1
|
Lee SG, Evans G, Stephen M, Goren R, Bondy M, Goodman S. Medulloblastoma and other neoplasms in patients with heterozygous germline SUFU variants: A scoping review. Am J Med Genet A 2024; 194:e63496. [PMID: 38282294 DOI: 10.1002/ajmg.a.63496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
In 2002, heterozygous suppressor of fused variants (SUFU+/-) in the germline were described to have a tumor suppressor role in the development of pediatric medulloblastoma (MB). Other neoplasms associated with pathologic germline SUFU+/- variants have also been described among patients with basal cell nevus syndrome (BCNS; BCNS is also known as Gorlin syndrome, nevoid basal cell carcinoma [BCC] syndrome or Gorlin-Goltz syndrome; OMIM 109400), an autosomal-dominant cancer predisposition syndrome. The phenotype of patients with germline SUFU+/- variants is very poorly characterized due to a paucity of large studies with long-term follow-up. As such, there is a clinical need to better characterize the spectrum of neoplasms among patients with germline SUFU+/- variants so that clinicians can provide accurate counseling and optimize tumor surveillance strategies. The objective of this study is to perform a scoping review to map the evidence on the rate of medulloblastoma and to describe the spectrum of other neoplasms among patients with germline SUFU+/- variants. A review of all published literature in PubMed (MEDLINE), EMBASE, Cochrane, and Web of Science were searched from the beginning of each respective database until October 9, 2021. Studies of pediatric and adult patients with a confirmed germline SUFU+/- variant who were evaluated for the presence of any neoplasm (benign or malignant) were included. There were 176 patients (N = 30 studies) identified with a confirmed germline SUFU+/- variant who met inclusion criteria. Data were extracted from two cohort studies, two case-control studies, 18 case series, and eight case reports. The median age at diagnosis of a germline SUFU+/- variant was 4.5 years where 44.4% identified as female and 13.4% of variants were de novo. There were 34 different neoplasms (benign and malignant) documented among patients with confirmed germline SUFU+/- variants, and the most common were medulloblastoma (N = 59 patients), BCC (N = 21 patients), and meningioma (N = 19 patients). The median age at medulloblastoma diagnosis was 1.42 years (range 0.083-3; interquartile range 1.2). When data were available for these three most frequent neoplasms (N = 95 patients), 31 patients (32.6%) had neither MB, BCC nor meningioma; 51 patients (53.7%) had one of medulloblastoma or BCC or meningioma; eight patients (8.4%) had two of medulloblastoma or BCC or meningioma, and five patients (5.3%) had medulloblastoma and BCC and meningioma. This is the first study to synthesize the data on the frequency and spectrum of neoplasms specifically among patients with a confirmed germline SUFU+/- variant. This scoping review is a necessary step forward in optimizing evidence-based tumor surveillance strategies for medulloblastoma and estimating the risk of other neoplasms that could impact patient outcomes.
Collapse
Affiliation(s)
- Stephanie G Lee
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gareth Evans
- Division of Evolution, Infection and Genomic Science, Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester NHS Foundation Trust, Manchester, UK
| | - Maddie Stephen
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Goren
- Queen's School of Medicine, Queens University, Kingston, Ontario, Canada
| | - Melissa Bondy
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, USA
| | - Steven Goodman
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
2
|
Dege T, Maurus K, Kneitz H, Presser D, Kunstmann E, Schilling B. Nonsense-Mutation in SUFU ist mit multiplen infundibulozystischen Basalzellkarzinomen assoziiert: A nonsense mutation in SUFU associated with multiple infundibulocystic basal cell carcinomas. J Dtsch Dermatol Ges 2023; 21:1396-1398. [PMID: 37946635 DOI: 10.1111/ddg.15190_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/20/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Tassilo Dege
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Würzburg, Würzburg
| | - Katja Maurus
- Institut für Pathologie, Universität Würzburg, Würzburg
| | - Hermann Kneitz
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Würzburg, Würzburg
| | - Dagmar Presser
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Würzburg, Würzburg
| | | | - Bastian Schilling
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Würzburg, Würzburg
| |
Collapse
|
3
|
Dege T, Maurus K, Kneitz H, Presser D, Kunstmann E, Schilling B. A nonsense mutation in SUFU associated with multiple infundibulocystic basal cell carcinomas. J Dtsch Dermatol Ges 2023; 21:1396-1398. [PMID: 37658656 DOI: 10.1111/ddg.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/20/2023] [Indexed: 09/03/2023]
Affiliation(s)
- Tassilo Dege
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Katja Maurus
- Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Hermann Kneitz
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Dagmar Presser
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Erdmute Kunstmann
- Institute for Human Genetics, University of Würzburg, Würzburg, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Suspitsin EN, Imyanitov EN. Hereditary Conditions Associated with Elevated Cancer Risk in Childhood. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:880-891. [PMID: 37751861 DOI: 10.1134/s0006297923070039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Received January, 31, 2023 Revised March, 16, 2023 Accepted March, 18, 2023 Widespread use of the next-generation sequencing (NGS) technologies revealed that a significant percentage of tumors in children develop as a part of monogenic hereditary diseases. Predisposition to the development of pediatric neoplasms is characteristic of a wide range of conditions including hereditary tumor syndromes, primary immunodeficiencies, RASopathies, and phakomatoses. The mechanisms of tumor molecular pathogenesis are diverse and include disturbances in signaling cascades, defects in DNA repair, chromatin remodeling, and microRNA processing. Timely diagnosis of tumor-associated syndromes is important for the proper choice of cancer treatment, genetic counseling of families, and development of the surveillance programs. The review describes the spectrum of neoplasms characteristic of the most common syndromes and molecular pathogenesis of these diseases.
Collapse
Affiliation(s)
- Evgeny N Suspitsin
- N. N. Petrov National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Saint Petersburg, 197758, Russia.
- St.-Petersburg State Pediatric Medical University, Saint Petersburg, 194100, Russia
| | - Evgeny N Imyanitov
- N. N. Petrov National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Saint Petersburg, 197758, Russia
- St.-Petersburg State Pediatric Medical University, Saint Petersburg, 194100, Russia
| |
Collapse
|
5
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
6
|
Fahmy SA, Dawoud A, Zeinelabdeen YA, Kiriacos CJ, Daniel KA, Eltahtawy O, Abdelhalim MM, Braoudaki M, Youness RA. Molecular Engines, Therapeutic Targets, and Challenges in Pediatric Brain Tumors: A Special Emphasis on Hydrogen Sulfide and RNA-Based Nano-Delivery. Cancers (Basel) 2022; 14:5244. [PMID: 36358663 PMCID: PMC9657918 DOI: 10.3390/cancers14215244] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 09/11/2023] Open
Abstract
Pediatric primary brain tumors represent a real challenge in the oncology arena. Besides the psychosocial burden, brain tumors are considered one of the most difficult-to-treat malignancies due to their sophisticated cellular and molecular pathophysiology. Notwithstanding the advances in research and the substantial efforts to develop a suitable therapy, a full understanding of the molecular pathways involved in primary brain tumors is still demanded. On the other hand, the physiological nature of the blood-brain barrier (BBB) limits the efficiency of many available treatments, including molecular therapeutic approaches. Hydrogen Sulfide (H2S), as a member of the gasotransmitters family, and its synthesizing machinery have represented promising molecular targets for plentiful cancer types. However, its role in primary brain tumors, generally, and pediatric types, particularly, is barely investigated. In this review, the authors shed the light on the novel role of hydrogen sulfide (H2S) as a prominent player in pediatric brain tumor pathophysiology and its potential as a therapeutic avenue for brain tumors. In addition, the review also focuses on the challenges and opportunities of several molecular targeting approaches and proposes promising brain-delivery strategies for the sake of achieving better therapeutic results for brain tumor patients.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Capital City, Cairo 11835, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Yousra Ahmed Zeinelabdeen
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Omar Eltahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Miriam Mokhtar Abdelhalim
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| |
Collapse
|
7
|
Serpieri V, D’Abrusco F, Dempsey JC, Cheng YHH, Arrigoni F, Baker J, Battini R, Bertini ES, Borgatti R, Christman AK, Curry C, D'Arrigo S, Fluss J, Freilinger M, Gana S, Ishak GE, Leuzzi V, Loucks H, Manti F, Mendelsohn N, Merlini L, Miller CV, Muhammad A, Nuovo S, Romaniello R, Schmidt W, Signorini S, Siliquini S, Szczałuba K, Vasco G, Wilson M, Zanni G, Boltshauser E, Doherty D, Valente EM, University of Washington Center for Mendelian Genomics (UW-CMG) group
BamshadM JLealS MNickersonD AAndersonPBacusT JBlueE EBrowerKBuckinghamK JChongJ XCornejo SánchezDDavisC PDavisC JFrazarC DGomeztagle-BurgessKGordonW WHorike-PyneMHurlessJ RJarvikG PJohansonEKolarJ TMarvinC TMcGeeSMcGoldrickD JMekonnenBNielsenP MPattersonKRadhakrishnanARichardsonM ARooteG TRykeE LSchrauwenIShivelyK MSmithJ DTackettMWangGWeissJ MWheelerM MYiQZhangX. SUFU haploinsufficiency causes a recognisable neurodevelopmental phenotype at the mild end of the Joubert syndrome spectrum. J Med Genet 2022; 59:888-894. [PMID: 34675124 PMCID: PMC9411896 DOI: 10.1136/jmedgenet-2021-108114] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Joubert syndrome (JS) is a recessively inherited ciliopathy characterised by congenital ocular motor apraxia (COMA), developmental delay (DD), intellectual disability, ataxia, multiorgan involvement, and a unique cerebellar and brainstem malformation. Over 40 JS-associated genes are known with a diagnostic yield of 60%-75%.In 2018, we reported homozygous hypomorphic missense variants of the SUFU gene in two families with mild JS. Recently, heterozygous truncating SUFU variants were identified in families with dominantly inherited COMA, occasionally associated with mild DD and subtle cerebellar anomalies. METHODS We reanalysed next generation sequencing (NGS) data in two cohorts comprising 1097 probands referred for genetic testing of JS genes. RESULTS Heterozygous truncating and splice-site SUFU variants were detected in 22 patients from 17 families (1.5%) with strong male prevalence (86%), and in 8 asymptomatic parents. Patients presented with COMA, hypotonia, ataxia and mild DD, and only a third manifested intellectual disability of variable severity. Brain MRI showed consistent findings characterised by vermis hypoplasia, superior cerebellar dysplasia and subtle-to-mild abnormalities of the superior cerebellar peduncles. The same pattern was observed in two out of three tested asymptomatic parents. CONCLUSION Heterozygous truncating or splice-site SUFU variants cause a novel neurodevelopmental syndrome encompassing COMA and mild JS, which likely represent overlapping entities. Variants can arise de novo or be inherited from a healthy parent, representing the first cause of JS with dominant inheritance and reduced penetrance. Awareness of this condition will increase the diagnostic yield of JS genetic testing, and allow appropriate counselling about prognosis, medical monitoring and recurrence risk.
