1
|
Kim SJ, Lee K, Park J, Park M, Kim UJ, Kim SM, Ryu KH, Kang KW. CKD-516 potentiates the anti-cancer activity of docetaxel against epidermal growth factor receptor tyrosine kinase inhibitor-resistant lung cancer. Toxicol Res 2023; 39:61-69. [PMID: 36726834 PMCID: PMC9839922 DOI: 10.1007/s43188-022-00146-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer death. Although docetaxel has been used as a second- or third-line treatment for non-small cell lung cancer (NSCLC), the objective response rate is less than 10%. Hence, there is a need to improve the clinical efficacy of docetaxel monotherapy; combination therapy should be considered. Here, we show that CKD-516, a vascular disruption agent, can be combined with docetaxel to treat epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI)-resistant NSCLC. CKD-516 was orally bioavailable; neither CKD-516 nor docetaxel affected the mean plasma concentration-time profile or pharmacokinetic parameters of the other drug. CKD-516 and docetaxel synergistically inhibited the growth of H1975 (with an L858R/T790M double mutation of EGFR) and A549 (with a KRAS mutation) lung cancer cell lines. In addition, docetaxel plus CKD-516 delayed tumor growth in-and extended the lifespan of-tumor-bearing mice. Thus, combination CKD-516 and docetaxel therapy could be used to treat EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Soo Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Kyunghyeon Lee
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Jaewoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - U. Ji Kim
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Se-mi Kim
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Keun Ho Ryu
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
2
|
Yuan H, Li X, Tang J, Zhou M, Liu F. Local application of doxorubicin- loaded Iron oxid nanoparticles and the vascular disrupting agent via the hepatic artery: chemoembolization-photothermal ablation treatment of hepatocellular carcinoma in rats. Cancer Imaging 2019; 19:71. [PMID: 31685015 PMCID: PMC6829940 DOI: 10.1186/s40644-019-0257-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES This study investigates the effectiveness of local application of doxorubicin(Dox)-loaded, polydopamine (PDA)- coated single crystal hematite (α- Fe2O3) nanocubes (Fe2O3-PDA-Dox) and combretastatin A-4 phosphate disodium(CA4P)in treating hepatocellular carcinoma (HCC) in rats. METHODS The magnetic characteristics and photothermal effects of the nanoparticles were determined in vitro. Tumor-bearing Sprague-Dawley rats were divided into 3 groups of 8 according to treatment: controls, transarterial chemoembolization-photothermal ablation (pTACE) (Lipidol+Fe2O3-PDA-Dox + NIR), and CA4P + pTACE (CA4P+ Lipidol+Fe2O3-PDA-Dox + NIR). Drugs were administered through the hepatic artery, and the tumors exposed to 808-nm near-infrared radiation. The Fe content of tumors was assessed using neutron activation analysis. Treatment effectiveness was assessed using heating curves, magnetic resonance imaging, pathology results, and immunohistochemical analysis. RESULTS The mean tumor Fe content was greater in rats treated with CA4P + pTACE (1 h, 23.72 ± 12.45 μg/g; 24 h, 14.61 ± 8.23 μg/g) than in those treated with pTACE alone (1 h, 5.66 ± 4.29 μg/g; 24 h, 2.76 ± 1.33 μg/g). The tumor T2 imaging signal was lower in rats treated with CA4P + pTACE. Following laser irradiation, the tumor temperature increased, with higher temperatures reached in the CA4P + pTACE group (62 °C vs 55 °C). Tumor cells exhibited necrosis, apoptosis, and proliferation inhibition, with greater effects in the CA4P + pTACE group. Transient liver and kidney toxicity were observed on day 3, with more severe effects after CA4P + pTACE. CONCLUSIONS Fe2O3-PDA-Dox nanoparticles are effective for TACE-PTA. Pretreatment with CA4P increases nanoparticle uptake by tumors, increasing the treatment effectiveness without increasing hepatorenal toxicity.
