1
|
Cao Z, Gao Q, Fu M, Ni N, Pei Y, Ou WB. Anaplastic lymphoma kinase fusions: Roles in cancer and therapeutic perspectives. Oncol Lett 2019; 17:2020-2030. [PMID: 30675269 PMCID: PMC6341817 DOI: 10.3892/ol.2018.9856] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinase (RTK) anaplastic lymphoma kinase (ALK) serves a crucial role in brain development. ALK is located on the short arm of chromosome 2 (2p23) and exchange of chromosomal segments with other genes, including nucleophosmin (NPM), echinoderm microtubule-associated protein-like 4 (EML4) and Trk-fused gene (TFG), readily occurs. Such chromosomal translocation results in the formation of chimeric X-ALK fusion oncoproteins, which possess potential oncogenic functions due to constitutive activation of ALK kinase. These proteins contribute to the pathogenesis of various hematological malignancies and solid tumors, including lymphoma, lung cancer, inflammatory myofibroblastic tumors (IMTs), Spitz tumors, renal carcinoma, thyroid cancer, digestive tract cancer, breast cancer, leukemia and ovarian carcinoma. Targeting of ALK fusion oncoproteins exclusively, or in combination with ALK kinase inhibitors including crizotinib, is the most common therapeutic strategy. As is often the case for small-molecule tyrosine kinase inhibitors (TKIs), drug resistance eventually develops via an adaptive secondary mutation in the ALK fusion oncogene, or through engagement of alternative signaling mechanisms. The updated mechanisms of a variety of ALK fusions in tumorigenesis, proliferation and metastasis, in addition to targeted therapies are discussed below.
Collapse
Affiliation(s)
- Zhifa Cao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Qian Gao
- Emergency Department, Tianjin Fourth Central Hospital, Fourth Central Hospital Affiliated with Nankai University, Tianjin 300140, P.R. China
| | - Meixian Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Nan Ni
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yuting Pei
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, P.R. China
| |
Collapse
|
2
|
Zheng D, Wang R, Zhang Y, Pan Y, Cheng X, Cheng C, Zheng S, Li H, Gong R, Li Y, Shen X, Sun Y, Chen H. Prevalence and clinicopathological characteristics of ALK fusion subtypes in lung adenocarcinomas from Chinese populations. J Cancer Res Clin Oncol 2015; 142:833-43. [PMID: 26646246 DOI: 10.1007/s00432-015-2081-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/13/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE We performed this retrospective study to have a comprehensive investigation of the clinicopathological characteristics of ALK fusion-positive lung adenocarcinoma in Chinese populations. METHODS We screened 1407 patients with primary lung adenocarcinoma from October 2007 to May 2013. Quantitative real-time PCR (qRT-PCR), reverse transcriptase PCR (RT-PCR), and fluorescence in situ hybridization were performed to detect ALK fusion genes, with validation of positive results using immunohistochemistry. Clinicopathological characteristics were collected to assess prognosis in ALK fusion-positive patients. RESULTS Of 1407 patients with lung adenocarcinoma, there were 74 (5.3 %) ALK fusion-positive patients. Patients harboring ALK fusion were significantly younger (56.0 years vs. 59.8 years p = 0.002) and were more likely to have advanced stages (stage III or stage IV) (OR 1.761; 95 % CI 1.10-2.82, p = 0.017). Lepidic predominant adenocarcinoma was rarely found in ALK fusion patients (2.7 vs. 13.5 % p = 0.025), while IMA (invasive mucinous adenocarcinoma) predominant adenocarcinoma was more frequently found (21.6 vs. 5.0 % p < 0.001). ALK fusion was neither a risk factor nor protective factor in relapse-free survival and overall survival. Male, current smoker, and EML4-ALK variant 3 indicated poor prognosis among ALK fusion-positive lung adenocarcinomas. CONCLUSIONS ALK fusion was detected in 5.3 % (74/1407) of the Chinese patients with lung adenocarcinoma. ALK fusion defines a molecular subset of lung adenocarcinoma with unique clinicopathological characteristics. Different ALK fusion variants determine distinct prognoses.