Collapse
Affiliation(s)
| | - Fulvio D’Abrusco
- Department of Molecular Medicine, University of Pavia, Pavia, Lombardia, Italy
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Yong-Han Hank Cheng
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Janice Baker
- Genomics and Genetic Medicine Department, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Roberta Battini
- Unit of Child Neuropsychiatry, IRCCS Foundation Stella Maris, Calambrone, Toscana, Italy,Department of Clinical ad Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Silvio Bertini
- Laboratory of Molecular Medicine, Unit of Muscular and Neurodegenerative Diseases, Department of Neuroscience, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy,Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Angela K Christman
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Cynthia Curry
- Department of Pediatrics, Stanford University, Stanford, California, USA,Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, Fresno, California, USA,University Pediatric Specialists, Fresno, California, USA
| | - Stefano D'Arrigo
- Department of Developmental Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Joel Fluss
- Department of Women, Children and Adolescents, Geneva University Hospitals, Geneva, Switzerland
| | - Michael Freilinger
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Simone Gana
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Gisele E Ishak
- Department of Neuroradiology, University of Washington School of Medicine, Seattle, Washington, USA,Pediatric Radiology, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, University of Rome La Sapienza, Roma, Lazio, Italy
| | - Hailey Loucks
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Filippo Manti
- Department of Human Neuroscience, University of Rome La Sapienza, Roma, Lazio, Italy
| | - Nancy Mendelsohn
- Complex Health Solutions, United Healthcare, Minneapolis, Minnesota, USA
| | - Laura Merlini
- Department of Pediatric Radiology, Geneva University Hospitals Children's Hospital, Geneva, Switzerland
| | - Caitlin V Miller
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Ansar Muhammad
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland,Depatment of Ophtalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland,Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Sara Nuovo
- Department of Experimental Medicine, University of Rome La Sapienza, Rome, Lazio, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | - Wolfgang Schmidt
- Center for Anatomy and Cell Biology, Neuromuscular Research Department, Medical University of Vienna, Vienna, Austria
| | - Sabrina Signorini
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Sabrina Siliquini
- Child Neuropsychiatry Unit, Paediatric Hospital G Salesi, Ancona, Italy
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Warszawski Uniwersytet Medyczny, Warszawa, Poland
| | - Gessica Vasco
- Unit of Neurorehabilitation, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Meredith Wilson
- Department of Clinical Genetics, Children’s Hospital at Westmead, Sydney, New South Wales, Australia,Discipline of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Ginevra Zanni
- Laboratory of Molecular Medicine, Unit of Muscular and Neurodegenerative Diseases, Department of Neuroscience, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Eugen Boltshauser
- Department of Pediatric Neurology (Emeritus), University Children's Hospital Zürich, Zurich, Zürich, Switzerland
| | - Dan Doherty
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA,Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Enza Maria Valente
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy,Department of Molecular Medicine, University of Pavia, Pavia, Lombardia, Italy
| | | |
Collapse
|
8
|
Leiomyomatosis in an Infant With a SUFU Splice Site Variant: Case Report. J Pediatr Hematol Oncol 2022; 44:e914-e917. [PMID: 35398865 DOI: 10.1097/mph.0000000000002454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
Abstract
Heterozygous loss-of-function variants in the suppressor of fused protein gene (SUFU) can result in Gorlin syndrome, which is characterized by an increased frequency of basal cell carcinoma, medulloblastoma, odontogenic keratocysts, as well as other tumors. We describe a case of a 5-month-old female who presented with multiple intra-abdominal leiomyomata and was found to have a likely pathogenic splice site variant in the SUFU gene. This is the first reported case of leiomyomatosis secondary to a pathogenic SUFU variant in an infant and may represent an early, atypical presentation of Gorlin syndrome.
Collapse
|
9
|
Guerrini-Rousseau L, Masliah-Planchon J, Waszak SM, Alhopuro P, Benusiglio PR, Bourdeaut F, Brecht IB, Del Baldo G, Dhanda SK, Garrè ML, Gidding CEM, Hirsch S, Hoarau P, Jorgensen M, Kratz C, Lafay-Cousin L, Mastronuzzi A, Pastorino L, Pfister SM, Schroeder C, Smith MJ, Vahteristo P, Vibert R, Vilain C, Waespe N, Winship IM, Evans DG, Brugieres L. Cancer risk and tumour spectrum in 172 patients with a germline SUFU pathogenic variation: a collaborative study of the SIOPE Host Genome Working Group. J Med Genet 2022; 59:jmedgenet-2021-108385. [PMID: 35768194 PMCID: PMC9613872 DOI: 10.1136/jmedgenet-2021-108385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/23/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Little is known about risks associated with germline SUFU pathogenic variants (PVs) known as a cancer predisposition syndrome. METHODS To study tumour risks, we have analysed data of a large cohort of 45 unpublished patients with a germline SUFU PV completed with 127 previously published patients. To reduce the ascertainment bias due to index patient selection, the risk of tumours was evaluated in relatives with SUFU PV (89 patients) using the Nelson-Aalen estimator. RESULTS Overall, 117/172 (68%) SUFU PV carriers developed at least one tumour: medulloblastoma (MB) (86 patients), basal cell carcinoma (BCC) (25 patients), meningioma (20 patients) and gonadal tumours (11 patients). Thirty-three of them (28%) had multiple tumours. Median age at diagnosis of MB, gonadal tumour, first BCC and first meningioma were 1.5, 14, 40 and 44 years, respectively. Follow-up data were available for 160 patients (137 remained alive and 23 died). The cumulative incidence of tumours in relatives was 14.4% (95% CI 6.8 to 21.4), 18.2% (95% CI 9.7 to 25.9) and 44.1% (95% CI 29.7 to 55.5) at the age of 5, 20 and 50 years, respectively. The cumulative risk of an MB, gonadal tumour, BCC and meningioma at age 50 years was: 13.3% (95% CI 6 to 20.1), 4.6% (95% CI 0 to 9.7), 28.5% (95% CI 13.4 to 40.9) and 5.2% (95% CI 0 to 12), respectively. Sixty-four different PVs were reported across the entire SUFU gene and inherited in 73% of cases in which inheritance could be evaluated. CONCLUSION Germline SUFU PV carriers have a life-long increased risk of tumours with a spectrum dominated by MB before the age of 5, gonadal tumours during adolescence and BCC and meningioma in adulthood, justifying fine-tuned surveillance programmes.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Team "Genomics and Oncogenesis of pediatric Brain Tumors"-Paris Saclay University, INSERM U981, VILLEJUIF, France
| | - Julien Masliah-Planchon
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Institute Curie, Paris, France
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Pia Alhopuro
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Patrick R Benusiglio
- Département de Génétique et Institut Universitaire de Cancérologie, Sorbonne University Faculty of Medicine Pitié-Salpêtrière Campus, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Institute Curie, Paris, France
| | - Ines B Brecht
- Department of Pediatric Oncology and Hematology, University Hospitals Tubingen, Tubingen, Germany
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, IRCCS, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Sandeep Kumar Dhanda
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Maria Luisa Garrè
- Neuro-Oncology Unit, Department of Neurochirurgia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Corrie E M Gidding
- Neuro-Oncology Department, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Steffen Hirsch
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg Health Center, Heidelberg, Germany
| | - Pauline Hoarau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
| | - Mette Jorgensen
- Oncology, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Christian Kratz
- Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Lucie Lafay-Cousin
- Section of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children's Hospital and Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angela Mastronuzzi
- Pediatric Hematology/Oncology and Stem Cells Transplatation, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Lorenza Pastorino
- Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg Health Center, Heidelberg, Germany
- Division of Pediatric Neurooncology, DKFZ, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tubingen Institute of Human Genetics, Tubingen, Germany
| | - Miriam Jane Smith
- Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Pia Vahteristo
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
| | - Roseline Vibert
- Department of Genetics, PSL Research University, Institute Curie, Paris, France
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Nicolas Waespe
- CANSEARCH Research Platform, Depatment of pediatric oncology and hematology, University of Geneva, Geneva, Switzerland
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ingrid M Winship
- Department of Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences,Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Laurence Brugieres
- Team "Genomics and Oncogenesis of pediatric Brain Tumors"-Paris Saclay University, INSERM U981, VILLEJUIF, France
- Department of Children and Adolescents Oncology, Gustave Roussy Institute, Villejuif, France
| |
Collapse
|
10
|
Katayama D, Inoue A, Kayatani R, Urabe K, Suzuki R, Takitani K, Yoshida M, Kato M, Ashida A. A Case of Gorlin-Goltz Syndrome Without the Characteristic Physical Features That Was Diagnosed After the Development of a Fifth Cancer. J Pediatr Hematol Oncol 2022; 44:e869-e871. [PMID: 35235545 DOI: 10.1097/mph.0000000000002436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/16/2022] [Indexed: 11/25/2022]
Abstract
We present a case of Gorlin-Goltz syndrome (GGS) in a patient who developed medulloblastoma, osteosarcoma, myelodysplastic syndrome, basal cell carcinoma, and odontogenic keratocyst by the age of 19 years. He had no known family history and no characteristic physical features of GGS. A frameshift mutation in the PTCH1 gene was found in the oral mucosa as a low-frequency mosaicism, basal cell carcinoma, and normal skin by whole exome sequencing of cancer susceptibility genes. Setting a therapeutic strategy with regard to second cancer development is important for pediatric cancer patients who have a background of cancer predisposition. Advances in comprehensive multigenetic analysis are anticipated to aid in developing such a strategy.
Collapse
Affiliation(s)
- Daisuke Katayama
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Osaka
| | - Akiko Inoue
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Osaka
| | - Rishu Kayatani
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Osaka
| | - Keisuke Urabe
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Osaka
| | - Ryo Suzuki
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Osaka
| | - Kimitaka Takitani
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Osaka
| | - Masanori Yoshida
- Department of Pediatric Hematology and Oncology Research, National Center for Child Health and Development Research Institute
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Center for Child Health and Development Research Institute
- Department of Pediatrics, the University of Tokyo, Tokyo, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Osaka
| |
Collapse
|
11
|
Molecular Bases of Human Malformation Syndromes Involving the SHH Pathway: GLIA/R Balance and Cardinal Phenotypes. Int J Mol Sci 2021; 22:ijms222313060. [PMID: 34884862 PMCID: PMC8657641 DOI: 10.3390/ijms222313060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Human hereditary malformation syndromes are caused by mutations in the genes of the signal transduction molecules involved in fetal development. Among them, the Sonic hedgehog (SHH) signaling pathway is the most important, and many syndromes result from its disruption. In this review, we summarize the molecular mechanisms and role in embryonic morphogenesis of the SHH pathway, then classify the phenotype of each malformation syndrome associated with mutations of major molecules in the pathway. The output of the SHH pathway is shown as GLI activity, which is generated by SHH in a concentration-dependent manner, i.e., the sum of activating form of GLI (GLIA) and repressive form of GLI (GLIR). Which gene is mutated and whether the mutation is loss-of-function or gain-of-function determine in which concentration range of SHH the imbalance occurs. In human malformation syndromes, too much or too little GLI activity produces symmetric phenotypes affecting brain size, craniofacial (midface) dysmorphism, and orientation of polydactyly with respect to the axis of the limb. The symptoms of each syndrome can be explained by the GLIA/R balance model.
Collapse
|
12
|
Fernández LT, Ocampo-Garza SS, Elizondo-Riojas G, Ocampo-Candiani J. Basal cell nevus syndrome: an update on clinical findings. Int J Dermatol 2021; 61:1047-1055. [PMID: 34494262 DOI: 10.1111/ijd.15884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Basal cell nevus syndrome, also known as Gorlin-Goltz syndrome, is a rare autosomal dominant disorder caused by mutations in the hedgehog signaling pathway, mainly in PTCH1. This pathway is involved in embryogenesis and tumorigenesis, and the loss of function of PTCH1 protein produces an aberrant increase in the hedgehog signaling pathway activity. Basal cell nevus syndrome is characterized by tumor predisposition, particularly with the development of multiple basal cell carcinomas at an early age, along with odontogenic keratocysts, palmoplantar pits, skeletal abnormalities, and an increased risk of medulloblastoma. Diagnosis is clinical, with gene mutation analysis confirming the suspicion. The striking phenotypic variability of the syndrome may lead to a delayed diagnosis, making it an uncommon but important entity to recognize. A high index of suspicion and an early diagnosis is crucial for prevention, surveillance, and the prompt establishment of multidisciplinary medical care.
Collapse
Affiliation(s)
- Lucía T Fernández
- Department of Dermatology, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Sonia S Ocampo-Garza
- Department of Dermatology, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Guillermo Elizondo-Riojas
- Department of Radiology and Medical Imaging, Hospital Universitario "Dr, José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Jorge Ocampo-Candiani
- Department of Dermatology, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, México
| |
Collapse
|
13
|
Current recommendations for cancer surveillance in Gorlin syndrome: a report from the SIOPE host genome working group (SIOPE HGWG). Fam Cancer 2021; 20:317-325. [PMID: 33860896 PMCID: PMC8484213 DOI: 10.1007/s10689-021-00247-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/17/2021] [Indexed: 01/22/2023]
Abstract
Gorlin syndrome (MIM 109,400), a cancer predisposition syndrome related to a constitutional pathogenic variation (PV) of a gene in the Sonic Hedgehog pathway (PTCH1 or SUFU), is associated with a broad spectrum of benign and malignant tumors. Basal cell carcinomas (BCC), odontogenic keratocysts and medulloblastomas are the main tumor types encountered, but meningiomas, ovarian or cardiac fibromas and sarcomas have also been described. The clinical features and tumor risks are different depending on the causative gene. Due to the rarity of this condition, there is little data on phenotype-genotype correlations. This report summarizes genotype-based recommendations for screening patients with PTCH1 and SUFU-related Gorlin syndrome, discussed during a workshop of the Host Genome Working Group of the European branch of the International Society of Pediatric Oncology (SIOPE HGWG) held in January 2020. In order to allow early detection of BCC, dermatologic examination should start at age 10 in PTCH1, and at age 20 in SUFU PV carriers. Odontogenic keratocyst screening, based on odontologic examination, should begin at age 2 with annual orthopantogram beginning around age 8 for PTCH1 PV carriers only. For medulloblastomas, repeated brain MRI from birth to 5 years should be proposed for SUFU PV carriers only. Brain MRI for meningiomas and pelvic ultrasound for ovarian fibromas should be offered to both PTCH1 and SUFU PV carriers. Follow-up of patients treated with radiotherapy should be prolonged and thorough because of the risk of secondary malignancies. Prospective evaluation of evidence of the effectiveness of these surveillance recommendations is required.