Collapse
Affiliation(s)
- Hongjun Yuan
- Department of Interventional Radiology, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Xin Li
- Department of Interventional Radiology, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Jing Tang
- Department of Interventional Radiology, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Min Zhou
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Fengyong Liu
- Department of Interventional Radiology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Fruytier AC, Le Duff CS, Po C, Magat J, Bouzin C, Neveu MA, Feron O, Jordan BF, Gallez B. The Blood Flow Shutdown Induced by Combretastatin A4 Impairs Gemcitabine Delivery in a Mouse Hepatocarcinoma. Front Pharmacol 2016; 7:506. [PMID: 28066252 PMCID: PMC5179558 DOI: 10.3389/fphar.2016.00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/07/2016] [Indexed: 01/31/2023] Open
Abstract
In recent clinical studies, vascular disrupting agents (VDAs) are mainly used in combination with chemotherapy. However, an often overlooked concern in treatment combination is the VDA-induced impairment of chemotherapy distribution in the tumor. The work presented here investigated the impact of blood flow shutdown induced by Combretastatin A4 (CA4) on gemcitabine uptake into mouse hepatocarcinoma. At 2 h after CA4 treatment, using DCE-MRI, a significant decrease in the perfusion-relevant parameters Ktrans and Vp were observed in treated group compared with the control group. The blood flow shutdown was indeed confirmed by a histology study. In a third experiment, the total gemcitabine uptake was found to be significantly lower in treated tumors, as assessed in a separate experiment using ex vivo fluorine nuclear magnetic resonance spectroscopy. The amount of active metabolite gemcitabine triphosphate was also lower in treated tumors. In conclusion, the blood flow shutdown induced by VDAs can impact negatively on the delivery of small cytotoxic agents in tumors. The present study outlines the importance of monitoring the tumor vascular function when designing drug combinations.
Collapse
Affiliation(s)
- Anne-Catherine Fruytier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | - Cecile S Le Duff
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain Louvain-la-Neuve, Belgium
| | - Chrystelle Po
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | - Julie Magat
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | - Caroline Bouzin
- Institut de Recherche Expérimentale et Clinique, Pole of Pharmacology, Angiogenesis and Cancer Research Laboratory, Université Catholique de Louvain Brussels, Belgium
| | - Marie-Aline Neveu
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | - Olivier Feron
- Institut de Recherche Expérimentale et Clinique, Pole of Pharmacology, Angiogenesis and Cancer Research Laboratory, Université Catholique de Louvain Brussels, Belgium
| | - Benedicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| |
Collapse
|
4
|
Sharma V, Pathak K. Effect of hydrogen bond formation/replacement on solubility characteristics, gastric permeation and pharmacokinetics of curcumin by application of powder solution technology. Acta Pharm Sin B 2016; 6:600-613. [PMID: 27818928 PMCID: PMC5071626 DOI: 10.1016/j.apsb.2016.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/23/2016] [Accepted: 04/21/2016] [Indexed: 11/24/2022] Open
Abstract
The present research aimed to improve the dissolution rate and bioavailability of curcumin using the potential of liquisolid technology. Twelve drug-loaded liquisolid systems (LS-1 to LS-12) were prepared using different vehicles (PEG 200, PEG 400 and Tween 80) and curcumin concentrations in vehicle (40%, 50%, 60% and 70%, w/w). The carrier [microcrystalline cellulose (MCC) PH102] to coat (Aerosil®) ratio was 20 in all formulations. The systems were screened for pre-compression properties before being compressed to liquisolid tablets (LT-1 to LT-12). Post compression tests and in vitro dissolution of LTs were conducted and the results compared with those obtained for a directly compressed tablet (DCT) made of curcumin, MCC PH102 and Aerosil®. LTs exhibited higher cumulative drug release (CDR) than the DCT and the optimum formulation, LT-9 (made using Tween 80), was studied by powder XRD, DSC, SEM and FTIR. Ex-vivo permeation of curcumin from LT-9 through goat gastrointestinal mucosa was significantly (P<0.05) enhanced and its oral bioavailability was increased 18.6-fold in New Zealand rabbits. In vitro cytotoxicity (IC50) of LT-9 towards NCL 87 cancer cells was 40.2 µmol/L substantiating its anticancer efficacy. Accelerated stability studies revealed insignificant effects of temperature and humidity on LT-9. In summary, solubility enhancement of curcumin in LTs produced significant improvements in its permeation and bioavailability.
