basis for an in vivo preclinical testing.
Collapse
Affiliation(s)
- Monica Archibald
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Tara Pritchard
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Hayley Nehoff
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Aljawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Sebastien Taurin
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
47
|
The RAF-MEK-ERK pathway: targeting ERK to overcome obstacles to effective cancer therapy. Future Med Chem 2015; 7:269-89. [PMID: 25826360 DOI: 10.4155/fmc.14.143] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Currently, dozens of BRAF inhibitors and MEK inhibitors targeting RAF-MEK-ERK pathway have been introduced into clinical trials for cancer therapy. However, after 6-8 months of initial response, acquired drug resistance among the majority of those treated patients sharply diminished their clinical efficacy. DISCUSSION Important mechanisms responsible for acquired resistance of BRAF inhibitors and MEK inhibitors have been elucidated. Continually, ERK1/2 locates in the critical position and features unique characteristics, such as activating hundreds of substrates, participating in feedback regulation, being catalyzed by MEK specifically and no acquired resistant mutation. CONCLUSION Taking in account the inspiring outcomes of ERK inhibitors in preclinical research, ERK1/2 might be the optimal target to overcome acquired drug resistance in RAF-MEK-ERK pathway.
Collapse
|
48
|
Targeting inhibition of extracellular signal-regulated kinase kinase pathway with AZD6244 (ARRY-142886) suppresses growth and angiogenesis of gastric cancer. Sci Rep 2015; 5:16382. [PMID: 26567773 PMCID: PMC4644956 DOI: 10.1038/srep16382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/14/2015] [Indexed: 02/05/2023] Open
Abstract
AZD6244 (ARRY-142886), a highly selective MAPK-ERK kinase inhibitor, has shown excellent clinical efficacy in many tumors. However, the anti-tumor and anti-angiogenesis efficacy of AZD6244 on gastric cancer has not been well characterized. In this study, high p-ERK expression was associated with advanced TNM stage, increased lymphovascular invasion and poor survival. For absence of NRAS, KRAS and BRAF mutation, SGC7901 and BGC823 gastric cancer cells were relative resistance to AZD6244 in vitro. And such resistance was not attributed to the insufficient inhibition of ERK phosphorylation. However, tumor growth was significantly suppressed in SGC7901 xenografts by blockage of angiogenesis. This result was further supported by suppression of tube formation and migration in HUVEC cells after treatment with AZD6244. Moreover, the anti-angiogenesis effect of AZD6244 may predominantly attribute to its modulation on VEGF through p-ERK − c-Fos − HIF-1α integrated signal pathways. In conclusions, High p-ERK expression was associated with advanced TNM stage, increased lymphovascular invasion and poor survival. Targeting inhibition of p-ERK by AZD6244 suppress gastric cancer xenografts by blockage of angiogenesis without systemic toxicity. The anti-angiogenesis effect afford by AZD6244 may attribute to its modulation on p-ERK − c-Fos − HIF-1α − VEGF integrated signal pathways.
Collapse
|
49
|
Temporal Identification of Dysregulated Genes and Pathways in Clear Cell Renal Cell Carcinoma Based on Systematic Tracking of Disrupted Modules. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:313740. [PMID: 26543493 PMCID: PMC4620417 DOI: 10.1155/2015/313740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022]
Abstract
Objective. The objective of this work is to identify dysregulated genes and pathways of ccRCC temporally according to systematic tracking of the dysregulated modules of reweighted Protein-Protein Interaction (PPI) networks. Methods. Firstly, normal and ccRCC PPI network were inferred and reweighted based on Pearson correlation coefficient (PCC). Then, we identified altered modules using maximum weight bipartite matching and ranked them in nonincreasing order. Finally, gene compositions of altered modules were analyzed, and pathways enrichment analyses of genes in altered modules were carried out based on Expression Analysis Systematic Explored (EASE) test. Results. We obtained 136, 576, 693, and 531 disrupted modules of ccRCC stages I, II, III, and IV, respectively. Gene composition analyses of altered modules revealed that there were 56 common genes (such as MAPK1, CCNA2, and GSTM3) existing in the four stages. Besides pathway enrichment analysis identified 5 common pathways (glutathione metabolism, cell cycle, alanine, aspartate, and glutamate metabolism, arginine and proline metabolism, and metabolism of xenobiotics by cytochrome P450) across stages I, II, III, and IV. Conclusions. We successfully identified dysregulated genes and pathways of ccRCC in different stages, and these might be potential biological markers and processes for treatment and etiology mechanism in ccRCC.
Collapse
|
50
|
Shao YY, Hsu CH, Cheng AL. Predictive biomarkers of sorafenib efficacy in advanced hepatocellular carcinoma: Are we getting there? World J Gastroenterol 2015; 21:10336-10347. [PMID: 26420960 PMCID: PMC4579880 DOI: 10.3748/wjg.v21.i36.10336] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/26/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Sorafenib is the current standard treatment for advanced hepatocellular carcinoma (HCC), but its efficacy is modest with low response rates and short response duration. Predictive biomarkers for sorafenib efficacy are necessary. However, efforts to determine biomarkers for sorafenib have led only to potential candidates rather than clinically useful predictors. Studies based on patient cohorts identified the potential of blood levels of angiopoietin-2, hepatocyte growth factor, insulin-like growth factor-1, and transforming growth factor-β1 for predicting sorafenib efficacy. Alpha-fetoprotein response, dynamic contrast-enhanced magnetic resonance imaging, and treatment-related side effects may serve as early surrogate markers. Novel approaches based on super-responders or experimental mouse models may provide new directions in biomarker research. These studies identified tumor amplification of FGF3/FGF4 or VEGFA and tumor expression of phospho-Mapk14 and phospho-Atf2 as possible predictive markers that await validation. A group effort that considers various prognostic factors and proper collection of tumor tissues before treatment is imperative for the success of future biomarker research in advanced HCC.
Collapse
|