Collapse
|
14
|
Yan Z, Cheng M, Hu G, Wang Y, Zeng S, Huang A, Xu L, Liu Y, Shi C, Deng L, Lu Q, Rao H, Lu H, Chen YG, Luo S. Positive feedback of SuFu negating protein 1 on Hedgehog signaling promotes colorectal tumor growth. Cell Death Dis 2021; 12:199. [PMID: 33608498 PMCID: PMC7896051 DOI: 10.1038/s41419-021-03487-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Hedgehog (Hh) signaling plays a critical role in embryogenesis and tissue homeostasis, and its deregulation has been associated with tumor growth. The tumor suppressor SuFu inhibits Hh signaling by preventing the nuclear translocation of Gli and suppressing cell proliferation. Regulation of SuFu activity and stability is key to controlling Hh signaling. Here, we unveil SuFu Negating Protein 1 (SNEP1) as a novel Hh target, that enhances the ubiquitination and proteasomal degradation of SuFu and thus promotes Hh signaling. We further show that the E3 ubiquitin ligase LNX1 plays a critical role in the SNEP1-mediated degradation of SuFu. Accordingly, SNEP1 promotes colorectal cancer (CRC) cell proliferation and tumor growth. High levels of SNEP1 are detected in CRC tissues and are well correlated with poor prognosis in CRC patients. Moreover, SNEP1 overexpression reduces sensitivity to anti-Hh inhibitor in CRC cells. Altogether, our findings demonstrate that SNEP1 acts as a novel feedback regulator of Hh signaling by destabilizing SuFu and promoting tumor growth and anti-Hh resistance.
Collapse
Affiliation(s)
- Zhengwei Yan
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Minzhang Cheng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Guohui Hu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yao Wang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Shaopeng Zeng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Aidi Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Linlin Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Chao Shi
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Libin Deng
- Basic Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Quqin Lu
- Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Hai Rao
- Department of Molecular Medicine, The University of Texas Health, San Antonio, TX, 78229, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China.
| |
Collapse
|
15
|
Surun A, Varlet P, Brugières L, Lacour B, Faure-Conter C, Leblond P, Bertozzi-Salomon AI, Berger C, André N, Sariban E, Raimbault S, Prieur F, Desseigne F, Zattara H, Guimbaud R, Polivka M, Delisle MB, Vasiljevic A, Maurage CA, Figarella-Branger D, Coulet F, Guerrini-Rousseau L, Alapetite C, Dufour C, Colas C, Doz F, Bourdeaut F. Medulloblastomas associated with an APC germline pathogenic variant share the good prognosis of CTNNB1-mutated medulloblastomas. Neuro Oncol 2021; 22:128-138. [PMID: 31504825 DOI: 10.1093/neuonc/noz154] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Medulloblastomas may occur in a predisposition context, including familial adenomatosis polyposis. Medulloblastomas related to a germline pathogenic variant of adenomatous polyposis coli (APC) remain rare and poorly described. Their similarities with sporadic WNT medulloblastomas still require description. METHODS We performed a multicentric retrospective review of 12 patients treated between 1988 and 2018 for medulloblastoma with an identified or highly suspected (personal or familial history) APC germline pathogenic variant. We report personal and familial history APC gene pathogenic variants whenever available: clinical and histologic characteristics of the medulloblastoma, treatments, and long-term outcome, including second tumor and late sequelae. RESULTS Medulloblastomas associated with APC pathogenic variants are mainly classic (11/11 patients, 1 not available), nonmetastatic (10/12 patients) medulloblastomas, with nuclear immunoreactivity for ß-catenin (9/9 tested cases). Ten of 11 assessable patients are disease free with a median follow-up of 10.7 years (range, 1-28 y). Secondary tumors included desmoid tumors in 7 patients (9 tumors), 1 thyroid carcinoma, 2 pilomatricomas, 1 osteoma, 1 vertebral hemangioma, and 1 malignant triton in the radiation field, which caused the only cancer-related death in our series. CONCLUSIONS Medulloblastomas associated with an APC pathogenic variant have an overall favorable outcome, even for metastatic tumors. Yet, long-term survival is clouded by second tumor occurrence; treatment may play some role in some of these second malignancies. Our findings raise the question of applying a de-escalation therapeutic protocol to treat patients with APC germline pathogenic variants given the excellent outcome, and reduced intensity of craniospinal irradiation may be further evaluated.
Collapse
Affiliation(s)
- Aurore Surun
- Curie Institute, SIREDO Cancer Center (Care, Innovation and Research in Pediatric, Adolescents, and Young Adults Oncology), Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Pascale Varlet
- Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Sainte Anne Hospital, Department of Neuropathology, Paris, France
| | - Laurence Brugières
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Paris-Saclay University, Villejuif, France
| | - Brigitte Lacour
- CRESS Equipe 7 UMRS 1153, INSERM, Paris Descartes University, Paris, and National Registry of Solid Tumors, Nancy University Hospital, Vandoeuvre-les-Nancy, France
| | - Cécile Faure-Conter
- Centre Leon Berard, Pediatric Hemato-oncology Institute (IHOP), Lyon, France
| | - Pierre Leblond
- Centre Oscar Lambret, Pediatric Oncology Department, Lille, France
| | | | - Claire Berger
- Saint-Etienne University Hospital, Pediatric Hemato-oncology Department, Saint-Etienne, France
| | - Nicolas André
- Aix Marseille University, La Timone, Pediatric Hemato-oncology Department, AP-HM, Marseille, France
| | - Eric Sariban
- Hôpital des Enfants, Unité Cancer, Bruxelles, Belgique
| | - Sandra Raimbault
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Paris-Saclay University, Villejuif, France
| | - Fabienne Prieur
- Saint-Etienne University Hospital, Genetic Department, Saint-Etienne, France
| | | | - Hélène Zattara
- Marseille University, La Timone, Genetic Department, Marseille, France
| | - Rosine Guimbaud
- Centre Claudius Regaud, Oncogenetic Department, Toulouse, France
| | - Marc Polivka
- University Hospital Lariboisière, Department of Pathology, Paris, France
| | | | | | | | | | - Florence Coulet
- Pitié Salpêtrière hospital, Genetic Department, Paris, France
| | - Léa Guerrini-Rousseau
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Paris-Saclay University, Villejuif, France
| | - Claire Alapetite
- Curie Institute, Department of Radiation Oncology, Paris, France
| | - Christelle Dufour
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Paris-Saclay University, Villejuif, France
| | | | - François Doz
- Curie Institute, SIREDO Cancer Center (Care, Innovation and Research in Pediatric, Adolescents, and Young Adults Oncology), Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Franck Bourdeaut
- Curie Institute, SIREDO Cancer Center (Care, Innovation and Research in Pediatric, Adolescents, and Young Adults Oncology), Paris, France
| |
Collapse
|
16
|
Muskens IS, Zhang C, de Smith AJ, Biegel JA, Walsh KM, Wiemels JL. Germline genetic landscape of pediatric central nervous system tumors. Neuro Oncol 2020; 21:1376-1388. [PMID: 31247102 PMCID: PMC6827836 DOI: 10.1093/neuonc/noz108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) tumors are the second most common type of cancer among children. Depending on histopathology, anatomic location, and genomic factors, specific subgroups of brain tumors have some of the highest cancer-related mortality rates or result in considerable lifelong morbidity. Pediatric CNS tumors often occur in patients with genetic predisposition, at times revealing underlying cancer predisposition syndromes. Advances in next-generation sequencing (NGS) have resulted in the identification of an increasing number of cancer predisposition genes. In this review, the literature on genetic predisposition to pediatric CNS tumors is evaluated with a discussion of potential future targets for NGS and clinical implications. Furthermore, we explore potential strategies for enhancing the understanding of genetic predisposition of pediatric CNS tumors, including evaluation of non-European populations, pan-genomic approaches, and large collaborative studies.
Collapse
Affiliation(s)
- Ivo S Muskens
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Adam J de Smith
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jaclyn A Biegel
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.,Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
17
|
Tolonen JP, Hekkala A, Kuismin O, Tuominen H, Suo-Palosaari M, Tynninen O, Niinimäki R. Medulloblastoma, macrocephaly, and a pathogenic germline PTEN variant: Cause or coincidence? Mol Genet Genomic Med 2020; 8:e1302. [PMID: 32419380 PMCID: PMC7507464 DOI: 10.1002/mgg3.1302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Medulloblastomas (MBs) are a heterogeneous group of childhood brain tumors with four consensus subgroups, namely MBSHH, MBWNT, MBGroup 3, and MBGroup 4, representing the second most common type of pediatric brain cancer after high‐grade gliomas. They suffer from a high prevalence of genetic predisposition with up to 20% of MBSHH caused by germline mutations in only six genes. However, the spectrum of germline mutations in MBSHH remains incomplete. Methods Comprehensive Next‐Generation Sequencing panels of both tumor and patient blood samples were performed as molecular genetic characterization. The panels cover genes that are known to predispose to cancer. Results Here, we report on a patient with a pathogenic germline PTEN variant resulting in an early stop codon p.(Glu7Argfs*4) (ClinVar ID: 480383). The patient developed macrocephaly and MBSHH, but reached remission with current treatment protocols. Conclusions We propose that pathogenic PTEN variants may predispose to medulloblastoma, and show that remission was reached with current treatment protocols. The PTEN gene should be included in the genetic testing provided to patients who develop medulloblastoma at an early age. We recommend brain magnetic resonance imaging upon an unexpected acceleration of growth of head circumference for pediatric patients harboring pathogenic germline PTEN variants.
Collapse
Affiliation(s)
- Jussi-Pekka Tolonen
- Department of Pediatrics, MRC Oulu, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Anne Hekkala
- Department of Pediatrics, MRC Oulu, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, MRC Oulu, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Hannu Tuominen
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Maria Suo-Palosaari
- Department of Diagnostic Radiology, Oulu University Hospital and University of Oulu, Oulu, Finland.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu, Oulu, Finland
| | - Olli Tynninen
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riitta Niinimäki
- Department of Pediatrics, MRC Oulu, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
18
|
Solomon DA. An update on the central nervous system manifestations of familial tumor predisposition syndromes. Acta Neuropathol 2020; 139:609-612. [PMID: 32016553 PMCID: PMC7102922 DOI: 10.1007/s00401-020-02130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
Affiliation(s)
- David A Solomon
- Division of Neuropathology, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA.
| |
Collapse
|
19
|
Lin MJ, Dubin DP, Khorasani H, Giordano CN. Basal cell nevus syndrome: From DNA to therapeutics. Clin Dermatol 2020; 38:467-476. [PMID: 32972605 DOI: 10.1016/j.clindermatol.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Basal cell nevus syndrome, also known as Gorlin syndrome, is a hereditary cancer syndrome associated with multiple basal cell carcinomas, congenital defects, and nondermatologic tumors. This disease is autosomal dominant with variable expressivity and is caused by abnormalities in the sonic hedgehog signaling pathway. Management requires a multidisciplinary approach and should include the biopsychosocial needs of patients and their families. Genetic testing is necessary to confirm an unclear diagnosis, evaluate at-risk relatives, and assist with family planning.