Collapse
|
5
|
Kalmuk J, Folaron M, Buchinger J, Pili R, Seshadri M. Multimodal imaging guided preclinical trials of vascular targeting in prostate cancer. Oncotarget 2016. [PMID: 26203773 PMCID: PMC4695192 DOI: 10.18632/oncotarget.4463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The high mortality rate associated with castration-resistant prostate cancer (CRPC) underscores the need for improving therapeutic options for this patient population. The purpose of this study was to examine the potential of vascular targeting in prostate cancer. Experimental studies were carried out in subcutaneous and orthotopic Myc-CaP prostate tumors implanted into male FVB mice to examine the efficacy of a novel microtubule targeted vascular disrupting agent (VDA), EPC2407 (Crolibulin™). A non-invasive multimodality imaging approach based on magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and ultrasound (US) was utilized to guide preclinical trial design and monitor tumor response to therapy. Imaging results were correlated with histopathologic assessment, tumor growth and survival analysis. Contrast-enhanced MRI revealed potent antivascular activity of EPC2407 against subcutaneous and orthotopic Myc-CaP tumors. Longitudinal BLI of Myc-CaP tumors expressing luciferase under the androgen response element (Myc-CaP/ARE-luc) revealed changes in AR signaling and reduction in intratumoral delivery of luciferin substrate following castration suggestive of reduced blood flow. This reduction in blood flow was validated by US and MRI. Combination treatment resulted in sustained vascular suppression, inhibition of tumor regrowth and conferred a survival benefit in both models. These results demonstrate the therapeutic potential of vascular targeting in combination with androgen deprivation against prostate cancer.
Collapse
Affiliation(s)
- James Kalmuk
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Current address: SUNY Upstate Medical University, Syracuse, NY, USA
| | - Margaret Folaron
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Julian Buchinger
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Current address: University at Buffalo - School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Roberto Pili
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
6
|
Li J, Zhou M, Liu F, Xiong C, Wang W, Cao Q, Wen X, Robertson JD, Ji X, Wang YA, Gupta S, Li C. Hepatocellular Carcinoma: Intra-arterial Delivery of Doxorubicin-loaded Hollow Gold Nanospheres for Photothermal Ablation-Chemoembolization Therapy in Rats. Radiology 2016; 281:427-435. [PMID: 27347765 DOI: 10.1148/radiol.2016152510] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose To determine if combretastatin A-4 phosphate disodium (CA4P) can enhance the tumor uptake of doxorubicin (Dox)-loaded, polyethylene glycol (PEG)-coated hollow gold nanospheres (HAuNS) mixed with ethiodized oil for improved photothermal ablation (PTA)-chemoembolization therapy (CET) of hepatocellular carcinoma (HCC) in rats. Materials and Methods Animal experiments were approved by the institutional animal care and use committee and performed from February 2014 to April 2015. Male Sprague-Dawley rats (n = 45; age, 12 weeks) were inoculated with N1S1 HCC cells in the liver, and 8 days later, were randomly divided into two groups of 10 rats. Group 1 rats received intrahepatic arterial injection of PEG-HAuNS and ethiodized oil alone; group 2 received pretreatment with CA4P and injection of PEG-HAuNS and ethiodized oil 5 minutes later. The gold content of tumor and liver tissue at 1 hour or 24 hours after injection was quantified by using neutron activation analysis (n = 5 per time point). Five rats received pretreatment CA4P, PEG-copper 64-HAuNS, and ethiodized oil and underwent micro-positron emission tomography (PET)/computed tomography (CT). In a separate study, three groups of six rats with HCC were injected with saline solution (control group); CA4P, Dox-loaded PEG-coated HAuNS (Dox@PEG-HAuNS), and ethiodized oil (CET group); or CA4P, Dox@PEG-HAuNS, ethiodized oil, and near-infrared irradiation (PTA-CET group). Temperature was recorded during laser irradiation. Findings were verified at postmortem histopathologic and/or autoradiographic examination. Wilcoxon rank-sum test and Pearson correlation analyses were performed. Results PEG-HAuNS uptake in CA4P-pretreated HCC tumors was significantly higher than that in non-CA4P-pretreated tumors at both 1 hour (P < .03) and 24 hours (P < .01). Mean ± standard deviation of tumor-to-liver PEG-HAuNS uptake ratios at 1 hour and 24 hours, respectively, were 5.63 ± 3.09 and 1.68 ± 0.77 in the CA4P-treated group and 1.29 ± 2.40 and 0.14 ± 0.11 in the non-CA4P-treated group. Micro-PET/CT allowed clear delineation of tumors, enabling quantitative imaging analysis. Laser irradiation increased temperature to 60°C and 43°C in the tumor and adjacent liver, respectively. Mean HCC tumor volumes 10 days after therapy were 1.68 cm3 ± 1.01, 3.96 cm3 ± 1.75, and 6.13 cm3 ± 2.27 in the PTA-CET, CET, and control groups, respectively, with significant differences between the PTA-CET group and other groups (P < .05). Conclusion CA4P pretreatment caused a higher concentration of Dox@PEG-HAuNS to be trapped inside the tumor, thereby enhancing the efficacy of anti-HCC treatment with PTA-CET in rats. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Junjie Li
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Min Zhou
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Fengyong Liu
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Chiyi Xiong
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Wanqin Wang
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Qizhen Cao
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Xiaoxia Wen
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - J David Robertson
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Xin Ji
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Y Andrew Wang
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Sanjay Gupta
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| | - Chun Li
- From the Departments of Cancer Systems Imaging (J.L., M.Z., C.X., W.W., Q.C., X.W., C.L.) and Interventional Radiology (F.L., S.G.), the University of Texas MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, TX 77030; Department of Chemistry, University of Missouri, Columbia, Mo (J.D.R.); and Ocean Nanotech, San Diego, Calif (X.J., Y.A.W.)