Collapse
Affiliation(s)
- Difan Zheng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Wang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yunjian Pan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinghua Cheng
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Cheng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shanbo Zheng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hang Li
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ranxia Gong
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xuxia Shen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Gainor JF, Varghese AM, Ou SHI, Kabraji S, Awad MM, Katayama R, Pawlak A, Mino-Kenudson M, Yeap BY, Riely GJ, Iafrate AJ, Arcila ME, Ladanyi M, Engelman JA, Dias-Santagata D, Shaw AT. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res 2013; 19:4273-81. [PMID: 23729361 DOI: 10.1158/1078-0432.ccr-13-0318] [Citation(s) in RCA: 472] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Anaplastic lymphoma kinase (ALK) gene rearrangements define a distinct molecular subset of non-small cell lung cancer (NSCLC). Recently, several case reports and small series have reported that ALK rearrangements can overlap with other oncogenic drivers in NSCLC in crizotinib-naïve and crizotinib-resistant cancers. EXPERIMENTAL DESIGN We reviewed clinical genotyping data from 1,683 patients with NSCLC and investigated the prevalence of concomitant EGFR or KRAS mutations among patients with ALK-positive NSCLC. We also examined biopsy specimens from 34 patients with ALK-positive NSCLC after the development of resistance to crizotinib. RESULTS Screening identified 301 (17.8%) EGFR mutations, 465 (27.6%) KRAS mutations, and 75 (4.4%) ALK rearrangements. EGFR mutations and ALK rearrangements were mutually exclusive. Four patients with KRAS mutations were found to have abnormal ALK FISH patterns, most commonly involving isolated 5' green probes. Sufficient tissue was available for confirmatory ALK immunohistochemistry in 3 cases, all of which were negative for ALK expression. Among patients with ALK-positive NSCLC who acquired resistance to crizotinib, repeat biopsy specimens were ALK FISH positive in 29 of 29 (100%) cases. Secondary mutations in the ALK kinase domain and ALK gene amplification were observed in 7 of 34 (20.6%) and 3 of 29 (10.3%) cases, respectively. No EGFR or KRAS mutations were identified among any of the 25 crizotinib-resistant, ALK-positive patients with sufficient tissue for testing. CONCLUSIONS Functional ALK rearrangements were mutually exclusive with EGFR and KRAS mutations in a large Western patient population. This lack of overlap was also observed in ALK-positive cancers with acquired resistance to crizotinib.
Collapse
Affiliation(s)
- Justin F Gainor
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ou SHI, Bartlett CH, Mino-Kenudson M, Cui J, Iafrate AJ. Crizotinib for the treatment of ALK-rearranged non-small cell lung cancer: a success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist 2012; 17:1351-75. [PMID: 22989574 PMCID: PMC3500356 DOI: 10.1634/theoncologist.2012-0311] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/10/2012] [Indexed: 01/20/2023] Open
Abstract
Crizotinib, an ALK/MET/ROS1 inhibitor, was approved by the U.S. Food and Drug Administration for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) in August 2011, merely 4 years after the first publication of ALK-rearranged NSCLC. The crizotinib approval was accompanied by the simultaneous approval of an ALK companion diagnostic fluorescent in situ hybridization assay for the detection of ALK-rearranged NSCLC. Crizotinib continued to be developed as an ALK and MET inhibitor in other tumor types driven by alteration in ALK and MET. Crizotinib has recently been shown to be an effective ROS1 inhibitor in ROS1-rearranged NSCLC, with potential future clinical applications in ROS1-rearranged tumors. Here we summarize the heterogeneity within the ALK- and ROS1-rearranged molecular subtypes of NSCLC. We review the past and future clinical development of crizotinib for ALK-rearranged NSCLC and the diagnostic assays to detect ALK-rearranged NSCLC. We highlight how the success of crizotinib has changed the paradigm of future drug development for targeted therapies by targeting a molecular-defined subtype of NSCLC despite its rarity and affected the practice of personalized medicine in oncology, emphasizing close collaboration between clinical oncologists, pathologists, and translational scientists.
Collapse
Affiliation(s)
- Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Orange, California 92868, USA.
| | | | | | | | | |
Collapse
|
6
|
Pillai RN, Ramalingam SS. The biology and clinical features of non-small cell lung cancers with EML4-ALK translocation. Curr Oncol Rep 2012; 14:105-10. [PMID: 22311682 DOI: 10.1007/s11912-012-0213-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The anaplastic lymphoma kinase (ALK) acts as a dominant oncogenic driver following chromosomal rearrangements in certain cancers including non-small cell lung cancer (NSCLC). NSCLC with ALK translocation occurs in a specific subset of patients and results in unique clinical features. Crizotinib is a small molecule inhibitor of ALK kinase that has recently been approved by the FDA for the treatment of patients with ALK-positive NSCLC. Treatment with crizotinib results in clinical benefit rate of 85%-90% and a median progression-free survival of 9-10 months for this molecular subset of patients. Ongoing studies will define the impact of crizotinib on overall survival and provide insights into the resistance mechanisms and potential activation of alternate pathways. Heat shock protein 90 inhibitors also appear promising in the treatment of ALK-positive NSCLC patients, based on early results. This article reviews the characteristics, treatment, and ongoing research in patients with ALK-positive NSCLC.
Collapse
Affiliation(s)
- Rathi N Pillai
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|