Collapse
Affiliation(s)
- Matthew J Lin
- Division of Dermatologic Surgery, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Danielle P Dubin
- Division of Dermatologic Surgery, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hooman Khorasani
- Division of Dermatologic Surgery, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cerrene N Giordano
- Division of Dermatologic Surgery, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
Transcriptional profiling of medulloblastoma with extensive nodularity (MBEN) reveals two clinically relevant tumor subsets with VSNL1 as potent prognostic marker. Acta Neuropathol 2020; 139:583-596. [PMID: 31781912 DOI: 10.1007/s00401-019-02102-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Medulloblastoma with extensive nodularity (MBEN) is one of the few central nervous system (CNS) tumor entities occurring in infants which is traditionally associated with good to excellent prognosis. Some MBEN, however, have been reported with an unfavorable clinical course. We performed an integrated DNA/RNA-based molecular analysis of a multi-institutional MBEN cohort (n = 41) to identify molecular events which might be responsible for variability in patients' clinical outcomes. RNA sequencing analysis of this MBEN cohort disclosed two clear transcriptome clusters (TCL) of these CNS tumors: "TCL1 MBEN" and "TCL2 MBEN" which were associated with various gene expression signatures, mutational landscapes and, importantly, prognosis. Thus, the clinically unfavorable "TCL1 MBEN" subset revealed transcriptome signatures composed of cancer-associated signaling pathways and disclosed a high frequency of clinically relevant germline PTCH1/SUFU alterations. In contrast, gene expression profiles of tumors from the clinically favorable "TCL2 MBEN" subgroup were associated with activation of various neurometabolic and neurotransmission signaling pathways, and germline SHH-pathway gene mutations were extremely rare in this transcriptome cluster. "TCL2 MBEN" also revealed strong and ubiquitous expression of VSNL1 (visinin-like protein 1) both at the mRNA and protein level, which was correlated with a favorable clinical course. Thus, combining mutational and epigenetic profiling with transcriptome analysis including VSNL1 immunohistochemistry, MBEN patients could be stratified into clinical risk groups of potential value for subsequent treatment planning.
Collapse
|
21
|
Wijaya J, Vo BT, Liu J, Xu B, Wu G, Wang Y, Peng J, Zhang J, Janke LJ, Orr BA, Yu J, Roussel MF, Schuetz JD. An ABC Transporter Drives Medulloblastoma Pathogenesis by Regulating Sonic Hedgehog Signaling. Cancer Res 2020; 80:1524-1537. [PMID: 31948942 DOI: 10.1158/0008-5472.can-19-2054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/05/2019] [Accepted: 01/07/2020] [Indexed: 01/22/2023]
Abstract
Mutations in Sonic hedgehog (SHH) signaling promote aberrant proliferation and tumor growth. SHH-medulloblastoma (MB) is among the most frequent brain tumors in children less than 3 years of age. Although key components of the SHH pathway are well-known, we hypothesized that new disease-modifying targets of SHH-MB might be identified from large-scale bioinformatics and systems biology analyses. Using a data-driven systems biology approach, we built a MB-specific interactome. The ATP-binding cassette transporter ABCC4 was identified as a modulator of SHH-MB. Accordingly, increased ABCC4 expression correlated with poor overall survival in patients with SHH-MB. Knockdown of ABCC4 expression markedly blunted the constitutive activation of the SHH pathway secondary to Ptch1 or Sufu insufficiency. In human tumor cell lines, ABCC4 knockdown and inhibition reduced full-length GLI3 levels. In a clinically relevant murine SHH-MB model, targeted ablation of Abcc4 in primary tumors significantly reduced tumor burden and extended the lifespan of tumor-bearing mice. These studies reveal ABCC4 as a potent SHH pathway regulator and a new candidate to target with the potential to improve SHH-MB therapy. SIGNIFICANCE: These findings identify ABCC4 transporter as a new target in SHH-MB, prompting the development of inhibitors or the repurporsing of existing drugs to target ABCC4.
Collapse
Affiliation(s)
- Juwina Wijaya
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - BaoHan T Vo
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yao Wang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, California
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
22
|
The Role of Next Generation Sequencing in Diagnosis of Brain Tumors: A Review Study. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.68874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Begemann M, Waszak SM, Robinson GW, Jäger N, Sharma T, Knopp C, Kraft F, Moser O, Mynarek M, Guerrini-Rousseau L, Brugieres L, Varlet P, Pietsch T, Bowers DC, Chintagumpala M, Sahm F, Korbel JO, Rutkowski S, Eggermann T, Gajjar A, Northcott P, Elbracht M, Pfister SM, Kontny U, Kurth I. Germline GPR161 Mutations Predispose to Pediatric Medulloblastoma. J Clin Oncol 2019; 38:43-50. [PMID: 31609649 PMCID: PMC6943973 DOI: 10.1200/jco.19.00577] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The identification of a heritable tumor predisposition often leads to changes in management and increased surveillance of individuals who are at risk; however, for many rare entities, our knowledge of heritable predisposition is incomplete. METHODS Families with childhood medulloblastoma, one of the most prevalent childhood malignant brain tumors, were investigated to identify predisposing germline mutations. Initial findings were extended to genomes and epigenomes of 1,044 medulloblastoma cases from international multicenter cohorts, including retrospective and prospective clinical studies and patient series. RESULTS We identified heterozygous germline mutations in the G protein-coupled receptor 161 (GPR161) gene in six patients with infant-onset medulloblastoma (median age, 1.5 years). GPR161 mutations were exclusively associated with the sonic hedgehog medulloblastoma (MBSHH) subgroup and accounted for 5% of infant MBSHH cases in our cohorts. Molecular tumor profiling revealed a loss of heterozygosity at GPR161 in all affected MBSHH tumors, atypical somatic copy number landscapes, and no additional somatic driver events. Analysis of 226 MBSHH tumors revealed somatic copy-neutral loss of heterozygosity of chromosome 1q as the hallmark characteristic of GPR161 deficiency and the primary mechanism for biallelic inactivation of GPR161 in affected MBSHH tumors. CONCLUSION Here, we describe a novel brain tumor predisposition syndrome that is caused by germline GPR161 mutations and characterized by MBSHH in infants. Additional studies are needed to identify a potential broader tumor spectrum associated with germline GPR161 mutations.
Collapse
Affiliation(s)
| | | | | | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,German Cancer Research Centre, Heidelberg, Germany
| | - Tanvi Sharma
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,German Cancer Research Centre, Heidelberg, Germany
| | | | | | | | - Martin Mynarek
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | - Felix Sahm
- German Cancer Research Centre, Heidelberg, Germany.,University Hospital Heidelberg, Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | - Amar Gajjar
- St Jude Children's Research Hospital, Memphis, TN
| | | | | | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,German Cancer Research Centre, Heidelberg, Germany.,University Hospital Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
24
|
Juraschka K, Taylor MD. Medulloblastoma in the age of molecular subgroups: a review. J Neurosurg Pediatr 2019; 24:353-363. [PMID: 31574483 DOI: 10.3171/2019.5.peds18381] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Medulloblastoma is the most common pediatric malignant brain tumor. Advances in molecular profiling have uncovered significant heterogeneity among medulloblastomas and led to the identification of four distinct subgroups (wingless [WNT], sonic hedgehog [SHH], group 3, and group 4) that represent distinct disease entities in both underlying biology and clinical characteristics. The rapidly expanding repertoire of tools to study developmental and cancer biology is providing a wealth of knowledge about these embryonal tumors and is continuously refining the understanding of this complex cancer. In this review, the history of discovery in medulloblastoma is discussed, setting a foundation to outline the current state of understanding of the molecular underpinnings of this disease, with a focus on genomic events that define the aforementioned subgroups and evolving areas of focus, such as the cell of origin of medulloblastoma and medulloblastoma subtypes. With these recent discoveries in mind, the current state of medulloblastoma treatment and clinical trials is reviewed, including a novel risk stratification system that accounts for the molecular biomarkers of patients with a high risk for refractory disease. Lastly, critical areas of focus for future basic science and clinical research on this disease are discussed, such as the complexities of medulloblastoma metastases and recurrence as well as the priorities and strategies to implement in future clinical trials.
Collapse
Affiliation(s)
- Kyle Juraschka
- 1Division of Neurosurgery
- 2The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children; and
- Departments of3Laboratory Medicine and Pathobiology and
- 4Surgery, University of Toronto, Ontario, Canada
| | - Michael D Taylor
- 1Division of Neurosurgery
- 2The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children; and
- Departments of3Laboratory Medicine and Pathobiology and
- 4Surgery, University of Toronto, Ontario, Canada
| |
Collapse
|
25
|
Askaner G, Lei U, Bertelsen B, Venzo A, Wadt K. Novel SUFU Frameshift Variant Leading to Meningioma in Three Generations in a Family with Gorlin Syndrome. Case Rep Genet 2019; 2019:9650184. [PMID: 31485359 PMCID: PMC6702821 DOI: 10.1155/2019/9650184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 01/31/2023] Open
Abstract
Gorlin syndrome is mainly caused by pathogenic germline variants in the tumour suppressor genes PTCH1 and SUFU, both regulatory genes in the hedgehog pathway. However, the phenotypes of patients with PTCH1 and SUFU pathogenic variants seem to differ. We present a family with a frameshift variant in the SUFU gene c.954del, p.Asn319Thrfs∗42 leading to meningiomas and multiple basal cell-carcinomas.
Collapse
Affiliation(s)
- Gustav Askaner
- Department of Plastic Surgery, Hospital South West Jutland, Esbjerg, Denmark
| | - Ulrikke Lei
- Department of Dermatology and Allergy, Gentofte Hospital and Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alessandro Venzo
- Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
26
|
CDK7 inhibition suppresses aberrant hedgehog pathway and overcomes resistance to smoothened antagonists. Proc Natl Acad Sci U S A 2019; 116:12986-12995. [PMID: 31182587 DOI: 10.1073/pnas.1815780116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aberrant hedgehog (Hh) pathway plays important roles in multiple cancer types, therefore serving as a promising drug target. Current clinically available hedgehog-targeted drugs act mostly by antagonizing the upstream component smoothened; however, both primary and acquired resistance to FDA-approved smoothened inhibitor (SMOi) drugs have been described. We have recently demonstrated that the BET inhibitor effectively suppresses SMOi-resistant Hh-driven cancers through antagonizing transcription of GLI1 and GLI2, the core transcriptional factors of Hh pathway, suggesting epigenetic or transcriptional targeted therapy represents an anti-Hh therapeutic strategy that can overcome SMOi resistance. Here we performed an unbiased screening of epigenetic or transcriptional targeted small molecules to test their inhibitory effects on GLI1 and GLI2 transcription or cell viability of Hh-driven tumor lines. THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), is identified as the top hit in our screening. We then confirmed that antagonizing CDK7 by either small-molecule inhibitors or the CRISPR-Cas9 approach causes substantial suppression of GLI1 and GLI2 transcription, resulting in effective inhibition of Hh-driven cancers in vitro and in vivo. More importantly, antagonizing CDK7 retains inhibitory activity against Hh-driven cancers with almost all so-far described primary or acquired SMOi resistance. Furthermore, we reveal a synergy between CDK7 inhibition and BET inhibition on antagonizing aberrant Hh pathway and Hh-driven cancers that are either responsive or resistant to SMOi. Our results illustrate transcriptional inhibition through targeting CDK7 as a promising therapeutic strategy for treating Hh-driven cancers, especially those with primary or acquired resistance to SMOi drugs.
Collapse
|
27
|
Korshunov A, Sahm F, Okonechnikov K, Ryzhova M, Stichel D, Schrimpf D, Casalini B, Sievers P, Meyer J, Zheludkova O, Golanov A, Lichter P, Jones DTW, Pfister SM, Kool M, von Deimling A. Desmoplastic/nodular medulloblastomas (DNMB) and medulloblastomas with extensive nodularity (MBEN) disclose similar epigenetic signatures but different transcriptional profiles. Acta Neuropathol 2019; 137:1003-1015. [PMID: 30826918 DOI: 10.1007/s00401-019-01981-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Desmoplastic/nodular medulloblastomas (DNMB) and medulloblastomas with extensive nodularity (MBEN) were outlined in the current WHO classification of tumors of the nervous system as two distinct histological MB variants. However, they are often considered as cognate SHH MB entities, and it is a reason why some clinical MB trials do not separate the patients with DNMB or MBEN histology. In the current study, we performed an integrated DNA/RNA-based molecular analysis of 83 DNMB and 36 MBEN to assess the etiopathogenetic relationship between these SHH MB variants. Methylation profiling revealed "infant" and "children" SHH MB clusters but neither DNMB nor MBEN composed separate epigenetic cohorts, and their profiles were intermixed within the "infant" cluster. In contrast, RNA-based transcriptional profiling disclosed that expression signatures of all MBEN were clustered separately from most of DNMB and a set of differentially expressed genes was identified. MBEN transcriptomes were enriched with genes associated with synaptic transmission, neuronal differentiation and metabolism, whereas DNMB profiling signatures included sets of genes involved in phototransduction and NOTCH signaling pathways. Thus, DNMB and MBEN are distinct tumor entities within the SHH MB family whose biology is determined by different transcriptional programs. Therefore, we recommend a transcriptome analysis as an optimal molecular tool to discriminate between DNMB and MBEN, which may be of benefit for patients' risk stratification in clinical trials. Molecular events identified in DNMB by RNA sequencing could be considered in the future as potent molecular targets for novel therapeutic interventions in treatment-resistant cases.
