1
|
Suter P, Dazert E, Kuipers J, Ng CKY, Boldanova T, Hall MN, Heim MH, Beerenwinkel N. Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model. PLoS Comput Biol 2022; 18:e1009767. [PMID: 36067230 PMCID: PMC9481159 DOI: 10.1371/journal.pcbi.1009767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/16/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Comprehensive molecular characterization of cancer subtypes is essential for predicting clinical outcomes and searching for personalized treatments. We present bnClustOmics, a statistical model and computational tool for multi-omics unsupervised clustering, which serves a dual purpose: Clustering patient samples based on a Bayesian network mixture model and learning the networks of omics variables representing these clusters. The discovered networks encode interactions among all omics variables and provide a molecular characterization of each patient subgroup. We conducted simulation studies that demonstrated the advantages of our approach compared to other clustering methods in the case where the generative model is a mixture of Bayesian networks. We applied bnClustOmics to a hepatocellular carcinoma (HCC) dataset comprising genome (mutation and copy number), transcriptome, proteome, and phosphoproteome data. We identified three main HCC subtypes together with molecular characteristics, some of which are associated with survival even when adjusting for the clinical stage. Cluster-specific networks shed light on the links between genotypes and molecular phenotypes of samples within their respective clusters and suggest targets for personalized treatments.
Collapse
Affiliation(s)
- Polina Suter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eva Dazert
- Biozentrum, University of Basel, Basel, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Charlotte K. Y. Ng
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tuyana Boldanova
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Markus H. Heim
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|