1
|
Márquez-Rodas I, Muñoz Couselo E, Rodríguez Moreno JF, Arance Fernández AM, Berciano Guerrero MÁ, Campos Balea B, de la Cruz Merino L, Espinosa Arranz E, García Castaño A, Berrocal Jaime A. SEOM-GEM clinical guidelines for cutaneous melanoma (2023). Clin Transl Oncol 2024; 26:2841-2855. [PMID: 38748192 PMCID: PMC11467041 DOI: 10.1007/s12094-024-03497-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 10/11/2024]
Abstract
Cutaneous melanoma incidence is rising. Early diagnosis and treatment administration are key for increasing the chances of survival. For patients with locoregional advanced melanoma that can be treated with complete resection, adjuvant-and more recently neoadjuvant-with targeted therapy-BRAF and MEK inhibitors-and immunotherapy-anti-PD-1-based therapies-offer opportunities to reduce the risk of relapse and distant metastases. For patients with advanced disease not amenable to radical treatment, these treatments offer an unprecedented increase in overall survival. A group of medical oncologists from the Spanish Society of Medical Oncology (SEOM) and Spanish Multidisciplinary Melanoma Group (GEM) has designed these guidelines, based on a thorough review of the best evidence available. The following guidelines try to cover all the aspects from the diagnosis-clinical, pathological, and molecular-staging, risk stratification, adjuvant therapy, advanced disease therapy, and survivor follow-up, including special situations, such as brain metastases, refractory disease, and treatment sequencing. We aim help clinicians in the decision-making process.
Collapse
Affiliation(s)
| | - Eva Muñoz Couselo
- Hospital Vall d'Hebron & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | | | | | - Luis de la Cruz Merino
- Cancer Immunotherapy, Biomedicine Institute of Seville (IBIS)/CSIC, Clinical Oncology Department, University Hospital Virgen Macarena and School of Medicine, University of Seville, Seville, Spain
| | | | | | | |
Collapse
|
2
|
Bullement A, Edmondson-Jones M, Guyot P, Welton NJ, Baio G, Stevenson M, Latimer NR. MPES-R: Multi-Parameter Evidence Synthesis in R for Survival Extrapolation-A Tutorial. PHARMACOECONOMICS 2024:10.1007/s40273-024-01425-4. [PMID: 39207595 DOI: 10.1007/s40273-024-01425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Survival extrapolation often plays an important role in health technology assessment (HTA), and there are a range of different approaches available. Approaches that can leverage external evidence (i.e. data or information collected outside the main data source of interest) may be helpful, given the extent of uncertainty often present when determining a suitable survival extrapolation. One of these methods is the multi-parameter evidence synthesis (MPES) approach, first proposed for use in HTA by Guyot et al., and more recently by Jackson. While MPES has potential benefits over conventional extrapolation approaches (such as simple or flexible parametric models), it is more computationally complex and requires use of specialist software. This tutorial presents an introduction to MPES for HTA, alongside a user-friendly, publicly available operationalisation of Guyot's original MPES that can be executed using the statistical software package R. Through two case studies, both Guyot's and Jackson's MPES approaches are explored, along with sensitivity analyses relevant to HTA. Finally, the discussion section of the tutorial details important considerations for analysts considering use of an MPES approach, along with potential further developments. MPES has not been used often in HTA, and so there are limited examples of how it has been used and perceived. However, this tutorial may aid future research efforts exploring the use of MPES further.
Collapse
Affiliation(s)
- Ash Bullement
- School of Medicine and Population Health, Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK.