Collapse
Affiliation(s)
- Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Schrimpf
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Belen Casalini
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Sievers
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jochen Meyer
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olga Zheludkova
- Department of Neuro-Oncology, Russian Scientific Center of Radiology, Moscow, Russia
| | - Andrey Golanov
- Department of Neuroradiology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Peter Lichter
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Molecular Genetics (B060), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David T W Jones
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group (B360), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| |
Collapse
|
28
|
Grill J, Dufour C, Guerrini-Rousseau L, Ayrault O. New research directions in medulloblastoma. Neurochirurgie 2019; 67:87-89. [PMID: 30904166 DOI: 10.1016/j.neuchi.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/27/2018] [Accepted: 01/06/2019] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Medulloblastoma is the most common type of pediatric malignant brain tumor where the most important amount of clinical and radiological data has been accumulated in recent years. This has led to its sophistication in the management of these patients with a clear benefit for the patients. Long-term outcome and sequelae have been described and their causes well understood such as preventive measures which can now be implemented. MATERIAL AND METHODS This review paper does not attempt to make a systematic review of the literature in the field of research regarding medulloblastoma. It rather reflects more the opinion of a pediatric oncological team involved for a long time in this type of research. Therefore, a relevant literature review was carried out and selected by the senior author. RESULTS Medulloblastoma is no longer a single entity but a group of at least 4 different diseases with a specific oncogenesis. In addition, biomarkers for prognosis have emerged to complement the known clinico-radiological risk factors. If this biological classification has allowed to modulate the therapeutic strategies, it has not yet brought many new drugs (except for the Sonic Hedgehog inhibitors) in the armamentarium against medulloblastomas. Consequently, some high-risk tumors remain difficult to cure. Combining data on oncogenesis and prognostic biomarkers will allow to define risk groups more specifically. New targeted therapies that are more effective and less toxic are desperately needed. Alternatively, it is also justified to study preventive measures to decrease the sequelae of the tumor and its treatments. From the therapeutic point of view, we scarcely know the biological determinants of chemosensitivity and radiosensitivity, as well as those associated with metastases which are indeed invaluable for tailored therapeutic strategies. CONCLUSION If some genetic causes of medulloblastoma are known, the occurrence of the disease is largely unexplained for the others, justifying more research in this area. If genomics (and to a lesser extent epigenomics) of these neoplasms has been well studied, little is known on their proteomics and on the regulatory networks involved in the biological behavior of these tumor cells. New models are developed to test these aspects.
Collapse
Affiliation(s)
- J Grill
- Département de cancérologie de l'enfant et de l'adolescent, université Paris-Saclay et Gustave-Roussy, 114, rue Edouard-Vaillant, 94805 Villejuif, France; Équipe "Génomique et oncogénèse des tumeurs cérébrales pédiatriques", UMR 8203 CNRS, université Paris-Saclay et Gustave-Roussy, 114, rue Edouard-Vaillant, 94805 Villejuif, France.
| | - C Dufour
- Département de cancérologie de l'enfant et de l'adolescent, université Paris-Saclay et Gustave-Roussy, 114, rue Edouard-Vaillant, 94805 Villejuif, France
| | - L Guerrini-Rousseau
- Département de cancérologie de l'enfant et de l'adolescent, université Paris-Saclay et Gustave-Roussy, 114, rue Edouard-Vaillant, 94805 Villejuif, France; Équipe "Génomique et oncogénèse des tumeurs cérébrales pédiatriques", UMR 8203 CNRS, université Paris-Saclay et Gustave-Roussy, 114, rue Edouard-Vaillant, 94805 Villejuif, France
| | - O Ayrault
- Équipe "Signalisation, développement et tumeurs cérébrales", unité Inserm U1021, Institut Curie, université Paris-Saclay, 15, rue Georges-Clémenceau, Orsay, France
| |
Collapse
|
29
|
Mutations in SUFU and PTCH1 genes may cause different cutaneous cancer predisposition syndromes: similar, but not the same. Fam Cancer 2019; 17:601-606. [PMID: 29356994 DOI: 10.1007/s10689-018-0073-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many cancer predisposition syndromes are preceded or accompanied by a range of typical skin signs. Gorlin syndrome is a rare multisystem inherited disorder which can predispose to basal cell carcinomas (BCCs), childhood medulloblastomas in addition to various developmental abnormalities; the majority of cases are due to mutations in the PTCH1 gene. Approximately 5% of cases have been attributed to a mutation in the SUFU gene. Certain phenotypic features have been identified as being more prevalent in individuals with a SUFU mutation such as childhood medulloblastoma, infundibulocystic BCCs and trichoepitheliomas. Recently hamartomatous skin lesions have also been noted in families with childhood medulloblastoma, a "Gorlin like" phenotype and a SUFU mutation. Here we describe a family previously diagnosed with Gorlin syndrome with a novel SUFU splice site deleterious genetic variant, who have several dermatological features including palmar sclerotic fibromas which has not been described in relation to a SUFU mutation before. We highlight the features more prominent in individuals with a SUFU mutation. It is important to note that emerging therapies for treatment of BCCs in patients with a PTCH1 mutation may not be effective in those with a SUFU mutation.
Collapse
|
30
|
Abstract
Medulloblastoma (MB) comprises a biologically heterogeneous group of embryonal tumours of the cerebellum. Four subgroups of MB have been described (WNT, sonic hedgehog (SHH), Group 3 and Group 4), each of which is associated with different genetic alterations, age at onset and prognosis. These subgroups have broadly been incorporated into the WHO classification of central nervous system tumours but still need to be accounted for to appropriately tailor disease risk to therapy intensity and to target therapy to disease biology. In this Primer, the epidemiology (including MB predisposition), molecular pathogenesis and integrative diagnosis taking histomorphology, molecular genetics and imaging into account are reviewed. In addition, management strategies, which encompass surgical resection of the tumour, cranio-spinal irradiation and chemotherapy, are discussed, together with the possibility of focusing more on disease biology and robust molecularly driven patient stratification in future clinical trials.
Collapse
|
31
|
Yin WC, Satkunendran T, Mo R, Morrissy S, Zhang X, Huang ES, Uusküla-Reimand L, Hou H, Son JE, Liu W, Liu YC, Zhang J, Parker J, Wang X, Farooq H, Selvadurai H, Chen X, Ngan ESW, Cheng SY, Dirks PB, Angers S, Wilson MD, Taylor MD, Hui CC. Dual Regulatory Functions of SUFU and Targetome of GLI2 in SHH Subgroup Medulloblastoma. Dev Cell 2018; 48:167-183.e5. [PMID: 30554998 DOI: 10.1016/j.devcel.2018.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/07/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023]
Abstract
SUFU alterations are common in human Sonic Hedgehog (SHH) subgroup medulloblastoma (MB). However, its tumorigenic mechanisms have remained elusive. Here, we report that loss of Sufu alone is unable to induce MB formation in mice, due to insufficient Gli2 activation. Simultaneous loss of Spop, an E3 ubiquitin ligase targeting Gli2, restores robust Gli2 activation and induces rapid MB formation in Sufu knockout background. We also demonstrated a tumor-promoting role of Sufu in Smo-activated MB (∼60% of human SHH MB) by maintaining robust Gli activity. Having established Gli2 activation as a key driver of SHH MB, we report a comprehensive analysis of its targetome. Furthermore, we identified Atoh1 as a target and molecular accomplice of Gli2 that activates core SHH MB signature genes in a synergistic manner. Overall, our work establishes the dual role of SUFU in SHH MB and provides mechanistic insights into transcriptional regulation underlying Gli2-mediated SHH MB tumorigenesis.
Collapse
Affiliation(s)
- Wen-Chi Yin
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Thevagi Satkunendran
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rong Mo
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sorana Morrissy
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Xiaoyun Zhang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eunice Shiao Huang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liis Uusküla-Reimand
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Huayun Hou
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joe Eun Son
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Weifan Liu
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yulu C Liu
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jianing Zhang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada
| | - Jessica Parker
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Xin Wang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hamza Farooq
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hayden Selvadurai
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xin Chen
- Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada
| | - Elly Sau-Wai Ngan
- Department of Surgery, University of Hong Kong, Hong Kong SAR, China
| | - Steven Y Cheng
- Department of developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Peter B Dirks
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Taylor
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Baocheng W, Zhao Y, Meng W, Han Y, Wang J, Liu F, Qin S, Ma J. Polymorphisms of insulin receptor substrate 2 are putative biomarkers for pediatric medulloblastoma: considering the genetic susceptibility and pathological diagnoses. NAGOYA JOURNAL OF MEDICAL SCIENCE 2018; 79:47-54. [PMID: 28303061 PMCID: PMC5346620 DOI: 10.18999/nagjms.79.1.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Molecular profiling subgrouped medulloblastoma (MB) into four subtypes featured by distinct footprints. However, germline studies on genetic susceptibility in Chinese population have not been reported. To investigate the correlation of polymorphisms involved in the AKT signaling pathway with clinicopathological parameters in pediatric MB, and their contribution to the clinical outcome, we performed a case-controlled cohort consisting of 48 patients with pediatric MB and 190 healthy controls from Han population. Significant association in rs7987237 of insulin receptor substrate 2 (IRS2) was identified as risk allele/genotype between MB patients and control group (P<0.05). The allele “C” of rs7987237 in IRS2 gene was associated with an increased risk of MB (P=0.025; OR=2.95, 95%CI 1.43–6.11) after Bonferroni correction. Among 48 patients, various genotypes of rs7987237 show significant association with pathological diagnosis and metastases risk (P<0.05). Furthermore, the survival curve of patients with genotype “CC” of rs7987237 was confirmed with better outcome (P<0.001). Combined with previous results, our study suggests that polymorphisms of IRS2 putatively participated in the development of pediatric MB development. Therefore, it may benefit the early diagnosis and indicate the prognosis of patients with MB in Han population.
Collapse
Affiliation(s)
- Wang Baocheng
- 1Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zhao
- 1Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Meng
- 1Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yipeng Han
- 1Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Wang
- 1Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feili Liu
- 1Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jie Ma
- 1Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Martirosian V, Neman J. Medulloblastoma: Challenges and advances in treatment and research. Cancer Rep (Hoboken) 2018; 2:e1146. [PMCID: PMC7941576 DOI: 10.1002/cnr2.1146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/03/2023] Open
Abstract
Background Medulloblastoma (MB) is a pediatric brain tumor occurring in the posterior fossa. MB is a highly heterogeneous tumor, which can be grouped into four main subgroups: WNT, SHH, Group 3, and Group 4. Each subgroup is different both in its implicated pathways and pathology, as well as how they are treated in the clinic. Recent Findings Standard protocol for MB treatment consists of maximal safe resection, followed by craniospinal radiation (in patients 3 years and older) and adjuvant chemotherapy. Advances in clinical stratification of this tumor have allowed establishment of treatment de‐escalation trials aimed at reducing long‐term side effects. However, there have been few advances in identifying novel therapeutic strategies for MB patients due to difficulties in creating chemotherapeutics that can bypass the blood‐brain‐barrier—among other factors. On the other hand, with the help of whole genome sequencing technologies, molecular pathways involved in MB pathogenesis have become clearer and have helped drive MB research. Regardless, this advance in research has yet to translate to the clinic, which may be due to the inability of current in vivo and in vitro models to accurately recapitulate this heterogeneous tumor in humans. Conclusions There have been significant advances in knowledge and treatment of medulloblastoma over the last few decades. Whole genome sequencing has helped elucidate clear differences between the subgroups of MB, allowing physicians to better tailor treatments to each patient in an effort to reduce long‐term sequelae. However, there are still many more obstacles to overcome, including less cytotoxic therapies in the clinic and better modeling systems to accurately replicate this disease in the laboratory. Scientists and physicians must work in a more cohesive manner to create translatable results from the laboratory to the clinic—helping improve therapies for medulloblastoma patients.
