Jones PS, Dunn GP, Barker FG, Curry WT, Hochberg FH, Cahill DP. Molecular genetics of low-grade gliomas: genomic alterations guiding diagnosis and therapeutic intervention. 11th annual Frye-Halloran Brain Tumor Symposium.
Neurosurg Focus 2015;
34:E9. [PMID:
23373454 DOI:
10.3171/2012.12.focus12349]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
The authors' goal was to review the current understanding of the underlying molecular and genetic mechanisms involved in low-grade glioma development and how these mechanisms can be targets for detection and treatment of the disease and its recurrence.
METHODS
On October 4, 2012, the authors convened a meeting of researchers and clinicians across a variety of pertinent medical specialties to review the state of current knowledge on molecular genetic mechanisms of low-grade gliomas and to identify areas for further research and drug development.
RESULTS
The meeting consisted of 3 scientific sessions ranging from neuropathology of IDH1 mutations; CIC, ATRX, and FUBP1 mutations in oligodendrogliomas and astrocytomas; and IDH1 mutations as therapeutic targets. Sessions consisted of a total of 10 talks by international leaders in low-grade glioma research, mutant IDH1 biology and its application in glioma research, and treatment.
CONCLUSIONS
The recent discovery of recurrent gene mutations in low-grade glioma has increased the understanding of the molecular mechanisms involved in a host of biological activities related to low-grade gliomas. Understanding the role these genetic alterations play in brain cancer initiation and progression will help lead to the development of novel treatment modalities than can be personalized to each patient, thereby helping transform this now often-fatal malignancy into a chronic or even curable disease.
Collapse