| |
Collapse
|
7
|
Bothwell KD, Folaron M, Seshadri M. Preclinical Activity of the Vascular Disrupting Agent OXi4503 against Head and Neck Cancer. Cancers (Basel) 2016; 8:cancers8010011. [PMID: 26751478 PMCID: PMC4728458 DOI: 10.3390/cancers8010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Vascular disrupting agents (VDAs) represent a relatively distinct class of agents that target established blood vessels in tumors. In this study, we examined the preclinical activity of the second-generation VDA OXi4503 against human head and neck squamous cell carcinoma (HNSCC). Studies were performed in subcutaneous and orthotopic FaDu-luc HNSCC xenografts established in immunodeficient mice. In the subcutaneous model, bioluminescence imaging (BLI) along with tumor growth measurements was performed to assess tumor response to therapy. In mice bearing orthotopic tumors, a dual modality imaging approach based on BLI and magnetic resonance imaging (MRI) was utilized. Correlative histologic assessment of tumors was performed to validate imaging data. Dynamic BLI revealed a marked reduction in radiance within a few hours of OXi4503 administration compared to baseline levels. However, this reduction was transient with vascular recovery observed at 24 h post treatment. A single injection of OXi4503 (40 mg/kg) resulted in a significant (p < 0.01) tumor growth inhibition of subcutaneous FaDu-luc xenografts. MRI revealed a significant reduction (p < 0.05) in volume of orthotopic tumors at 10 days post two doses of OXi4503 treatment. Corresponding histologic (H&E) sections of Oxi4503 treated tumors showed extensive areas of necrosis and hemorrhaging compared to untreated controls. To the best of our knowledge, this is the first report, on the activity of Oxi4503 against HNSCC. These results demonstrate the potential of tumor-VDAs in head and neck cancer. Further examination of the antivascular and antitumor activity of Oxi4503 against HNSCC alone and in combination with chemotherapy and radiation is warranted.
Collapse
Affiliation(s)
- Katelyn D Bothwell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA.
| | - Margaret Folaron
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Oral Medicine/Head and Neck Surgery, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
8
|
Al-Abd AM, Aljehani ZK, Gazzaz RW, Fakhri SH, Jabbad AH, Alahdal AM, Torchilin VP. Pharmacokinetic strategies to improve drug penetration and entrapment within solid tumors. J Control Release 2015; 219:269-277. [PMID: 26342660 DOI: 10.1016/j.jconrel.2015.08.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/28/2015] [Indexed: 02/08/2023]
Abstract
Despite the discovery of a large number of anticancer agents, cancer still remains among the leading causes of death since the middle of the twentieth century. Solid tumors possess a high degree of genetic instability and emergence of treatment resistance. Tumor resistance has emerged for almost all approved anticancer drugs and will most probably emerge for newly discovered anticancer agents as well. The use of pharmacokinetic approaches to increase anticancer drug concentrations within the solid tumor compartment and prolong its entrapment might diminish the possibility of resistance emergence at the molecular pharmacodynamic level and might even reverse tumor resistance. Several novel treatment modalities such as metronomic therapy, angiogenesis inhibitors, vascular disrupting agents and tumor priming have been introduced to improve solid tumor treatment outcomes. In the current review we will discuss the pharmacokinetic aspect of these treatment modalities in addition to other older treatment modalities, such as extracellular matrix dissolving agents, extracellular matrix synthesis inhibitors, chemoembolization and cellular efflux pump inhibition. Many of these strategies showed variable degrees of success/failure; however, reallocating these modalities based on their influence on the intratumoral pharmacokinetics might improve their understanding and treatment outcomes.