Collapse
Affiliation(s)
- Vahan Martirosian
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Josh Neman
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
34
|
Peng Y, Zhang X, Lin H, Deng S, Huang Y, Qin Y, Feng X, Yan R, Zhao Y, Cheng Y, Wei Y, Wang J, Chen W, Fan X, Ashktorab H, Smoot D, Meltzer SJ, Li S, Zhang Z, Jin Z. Inhibition of miR‑194 suppresses the Wnt/β‑catenin signalling pathway in gastric cancer. Oncol Rep 2018; 40:3323-3334. [PMID: 30542715 PMCID: PMC6196585 DOI: 10.3892/or.2018.6773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023] Open
Abstract
A mounting body of evidence has revealed that microRNAs (miRs) serve pivotal roles in various developmental processes, and in tumourigenesis, by binding to target genes and subsequently regulating gene expression. Continued activation of the Wnt/β-catenin signalling is positively associated with human malignancy. In addition, miR-194 dysregulation has been implicated in gastric cancer (GC); however, the molecular mechanisms underlying the effects of miR-194 on GC carcinogenesis remain to be elucidated. The present study demonstrated that miR-194 was upregulated in GC tissues and SUFU negative regulator of Ηedgehog signaling (SUFU) was downregulated in GC cell lines. Subsequently, inhibition of miR-194 attenuated nuclear accumulation of β-catenin, which consequently blocked Wnt/β-catenin signalling. In addition, the cytoplasmic translocation of β-catenin induced by miR-194 inhibition was mediated by SUFU. Furthermore, genes associated with the Wnt/β-catenin signalling pathway were revealed to be downregulated following inhibition of the Wnt signalling pathway by miR-194 suppression. Finally, the results indicated that cell apoptosis was markedly increased in response to miR-194 inhibition, strongly suggesting the carcinogenic effects of miR-194 in GC. Taken together, these findings demonstrated that miR-194 may promote gastric carcinogenesis through activation of the Wnt/β-catenin signalling pathway, making it a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Yin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Xiaojing Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Huijuan Lin
- Department of Pathology and Pathophysiology, The Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Yong Huang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Xianling Feng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Ruibin Yan
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong 518055, P.R. China
| | - Yanqiu Zhao
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong 518055, P.R. China
| | - Yulan Cheng
- Department of Medicine/GI Division, The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518000, P.R. China
| | - Jian Wang
- Department of Pathology and Pathophysiology, The Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Wangchun Chen
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Xinmin Fan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC 20060, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, USA
| | - Stephen J Meltzer
- Department of Medicine/GI Division, The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Song Li
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong 518055, P.R. China
| | - Zhong Zhang
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
35
|
Korshunov A, Sahm F, Stichel D, Schrimpf D, Ryzhova M, Zheludkova O, Golanov A, Lichter P, Jones DTW, von Deimling A, Pfister SM, Kool M. Molecular characterization of medulloblastomas with extensive nodularity (MBEN). Acta Neuropathol 2018; 136:303-313. [PMID: 29569031 DOI: 10.1007/s00401-018-1840-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022]
Abstract
Medulloblastoma with extensive nodularity (MBEN) is a rare histological variant of medulloblastoma (MB). These tumors are usually occurring in the first 3 years of life and are associated with good prognosis. Molecular analyses of MBEN, mostly limited to single cases or small series, have shown that they always classify as sonic hedgehog (SHH)-driven MB. Here, we have analyzed 25 MBEN through genome-wide DNA methylation, copy-number profiling and targeted next-generation sequencing. Results of these analyses were compared with molecular profiles of other SHH MB histological variants. As expected, the vast majority of MBEN (23/25) disclosed SHH-associated epigenetic signatures and mutational landscapes but, surprisingly, two MBEN were classified as Group 3/4 MB. Most MBEN classified as SHH MB displayed SHH-related and mutually exclusive mutations in either SUFU, or PTCH1, or SMO at similar frequencies. However, only SUFU mutations were also identified in the germ-line. Most of SUFU-associated MBEN eventually recurred but patients were treated successfully with second-line high-dose chemotherapy. Altogether, our data show that risk stratification even for well-recognizable histologies such as MBEN cannot rely on histology alone but should include additional molecular analyses such as methylation profiling and DNA sequencing. For all patients with "MBEN" histology, we recommend sequencing SUFU and PTCH1 in the tumor as well as in the germ-line for further clinical stratification and choice of the optimal treatment strategy upfront.
Collapse
Affiliation(s)
- Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Schrimpf
- Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Olga Zheludkova
- Department of Neuro-Oncology, Russian Scientific Center of Radiology, Moscow, Russia
| | - Andrey Golanov
- Department of Neuroradiology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Peter Lichter
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
- Division of Molecular Genetics (B060), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
36
|
Guerrini-Rousseau L, Dufour C, Varlet P, Masliah-Planchon J, Bourdeaut F, Guillaud-Bataille M, Abbas R, Bertozzi AI, Fouyssac F, Huybrechts S, Puget S, Bressac-De Paillerets B, Caron O, Sevenet N, Dimaria M, Villebasse S, Delattre O, Valteau-Couanet D, Grill J, Brugières L. Germline SUFU mutation carriers and medulloblastoma: clinical characteristics, cancer risk, and prognosis. Neuro Oncol 2018; 20:1122-1132. [PMID: 29186568 PMCID: PMC6280147 DOI: 10.1093/neuonc/nox228] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Germline mutations of suppressor of fused homolog (SUFU) predispose to sonic hedgehog (SHH) medulloblastoma. Germline SUFU mutations have been reported in nevoid basal cell carcinoma syndrome (NBCCS), but little is known about the cancer risk and clinical spectrum. Methods We performed a retrospective review of all patients with medulloblastoma and a germline SUFU mutation in France. Results Twenty-two patients from 17 families were identified with medulloblastoma and a germline SUFU mutation (median age at diagnosis: 16.5 mo). Macrocrania was present in 20 patients, but only 5 met the diagnostic criteria for NBCCS. Despite treatment with surgery and chemotherapy, to avoid radiotherapy in all patients except one, the outcome was worse than expected for SHH medulloblastoma, due to the high incidence of local relapses (8/22 patients) and second malignancies (n = 6 in 4/22 patients). The 5-year progression-free survival and overall survival rates were 42% and 66%. Mutations were inherited in 79% of patients, and 34 additional SUFU mutation carriers were identified within 14 families. Medulloblastoma penetrance was incomplete, but higher than in Patched 1 (PTCH1) mutation carriers. Besides medulloblastoma, 19 other tumors were recorded among the 56 SUFU mutation carriers, including basal cell carcinoma (BCC) in 2 patients and meningioma in 3 patients. Conclusion Germline SUFU mutations strongly predispose to medulloblastoma in the first years of life, with worse prognosis than usually observed for SHH medulloblastoma. The clinical spectrum differs between SUFU and PTCH1 mutation carriers, and BCC incidence is much lower in SUFU mutation carriers. The optimal treatment of SUFU mutation-associated medulloblastoma has not been defined.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France,Corresponding author: Léa Guerrini-Rousseau, Gustave Roussy, Département de Cancérologie de l’Enfant et de l’Adolescent, 114 rue Edouard Vaillant, 94805 Villejuif, France ()
| | - Christelle Dufour
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Pascale Varlet
- Service de neuropathologie, Hôpital Sainte-Anne, Université Paris Descartes, Paris, France
| | - Julien Masliah-Planchon
- PSL Research University, INSERM U830 Génétique et Biologie des Cancers Institut Curie, Paris, France,Unité de génétique somatique, SIREDO pediatric oncology center, Institut Curie, Paris, France
| | - Franck Bourdeaut
- PSL Research University, INSERM U830 Génétique et Biologie des Cancers Institut Curie, Paris, France,Département d’oncologie Pédiatrique adolescents Jeunes Adultes, Institut Curie, Paris, France, SIREDO pediatric oncology center, Institut Curie, Paris, France,Institut Curie SIRIC - Laboratoire de Recherche Translationnelle en Oncologie Pédiatrique, Institut Curie, Paris, France
| | - Marine Guillaud-Bataille
- Département de Biologie et Pathologie Médicales, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Rachid Abbas
- INSERM U1018, CESP, Université Paris-Sud, Université Paris-Saclay, Villejuif, France,Service de Biostatistique et d’Epidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | | | - Fanny Fouyssac
- Onco-hématologie pédiatrique, Hôpital d’Enfants, CHU Nancy, Nancy, France
| | - Sophie Huybrechts
- Hematology-Oncology Unit, Hôpital Universitaire des Enfants Reine Fabiola, ULB Université libre de Bruxelles, Brussels, Belgium
| | - Stéphanie Puget
- Service de neurochirurgie pédiatrique, Hôpital Necker-Enfants malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Olivier Caron
- PSL Research University, INSERM U830 Génétique et Biologie des Cancers Institut Curie, Paris, France,Unité de génétique somatique, SIREDO pediatric oncology center, Institut Curie, Paris, France,Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Nicolas Sevenet
- Laboratoire de génétique moléculaire, Département de bio-pathologie, Institut Bergonié, Bordeaux, France,INSERM U1218, Université de Bordeaux, Bordeaux, France,UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Marina Dimaria
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Sophie Villebasse
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Olivier Delattre
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Dominique Valteau-Couanet
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jacques Grill
- Unité Mixte de Recherche 8203 du Centre National de la Recherche Scientifique, Université Paris-Saclay, Villejuif, France
| | - Laurence Brugières
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
37
|
Waszak SM, Northcott PA, Buchhalter I, Robinson GW, Sutter C, Groebner S, Grund KB, Brugières L, Jones DTW, Pajtler KW, Morrissy AS, Kool M, Sturm D, Chavez L, Ernst A, Brabetz S, Hain M, Zichner T, Segura-Wang M, Weischenfeldt J, Rausch T, Mardin BR, Zhou X, Baciu C, Lawerenz C, Chan JA, Varlet P, Guerrini-Rousseau L, Fults DW, Grajkowska W, Hauser P, Jabado N, Ra YS, Zitterbart K, Shringarpure SS, De La Vega FM, Bustamante CD, Ng HK, Perry A, MacDonald TJ, Hernáiz Driever P, Bendel AE, Bowers DC, McCowage G, Chintagumpala MM, Cohn R, Hassall T, Fleischhack G, Eggen T, Wesenberg F, Feychting M, Lannering B, Schüz J, Johansen C, Andersen TV, Röösli M, Kuehni CE, Grotzer M, Kjaerheim K, Monoranu CM, Archer TC, Duke E, Pomeroy SL, Shelagh R, Frank S, Sumerauer D, Scheurlen W, Ryzhova MV, Milde T, Kratz CP, Samuel D, Zhang J, Solomon DA, Marra M, Eils R, Bartram CR, von Hoff K, Rutkowski S, Ramaswamy V, Gilbertson RJ, Korshunov A, Taylor MD, Lichter P, Malkin D, Gajjar A, Korbel JO, Pfister SM. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol 2018; 19:785-798. [PMID: 29753700 PMCID: PMC5984248 DOI: 10.1016/s1470-2045(18)30242-0] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario.