- Delta Hat, Nottingham, UK.
| | - Mark Edmondson-Jones
- Delta Hat, Nottingham, UK
- Population Health Sciences, University of Leicester, Leicester, UK
| | | | - Nicky J Welton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gianluca Baio
- Department of Statistical Science, University College London, London, UK
| | - Matthew Stevenson
- School of Medicine and Population Health, Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Nicholas R Latimer
- School of Medicine and Population Health, Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
- Delta Hat, Nottingham, UK
| |
Collapse
|
3
|
Guo C, Dai X, Du Y, Xiong X, Gui X. Preclinical development of a novel CCR8/CTLA-4 bispecific antibody for cancer treatment by disrupting CTLA-4 signaling on CD8 T cells and specifically depleting tumor-resident Tregs. Cancer Immunol Immunother 2024; 73:210. [PMID: 39123089 PMCID: PMC11315865 DOI: 10.1007/s00262-024-03794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Anti-CTLA-4 antibodies faced challenges due to frequent adverse events and limited efficacy, which spurred the exploration of next-generation CTLA-4 therapeutics to balance regulatory T cells (Tregs) depletion and CD8 T cells activation. CCR8, identified primarily on tumor-infiltrating Tregs, has become a target of interest due to the anti-tumor effects demonstrated by CCR8 antibody-mediated Tregs depletion. Single-cell RNA sequencing analysis reveals that CCR8-positive Tregs constitute a small subset, with concurrent expression of CCR8 and CTLA-4. Consequently, we proposed a novel bispecific antibody targeting CCR8 and CTLA-4 that had the potential to enhance T cell activation while selectively depleting intratumor Tregs. The candidate molecule 2MW4691 was developed in a tetravalent symmetric format, maintaining a strong binding affinity for CCR8 while exhibiting relatively weaker CTLA-4 binding. This selective binding ability allowed 2MW4691 to target and deplete tumor-infiltrating Tregs with higher specificity. In vitro assays verified the antibody's capacity for antibody-dependent cellular cytotoxicity (ADCC) to Tregs with high level of CTLA-4 expression, but not CD8 T cells with relatively low level of CTLA-4 on cell surface. Also, 2MW4691 inhibited the CTLA-4 pathway and enhanced T cell activation. The in vivo therapeutic efficacy of 2MW4691 was further demonstrated using hCCR8 or hCTLA-4 humanized mouse models and hCCR8/hCTLA-4 double knock-in mouse models. In cynomolgus monkeys, 2MW4691 was well-tolerated, exhibited the anticipated pharmacokinetic profile, and had a minimal impact on the peripheral T cell population. The promising preclinical results supported the further evaluation of 2MW4691 as a next-generation Treg-based therapeutics in clinical trials.
Collapse
Affiliation(s)
- Cuicui Guo
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xiaodong Dai
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Yulei Du
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xiumei Xiong
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xun Gui
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| |
Collapse
|
4
|
Joerger M, Koster KL, Janik T, de Jong FA. Combination Therapy with Immune Checkpoint Inhibitors and Histone Deacetylase Inhibitors or Alkylating Agents. Cancer Manag Res 2024; 16:855-869. [PMID: 39072340 PMCID: PMC11278095 DOI: 10.2147/cmar.s464245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose Immune checkpoint inhibitors (CPIs) have been widely adopted in a number of early and advanced malignancies. Histone deacetylase inhibitors (HDACis) and alkylating agents (AAs) have been suggested to potentiate the actions of CPIs on tumor cells. We conducted a comprehensive literature review to explore the potential synergistic activity between CPIs, AAs, and HDACis. Patients and Methods Clinical and non-clinical studies describing outcomes in patients with cancer receiving CPIs and either concomitant or sequential (pre- or post-CPI) AAs or HDACis were identified in PubMed using pre-defined search strings. Manual searches of key oncology congresses were similarly performed. All relevant articles and abstracts were manually screened for relevance, classified according to the specific anticancer agents used (CPIs, AAs, or HDACis), tumor entity, and whether treatment was concomitant or sequential. Results Overall, 227 unique clinical studies across a range of tumor types, both solid tumors and hematological malignancies, were identified. One hundred and fifty-nine publications on Phase I and II clinical studies together with 41 publications on Phase III studies were examined. The most commonly investigated tumor types were melanoma, triple-negative breast cancer, non-small cell lung cancer, and Hodgkin lymphoma. The randomized clinical studies identified, all of which reported on the combination of a CPI with an AA, demonstrated superior outcomes in the combination arm compared with CPI or AA monotherapy. Similarly, combination therapy with CPIs and HDACis demonstrated promising activity. Conclusion Sequential or concomitant administration of a CPI with an AA or an HDACi may improve outcomes for patients with a range of tumor types. There is a rationale to support further investigation into the potential for synergy between CPIs, alkylating agents and/or HDACis in both the non-clinical and clinical settings.