Collapse
Affiliation(s)
- Ahmed M Al-Abd
- Department of Pharmacology, Medical Division, National Research Centre, Dokki, Giza, Egypt; Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA; Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zekra K Aljehani
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana W Gazzaz
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah H Fakhri
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha H Jabbad
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
9
|
Abstract
Vascular disrupting agents (VDAs) are an important class of compounds that exhibit selective activity against pre-existing tumor vasculature, causing rapid shutdown of the tumor blood flow and consequent necrosis of the tumor mass. The VDAs can be divided into flavonoid compounds, which are related to flavone acetic acid, and tubulin-binding agents. Tubulin-binding agents represent the largest group of VDAs and are characterized by different chemical structures, although most of them are derivatives of the lead compound combretastatin (CA-4). They demonstrated clinical activity, although recent findings have established that they have insufficient activity as single agents. Several resistance mechanisms occur, such as the resistance of the tumor rim cells, while promising results have been described in combination with other chemotherapeutics.
Collapse
|
10
|
Lin KY, Kwon EJ, Lo JH, Bhatia SN. Drug-induced amplification of nanoparticle targeting to tumors. NANO TODAY 2014; 9:550-559. [PMID: 29731806 PMCID: PMC5935498 DOI: 10.1016/j.nantod.2014.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomedicines have the potential to significantly impact cancer therapy by improving drug efficacy and decreasing off-target effects, yet our ability to efficiently home nanoparticles to disease sites remains limited. One frequently overlooked constraint of current active targeting schemes is the relative dearth of targetable antigens within tumors, which restricts the amount of cargo that can be delivered in a tumor-specific manner. To address this limitation, we exploit tumor-specific responses to drugs to construct a cooperative targeting system where a small molecule therapeutic modulates the disease microenvironment to amplify nanoparticle recruitment in vivo. We first administer a vascular disrupting agent, ombrabulin, which selectively affects tumors and leads to locally elevated presentation of the stress-related protein, p32. This increase in p32 levels provides more binding sites for circulating p32-targeted nanoparticles, enhancing their delivery of diagnostic or therapeutic cargos to tumors. We show that this cooperative targeting system recruits over five times higher doses of nanoparticles to tumors and decreases tumor burden when compared with non-cooperative controls. These results suggest that using nanomedicine in conjunction with drugs that enhance the presentation of target antigens in the tumor environment may be an effective strategy for improving the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Kevin Y Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ester J Kwon
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Justin H Lo
- Medical Scientist Training Program, Harvard Medical School, Boston, MA 02115
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | - Sangeeta N Bhatia
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
- Electrical Engineering and Computer Science, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
11
|
A phase 2 trial of verubulin for recurrent glioblastoma: a prospective study by the Brain Tumor Investigational Consortium (BTIC). J Neurooncol 2014; 118:335-343. [PMID: 24740196 DOI: 10.1007/s11060-014-1437-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/05/2014] [Indexed: 01/17/2023]
Abstract
Treatment options are limited for recurrent glioblastoma (GBM). Verubulin is a microtubule destabilizer and vascular disrupting agent that achieve high brain concentration relative to plasma in animals. Adults with recurrent GBM who failed prior standard therapy were eligible. The primary endpoint was 1-month progression-free survival (PFS-1) for bevacizumab refractory (Group 2) and 6-month progression-free survival (PFS-6) for bevacizumab naïve patients (Group 1). Verubulin was administered at 3.3 mg/m(2) as a 2-h intravenous infusion once weekly for 3 consecutive weeks in a 4-week cycle. The planned sample size was 34 subjects per cohort. 56 patients (37 men, 19 women) were enrolled, 31 in Group 1 and 25 in Group 2. The PFS-6 for Group 1 was 14% and the PFS-1 for Group 2 was 20%. Median survival from onset of treatment was 9.5 months in Group 1 and 3.4 months in Group 2. Best overall response was partial response (n = 3; 10% in Group 1; n = 1; 4.2% in Group 2) and stable disease (n = 7; 23% in Group 1; n = 5; 21% in Group 2). In Group 1, 38.7% of patients experienced a serious adverse event; however only 3.2% were potentially attributable to study drug. In Group 2, 44% of patients experienced a serious adverse event although none were attributable to study drug. Accrual was terminated early for futility. Single agent verubulin, in this dose and schedule, is well tolerated, associated with moderate but tolerable toxicity but has limited activity in either bevacizumab naïve or refractory recurrent GBM.