Collapse
Affiliation(s)
- Sebastian M Waszak
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Paul A Northcott
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ivo Buchhalter
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany; Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christian Sutter
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Susanne Groebner
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin B Grund
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center at the NCT Heidelberg, Heidelberg, Germany
| | - Kristian W Pajtler
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center at the NCT Heidelberg, Heidelberg, Germany
| | - A Sorana Morrissy
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center at the NCT Heidelberg, Heidelberg, Germany
| | - Dominik Sturm
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center at the NCT Heidelberg, Heidelberg, Germany
| | - Lukas Chavez
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelie Ernst
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Sebastian Brabetz
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center at the NCT Heidelberg, Heidelberg, Germany
| | - Michael Hain
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Zichner
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maia Segura-Wang
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre, Copenhagen, Denmark; Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Tobias Rausch
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Balca R Mardin
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Xin Zhou
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Cristina Baciu
- University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Christian Lawerenz
- Data Management Facility, German Cancer Research Center, Heidelberg, Germany
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, Department of Oncology, and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital, Paris, France
| | - Lea Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Daniel W Fults
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Wiesława Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Peter Hauser
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nada Jabado
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Young-Shin Ra
- Department of Neurosurgery, Asan Medical Center, Seoul, South Korea
| | - Karel Zitterbart
- Department of Paediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Suyash S Shringarpure
- Departments of Genetics and Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Francisco M De La Vega
- Departments of Genetics and Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos D Bustamante
- Departments of Genetics and Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Arie Perry
- Division of Neuropathology, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Pablo Hernáiz Driever
- Klinik für Pädiatrie mS Onkologie und Hämatologie, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Anne E Bendel
- Department of Pediatric Hematology and Oncology, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Daniel C Bowers
- Division of Pediatric Hematology-Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Geoffrey McCowage
- Department of Paediatric Oncology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Murali M Chintagumpala
- Department of Pediatric Hematology and Oncology, Texas Children's Hospital, Houston, TX, USA
| | - Richard Cohn
- Department of Paediatric Oncology, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Timothy Hassall
- Department of Paediatric Oncology, Lady Cilento Children's Hospital, South Brisbane, QLD, Australia
| | - Gudrun Fleischhack
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | | | - Finn Wesenberg
- Department of Pediatric Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Cancer Registry of Norway, Oslo, Norway
| | - Maria Feychting
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Lannering
- Department of Pediatrics, University of Gothenburg, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France
| | - Christoffer Johansen
- Oncology Clinic, Finsen Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Unit of Survivorship, Copenhagen, Denmark
| | | | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Claudia E Kuehni
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Michael Grotzer
- Department of Pediatric Oncology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Camelia M Monoranu
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany; Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Tenley C Archer
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Duke
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott L Pomeroy
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Redmond Shelagh
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Stephan Frank
- Institute of Neuropathology, University Hospital Basel, Basel, Switzerland
| | - David Sumerauer
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | | | - Marina V Ryzhova
- Department of Neuropathology, Burdenko Neurosurgical Institute, Moscow, Russia
| | - Till Milde
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center at the NCT Heidelberg, Heidelberg, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David A Solomon
- Division of Neuropathology, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Marco Marra
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Claus R Bartram
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Klinik für Pädiatrie mS Onkologie und Hämatologie, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Richard J Gilbertson
- Department of Oncology and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Heidelberg, Germany
| | - Michael D Taylor
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Stefan M Pfister
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center at the NCT Heidelberg, Heidelberg, Germany.
| |
Collapse
|
38
|
Bourdeaut F, Delattre O. Genetic predisposition to medulloblastomas: just follow the tumour genome. Lancet Oncol 2018; 19:722-723. [PMID: 29753702 DOI: 10.1016/s1470-2045(18)30289-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022]
Affiliation(s)
- Franck Bourdeaut
- SIREDO Pediatric Cancer Center, INSERM U830, Institut Curie, Paris 75005, France.
| | - Olivier Delattre
- SIREDO Pediatric Cancer Center, INSERM U830, Institut Curie, Paris 75005, France
| |
Collapse
|
39
|
Foulkes WD, Kamihara J, Evans DGR, Brugières L, Bourdeaut F, Molenaar JJ, Walsh MF, Brodeur GM, Diller L. Cancer Surveillance in Gorlin Syndrome and Rhabdoid Tumor Predisposition Syndrome. Clin Cancer Res 2018; 23:e62-e67. [PMID: 28620006 DOI: 10.1158/1078-0432.ccr-17-0595] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
Abstract
Gorlin syndrome and rhabdoid tumor predisposition syndrome (RTPS) are autosomal dominant syndromes associated with an increased risk of childhood-onset brain tumors. Individuals with Gorlin syndrome can manifest a wide range of phenotypic abnormalities, with about 5% of family members developing medulloblastoma, usually occurring in the first 3 years of life. Gorlin syndrome is associated with germline mutations in components of the Sonic Hedgehog pathway, including Patched1 (PTCH1) and Suppressor of fused (SUFU)SUFU mutation carriers appear to have an especially high risk of early-onset medulloblastoma. Surveillance MRI in the first years of life in SUFU mutation carriers is, therefore, recommended. Given the risk of basal cell carcinomas, regular dermatologic examinations and sun protection are also recommended. Rhabdoid tumors (RT) are tumors initially defined by the descriptive "rhabdoid" term, implying a phenotypic similarity with rhabdomyoblasts at the microscopic level. RTs usually present before the age of 3 and can arise within the cranium as atypical teratoid/rhabdoid tumors or extracranially, especially in the kidney, as malignant rhabdoid tumors. However, RTs of both types share germline and somatic mutations in SMARCB1 or, more rarely, SMARCA4, each of which encodes a chromatin remodeling family member. SMARCA4 mutations are particularly associated with small cell carcinoma of the ovary, hypercalcemic type (SCCOHT). The outcome following a diagnosis of any of these tumors is often poor, and the value of surveillance is unknown. International efforts to determine surveillance protocols are underway, and preliminary recommendations are made for carriers of SMARCB1 and SMARCA4 mutations. Clin Cancer Res; 23(12); e62-e67. ©2017 AACRSee all articles in the online-only CCR Pediatric Oncology Series.
Collapse
Affiliation(s)
- William D Foulkes
- Departments of Human Genetics, Medicine and Oncology, McGill University, Montreal, Québec, Canada
| | - Junne Kamihara
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts
| | - D Gareth R Evans
- Division of Evolution and Genomic Science, Department of Genomic Medicine, MAHSC, University of Manchester, Saint Mary's Hospital, Manchester, England
| | - Laurence Brugières
- Child and Adolescent Cancer Department, Gustave Roussy Institute, Villejuif, France
| | | | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Amsterdam, the Netherlands
| | | | | | - Lisa Diller
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
40
|
Al-Rahawan MG, Trevino S, Jacob R, Murray JC, Al-Rahawan MM. Medulloblastoma in a toddler with Gorlin syndrome. Proc (Bayl Univ Med Cent) 2018; 31:216-218. [PMID: 29706825 DOI: 10.1080/08998280.2018.1435111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 01/30/2023] Open
Abstract
Gorlin syndrome (GS) is a rare hereditary multisystem disorder caused by mutations in PTCH1, PTCH2, or SUFU. It is characterized by multiple anomalies and an increased risk of developing various tumors. Basal cell carcinoma is most common, and medulloblastoma (MB) is especially frequent in patients with SUFU mutations. MB treatment often includes radiation therapy in patients older than 3 years; however, such treatment is very toxic to patients with GS. Most reported cases of MB in patients with GS present after GS is diagnosed. We report a male toddler with multicentric posterior fossa tumor and calcifications along the falx cerebri, suggesting MB and GS. Pathology revealed nodular MB. His testing confirmed a germline SUFU mutation. His tumor resolved with three induction cycles of chemotherapy, but he died of respiratory failure due to infection at 20 months of age. Overlooking calcifications along the falx cerebri in children with MB can induce significant morbidity.
Collapse
Affiliation(s)
| | - Sorleen Trevino
- School of Medicine, Texas Tech University Health Science Center, Lubbock, Texas
| | - Roy Jacob
- Department of Radiology, University Medical Center, Lubbock, Texas
| | - Jeffrey C Murray
- Department of Neurooncology, Cook Children's Health Care System, Fort Worth, Texas
| | | |
Collapse
|
41
|
Itch/β-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis. Nat Commun 2018. [PMID: 29515120 PMCID: PMC5841288 DOI: 10.1038/s41467-018-03339-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/β-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis. SuFu is a tumour suppressor in medulloblastoma and regulates Gli proteins in the Sonic Hedgehog pathway; however, the molecular mechanisms behind this regulation are unclear. Here, the authors show that the Itch/β-arrestin2 complex binds and ubiquitylates SuFu, facilitating the interaction with Gli3 and its conversion into the repressive form, thus counteracting medulloblastoma formation.
Collapse
|
42
|
Huang D, Wang Y, Tang J, Luo S. Molecular mechanisms of suppressor of fused in regulating the hedgehog signalling pathway. Oncol Lett 2018; 15:6077-6086. [PMID: 29725392 DOI: 10.3892/ol.2018.8142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
Highly conserved throughout evolution, the hedgehog (Hh) signalling pathway has been demonstrated to be involved in embryonic development, stem cell maintenance and tissue homeostasis in animals ranging from invertebrates to vertebrates. In the human body, a variety of cancer types are associated with the aberrantly activated Hh signalling pathway. Multiple studies have revealed suppressor of fused (Sufu) as a key negative regulator of this signalling pathway. In vertebrates, Sufu primarily functions as a tumor suppressor factor by interacting with and inhibiting glioma-associated oncogene homologues (GLIs), which are the terminal transcription factors of the Hh signalling pathway and belong to the Kruppel family of zinc finger proteins; by contrast, the regulation of Sufu itself remains relatively unclear. In the present review article, we focus on the effects of Sufu on the Hh signalling pathway in tumourigenesis and the molecular mechanisms underlying the regulation of GLI by Sufu. In addition, the factors modulating the activity of Sufu at post-transcriptional levels are also discussed.
Collapse
Affiliation(s)
- Dengliang Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yiting Wang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiabin Tang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
43
|
Bay SN, Long AB, Caspary T. Disruption of the ciliary GTPase Arl13b suppresses Sonic hedgehog overactivation and inhibits medulloblastoma formation. Proc Natl Acad Sci U S A 2018; 115:1570-1575. [PMID: 29378965 PMCID: PMC5816136 DOI: 10.1073/pnas.1706977115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor, and overactivation of the Sonic Hedgehog (Shh) signaling pathway, which requires the primary cilium, causes 30% of MBs. Current treatments have known negative side effects or resistance mechanisms, so new treatments are necessary. Shh signaling mutations, like those that remove Patched1 (Ptch1) or activate Smoothened (Smo), cause tumors dependent on the presence of cilia. Genetic ablation of cilia prevents these tumors by removing Gli activator, but cilia are a poor therapeutic target since they support many biological processes. A more appropriate strategy would be to identify a protein that functionally disentangles Gli activation and ciliogenesis. Our mechanistic understanding of the ciliary GTPase Arl13b predicts that it could be such a target. Arl13b mutants retain short cilia, and loss of Arl13b results in ligand-independent, constitutive, low-level pathway activation but prevents maximal signaling without disrupting Gli repressor. Here, we show that deletion of Arl13b reduced Shh signaling levels in the presence of oncogenic SmoA1, suggesting Arl13b acts downstream of known tumor resistance mechanisms. Knockdown of ARL13B in human MB cell lines and in primary mouse MB cell culture decreased proliferation. Importantly, loss of Arl13b in a Ptch1-deleted mouse model of MB inhibited tumor formation. Postnatal depletion of Arl13b does not lead to any overt phenotypes in the epidermis, liver, or cerebellum. Thus, our in vivo and in vitro studies demonstrate that disruption of Arl13b inhibits cilia-dependent oncogenic Shh overactivation.
Collapse
Affiliation(s)
- Sarah N Bay
- Department of Human Genetics, Emory University, Atlanta, GA 30322
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA 30322
| | - Alyssa B Long
- Department of Human Genetics, Emory University, Atlanta, GA 30322
| | - Tamara Caspary
- Department of Human Genetics, Emory University, Atlanta, GA 30322;
| |
Collapse
|
44
|
Modeling cancer using patient-derived induced pluripotent stem cells to understand development of childhood malignancies. Cell Death Discov 2018. [PMID: 29531804 PMCID: PMC5841293 DOI: 10.1038/s41420-017-0009-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In vitro modeling of complex diseases is now a possibility with the use of patient-derived induced pluripotent stem (iPS) cells. Their stem cell properties, including self-renewal and their potential to virtually differentiate into any cell type, emphasize their importance as a translational tool for modeling disorders that so far have been limited by the unavailability of primary cell lines, animal models, or inaccessible human materials. Around 100 genes with germline mutations have been described to be responsible for cancer predisposition. Familial cancers are usually diagnosed earlier in life since these patients already carry the first transforming hit. Deriving iPS cells from patients suffering from familial cancers provides a valuable tool for understanding the mechanisms underlying pediatric cancer onset and progression since they require less mutation recurrence than adult cancers to develop. At the same time, some familial mutations are found in sporadic cases and are a valuable prognostic tool. Patient-derived iPS cells from germline malignancies can also create new tools in developing specific drugs with more personalized-therapy strategies.
Collapse
|
45
|
Archer TC, Sengupta S, Pomeroy SL. Brain cancer genomics and epigenomics. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:785-797. [PMID: 29478614 DOI: 10.1016/b978-0-444-64076-5.00050-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Classically, brain cancers have been graded and diagnosed based on histology and risk stratified by clinical criteria. Recent advances in genomics and epigenomics have ushered in an era of defining cancers based on molecular criteria. These advances have increased our precision of identifying oncogenic driving events and, most importantly, increased our precision at predicting clinical outcome. For the first time in its history, the 2016 revision of the WHO Classification of Tumors of the Central Nervous System included molecular features as tumor classification criteria. Brain tumors can develop in the context of genetic cancer predisposition syndromes, such as Li-Fraumeni or Gorlin syndrome, but by far most commonly arise through the acquisition of somatic mutations and chromosome changes in the malignant cells. By taking a survey across this cancer landscape, certain themes emerge as being common events to drive cancer: DNA damage repair, genomic instability, mechanistic target of rapamycin pathway, sonic hedgehog pathway, hypoxia, and epigenetic dysfunction. Understanding these mechanisms is of paramount importance for improving targeted therapies, and for identifying the right patients for those therapies.
Collapse
Affiliation(s)
- Tenley C Archer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Soma Sengupta
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Scott L Pomeroy
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States.
| |
Collapse
|
46
|
Valent P, Akin C, Arock M, Bock C, George TI, Galli SJ, Gotlib J, Haferlach T, Hoermann G, Hermine O, Jäger U, Kenner L, Kreipe H, Majeti R, Metcalfe DD, Orfao A, Reiter A, Sperr WR, Staber PB, Sotlar K, Schiffer C, Superti-Furga G, Horny HP. Proposed Terminology and Classification of Pre-Malignant Neoplastic Conditions: A Consensus Proposal. EBioMedicine 2017; 26:17-24. [PMID: 29203377 PMCID: PMC5832623 DOI: 10.1016/j.ebiom.2017.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Abstract
Cancer evolution is a step-wise non-linear process that may start early in life or later in adulthood, and includes pre-malignant (indolent) and malignant phases. Early somatic changes may not be detectable or are found by chance in apparently healthy individuals. The same lesions may be detected in pre-malignant clonal conditions. In some patients, these lesions may never become relevant clinically whereas in others, they act together with additional pro-oncogenic hits and thereby contribute to the formation of an overt malignancy. Although some pre-malignant stages of a malignancy have been characterized, no global system to define and to classify these conditions is available. To discuss open issues related to pre-malignant phases of neoplastic disorders, a working conference was organized in Vienna in August 2015. The outcomes of this conference are summarized herein and include a basic proposal for a nomenclature and classification of pre-malignant conditions. This proposal should assist in the communication among patients, physicians and scientists, which is critical as genome-sequencing will soon be offered widely for early cancer-detection.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Michel Arock
- LBPA CNRS UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Tracy I George
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Stephen J Galli
- Department of Pathology and Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Olivier Hermine
- Imagine Institute Université Paris Descartes, Sorbonne, Paris Cité, Centre national de référence des mastocytoses, Paris, France
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria,; Institute of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Alberto Orfao
- Servicio Central de Citometria, Centro de Investigacion del Cancer and Department of Medicine, University of Salamanca, Spain
| | - Andreas Reiter
- Department of Hematology and Oncology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Charles Schiffer
- Division of Hematology/Oncology, Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian University, Munich, Germany
| |
Collapse
|
47
|
De Mori R, Romani M, D'Arrigo S, Zaki MS, Lorefice E, Tardivo S, Biagini T, Stanley V, Musaev D, Fluss J, Micalizzi A, Nuovo S, Illi B, Chiapparini L, Di Marcotullio L, Issa MY, Anello D, Casella A, Ginevrino M, Leggins AS, Roosing S, Alfonsi R, Rosati J, Schot R, Mancini GMS, Bertini E, Dobyns WB, Mazza T, Gleeson JG, Valente EM. Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert Syndrome with Cranio-facial and Skeletal Defects. Am J Hum Genet 2017; 101:552-563. [PMID: 28965847 DOI: 10.1016/j.ajhg.2017.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/21/2017] [Indexed: 01/20/2023] Open
Abstract
The Sonic Hedgehog (SHH) pathway is a key signaling pathway orchestrating embryonic development, mainly of the CNS and limbs. In vertebrates, SHH signaling is mediated by the primary cilium, and genetic defects affecting either SHH pathway members or ciliary proteins cause a spectrum of developmental disorders. SUFU is the main negative regulator of the SHH pathway and is essential during development. Indeed, Sufu knock-out is lethal in mice, and recessive pathogenic variants of this gene have never been reported in humans. Through whole-exome sequencing in subjects with Joubert syndrome, we identified four children from two unrelated families carrying homozygous missense variants in SUFU. The children presented congenital ataxia and cerebellar vermis hypoplasia with elongated superior cerebellar peduncles (mild "molar tooth sign"), typical cranio-facial dysmorphisms (hypertelorism, depressed nasal bridge, frontal bossing), and postaxial polydactyly. Two siblings also showed polymicrogyria. Molecular dynamics simulation predicted random movements of the mutated residues, with loss of the native enveloping movement of the binding site around its ligand GLI3. Functional studies on cellular models and fibroblasts showed that both variants significantly reduced SUFU stability and its capacity to bind GLI3 and promote its cleavage into the repressor form GLI3R. In turn, this impaired SUFU-mediated repression of the SHH pathway, as shown by altered expression levels of several target genes. We demonstrate that germline hypomorphic variants of SUFU cause deregulation of SHH signaling, resulting in recessive developmental defects of the CNS and limbs which share features with both SHH-related disorders and ciliopathies.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Bone Diseases, Developmental/genetics
- Bone Diseases, Developmental/pathology
- Cells, Cultured
- Cerebellum/abnormalities
- Cerebellum/pathology
- Child
- Cohort Studies
- Craniofacial Abnormalities/genetics
- Craniofacial Abnormalities/pathology
- Eye Abnormalities/genetics
- Eye Abnormalities/pathology
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Expression Regulation, Developmental
- Genes, Recessive
- Hedgehog Proteins/metabolism
- Humans
- Kidney Diseases, Cystic/genetics
- Kidney Diseases, Cystic/pathology
- Kruppel-Like Transcription Factors/metabolism
- Male
- Mutation, Missense
- Nerve Tissue Proteins/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retina/abnormalities
- Retina/pathology
- Sequence Analysis, DNA
- Signal Transduction
- Skin/metabolism
- Skin/pathology
- Zinc Finger Protein Gli3
Collapse
Affiliation(s)
- Roberta De Mori
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome 00143, Italy; Department of Biological and Environmental Sciences, University of Messina, Messina 98125, Italy
| | - Marta Romani
- Molecular Genetics Laboratory, GENOMA Group, Rome 00138, Italy
| | - Stefano D'Arrigo
- Developmental Neurology Division, Foundation IRCCS Neurological Institute Carlo Besta, Milan 20133, Italy
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Elisa Lorefice
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | - Silvia Tardivo
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, San Giovanni Rotondo (FG) 71013, Italy
| | - Valentina Stanley
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California, San Diego, Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Damir Musaev
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California, San Diego, Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Joel Fluss
- Pediatric Neurology Unit, Geneva Children's Hospital, 1211 Genève 4, Switzerland
| | - Alessia Micalizzi
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome 00143, Italy; Department of Biological and Environmental Sciences, University of Messina, Messina 98125, Italy
| | - Sara Nuovo
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome 00143, Italy; Department of Medicine and Surgery, University of Salerno, Salerno 84081, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Luisa Chiapparini
- Neuroradiology Department, Foundation IRCCS Neurological Institute Carlo Besta, Milan 20133, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine and Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University, Rome 00161, Italy
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Danila Anello
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | | | - Monia Ginevrino
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome 00143, Italy; Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Autumn Sa'na Leggins
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California, San Diego, Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Romina Alfonsi
- Department of Molecular Medicine and Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University, Rome 00161, Italy
| | - Jessica Rosati
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Cellular Reprogramming, San Giovanni Rotondo (FG) 71013, Italy
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 CN, the Netherlands
| | | | - Enrico Bertini
- Laboratory of Molecular Medicine, Unit of Neuromuscular and NeuroDegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital IRCCS, Rome 00146, Italy
| | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, WA 98101, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, San Giovanni Rotondo (FG) 71013, Italy
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California, San Diego, Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Enza Maria Valente
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome 00143, Italy; Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy.
| |
Collapse
|
48
|
Childhood tumours with a high probability of being part of a tumour predisposition syndrome; reason for referral for genetic consultation. Eur J Cancer 2017; 80:48-54. [DOI: 10.1016/j.ejca.2017.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
|
49
|
Evans DG, Oudit D, Smith MJ, Rutkowski D, Allan E, Newman WG, Lear JT. First evidence of genotype-phenotype correlations in Gorlin syndrome. J Med Genet 2017; 54:530-536. [PMID: 28596197 DOI: 10.1136/jmedgenet-2017-104669] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/20/2017] [Accepted: 04/29/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Gorlin syndrome (GS) is an autosomal dominant syndrome characterised by multiple basal cell carcinomas (BCCs) and an increased risk of jaw cysts and early childhood medulloblastoma. Heterozygous germline variants in PTCH1 and SUFU encoding components of the Sonic hedgehog pathway explain the majority of cases. Here, we aimed to delineate genotype-phenotype correlations in GS. METHODS We assessed genetic and phenotypic data for 182 individuals meeting the diagnostic criteria for GS (median age: 47.1; IQR: 31.1-61.1). A total of 126 patients had a heterozygous pathogenic variant, 9 had SUFU pathogenic variants and 46 had no identified mutation. RESULTS Patients with variants were more likely to be diagnosed earlier (p=0.02), have jaw cysts (p=0.002) and have bifid ribs (p=0.003) or any skeletal abnormality (p=0.003) than patients with no identified mutation. Patients with a missense variant in PTCH1 were diagnosed later (p=0.03) and were less likely to develop at least 10 BCCs and jaw cysts than those with other pathogenic PTCH1 variants (p=0.03). Patients with SUFU pathogenic variants were significantly more likely than those with PTCH1 pathogenic variants to develop a medulloblastoma (p=0.009), a meningioma (p=0.02) or an ovarian fibroma (p=0.015), but were less likely to develop a jaw cyst (p=0.0004). CONCLUSION We propose that the clinical heterogeneity of GS can in part be explained by the underlying or SUFU variant.
Collapse
Affiliation(s)
- D Gareth Evans
- Division of Evolution and Genomic Science, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Deemesh Oudit
- Department of Plastic Surgery, Oncology Christie Hospital, Manchester, UK
| | - Miriam J Smith
- Division of Evolution and Genomic Science, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - David Rutkowski
- Division of Evolution and Genomic Science, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Dermatology, MAHSC, Salford Royal Foundation Trust, Salford, UK
| | - Ernest Allan
- Department of Plastic Surgery, Oncology Christie Hospital, Manchester, UK
| | - William G Newman
- Division of Evolution and Genomic Science, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Department of Dermatology, MAHSC, Salford Royal Foundation Trust, Salford, UK
| | - John T Lear
- Department of Dermatology, MAHSC, Salford Royal Foundation Trust, Salford, UK
| |
Collapse
|
50
|
Huq AJ, Bogwitz M, Gorelik A, Winship IM, White SM, Trainer AH. Cohort study of Gorlin syndrome with emphasis on standardised phenotyping and quality of life assessment. Intern Med J 2017; 47:664-673. [DOI: 10.1111/imj.13429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/18/2017] [Accepted: 03/15/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Aamira J. Huq
- Department of Genetic Medicine; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Michael Bogwitz
- Department of Genetic Medicine; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Alexandra Gorelik
- Melbourne EpiCentre; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Ingrid M. Winship
- Department of Genetic Medicine; Royal Melbourne Hospital; Melbourne Victoria Australia
- Department of Medicine; University of Melbourne; Melbourne Victoria Australia
| | - Susan M. White
- Victorian Clinical Genetics Services; Murdoch Childrens Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; University of Melbourne; Melbourne Victoria Australia
| | - Alison H. Trainer
- Department of Genetic Medicine; Royal Melbourne Hospital; Melbourne Victoria Australia
- Department of Medicine; University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|