Collapse
|
12
|
Dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging noninvasive evaluation of vascular disrupting treatment on rabbit liver tumors. PLoS One 2013; 8:e82649. [PMID: 24376560 PMCID: PMC3871575 DOI: 10.1371/journal.pone.0082649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022] Open
Abstract
Evaluation of vascular disrupting treatment (VDT) is generally based on tumor size and enhancement on conventional magnetic resonance imaging (MRI) which, unfortunately, may be limited in providing satisfactory information. The purpose of the study is to evaluate consecutive changes of 20 rabbit VX2 liver tumors after VDT by dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) at a 3.0 T MR unit. Twenty four hours after intravenous injection of Combretastatin A-4-phosphate (CA4P) at 20 mg/kg, DCE-MRI derived Maximum Slope of Increase (MSI) and Positive Enhancement Integral (PEI) decreased sharply due to sudden shutting down of tumor feeding vessels. DWI derived Apparent Diffusion Coefficient (ADC) in tumor periphery decreased because of ischemic cell edema. On day 4, an increase of MSI was probably caused by the recovery of blood supply. A remarkable increase of ADC represented a large scale of necrosis among tumors. On day 8, the blood perfusion further decreased and the extent of necrosis further increased, reflected by lower MSI and PEI values and higher ADC value. On day 12, a second decrease of ADC was noticed because the re-growth of periphery tumor. The experimental data indicate that the therapeutic effects of VDT may be noninvasively monitored with DCE-MRI (reflecting tumor blood perfusion) and DWI (reflecting the changes of histology), which provide powerful measures for assessment of anticancer treatments.
Collapse
|
13
|
Diverse responses to vascular disrupting agent combretastatin a4 phosphate: a comparative study in rats with hepatic and subcutaneous tumor allografts using MRI biomarkers, microangiography, and histopathology. Transl Oncol 2013; 6:42-50. [PMID: 23418616 DOI: 10.1593/tlo.12367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/25/2012] [Accepted: 12/31/2012] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Differently located tumors of the same origin may exhibit diverse responses to the same therapeutics. To test this hypothesis, we compared the responses of rodent hepatic and subcutaneous engrafts of rhabdomyosarcoma-1 (R1) to a vascular disrupting agent Combretastatin A4 phosphate (CA4P). METHODS Twelve WAG/Rij rats, each bearing three R1 implanted in the right and left hepatic lobes and subcutaneously in the thoracic region, received CA4P intravenously at 5 mg/kg (n = 6) or solvent (n = 6). Therapeutic responses were compared interindividually and intraindividually among tumors of different sites till 48 hours after injection using in vivo MRI, postmortem digital microangiography, and histopathology. RESULTS MRI revealed that the subcutaneous tumors (STs) significantly increased in volume than hepatic tumors (HTs) 48 hours after CA4P (P < .05). Relative to vehicle controls and treated group at baseline, necrosis ratio, apparent diffusion coefficient, and enhancement ratio changed slightly with the STs but significantly with HTs (P < .05) after CA4P treatment. Vessel density derived from microangiography was significantly lower in STs compared to HTs without CA4P treatment. CA4P treatment resulted in decreased vessel density in HTs, while it did not affect vessel density in STs. MRI and microangiography outcomes were supported by histopathologic findings. CONCLUSIONS MRI and microangiography allowed quantitative comparison of therapeutic responses to CA4P in rats with multifocal tumors. The discovered diverse effects of the same drug on tumors of the same origin but different locations emphasize the presence of cancer heterogeneity and the importance of individualization of drug delivery.
Collapse
|
14
|
Van der Veldt AAM, Lammertsma AA, Smit EF. Scheduling of anticancer drugs: timing may be everything. Cell Cycle 2012; 11:4339-43. [PMID: 23032365 DOI: 10.4161/cc.22187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many cancer patients are treated with a combination of anticancer drugs. Here, we discuss the importance of drug scheduling and the need for studies that investigate the optimal timing of the various anticancer drugs. Positron emission tomography (PET) using radiolabeled anticancer drugs could be an important tool for those studies.
Collapse
Affiliation(s)
- Astrid A M Van der Veldt
- Department of Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
15
|
Affiliation(s)
| | - Primo N. Lara
- University of California, Davis Cancer Center, Sacramento, CA
| |
Collapse
|
16
|
LoRusso PM, Boerner SA, Evelhoch JL, Evelhoch JL. Reply to E.S. Wang et al. J Clin Oncol 2012. [DOI: 10.1200/jco.2011.39.6895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|