Collapse
Affiliation(s)
- Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Kira-Lee Koster
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Tomas Janik
- Research & Development Department, Mundipharma Research Limited, Cambridge, UK
| | - Floris A de Jong
- Global Medical Affairs Department, Mundipharma Research Limited, Cambridge, UK
- Medical Affairs Department, Exact Sciences International GmbH, Baar, Switzerland
| |
Collapse
|
5
|
Song L, Yang Y, Tian X. Current knowledge about immunotherapy resistance for melanoma and potential predictive and prognostic biomarkers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:17. [PMID: 38835341 PMCID: PMC11149101 DOI: 10.20517/cdr.2023.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
Melanoma still reaches thousands of new diagnoses per year, and its aggressiveness makes recovery challenging, especially for those with stage III/IV unresectable melanoma. Immunotherapy, emerging as a beacon of hope, stands at the forefront of treatments for advanced melanoma. This review delves into the various immunotherapeutic strategies, prominently featuring cytokine immunotherapy, adoptive cell therapy, immune checkpoint inhibitors, and vaccinations. Among these, immune checkpoint inhibitors, notably anti-programmed cell death-1 (PD-1) and anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) antibodies, emerge as the leading strategy. However, a significant subset of melanoma patients remains unresponsive to these inhibitors, underscoring the need for potent biomarkers. Efficient biomarkers have the potential to revolutionize the therapeutic landscape by facilitating the design of personalized treatments for patients with melanoma. This comprehensive review highlights the latest advancements in melanoma immunotherapy and potential biomarkers at the epicenter of recent research endeavors.
Collapse
Affiliation(s)
- Lanni Song
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
| | - Yixin Yang
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ 07083, USA
| | - Xuechen Tian
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
| |
Collapse
|
6
|
Ullas S, Sinclair C. Applications of Flow Cytometry in Drug Discovery and Translational Research. Int J Mol Sci 2024; 25:3851. [PMID: 38612661 PMCID: PMC11011675 DOI: 10.3390/ijms25073851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Flow cytometry is a mainstay technique in cell biology research, where it is used for phenotypic analysis of mixed cell populations. Quantitative approaches have unlocked a deeper value of flow cytometry in drug discovery research. As the number of drug modalities and druggable mechanisms increases, there is an increasing drive to identify meaningful biomarkers, evaluate the relationship between pharmacokinetics and pharmacodynamics (PK/PD), and translate these insights into the evaluation of patients enrolled in early clinical trials. In this review, we discuss emerging roles for flow cytometry in the translational setting that supports the transition and evaluation of novel compounds in the clinic.
Collapse
Affiliation(s)
| | - Charles Sinclair
- Flagship Pioneering, 140 First Street, Cambridge, MA 02141, USA;
| |
Collapse
|
7
|
Shah V, Panchal V, Shah A, Vyas B, Agrawal S, Bharadwaj S. Immune checkpoint inhibitors in metastatic melanoma therapy (Review). MEDICINE INTERNATIONAL 2024; 4:13. [PMID: 38410760 PMCID: PMC10895472 DOI: 10.3892/mi.2024.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
An increase in the incidence of melanoma has been observed in recent decades, which poses a significant challenge due to its poor prognosis in the advanced and metastatic stages. Previously, chemotherapy and high doses of interleukin-2 were available treatments for melanoma; however, they offered limited survival benefits and were associated with severe toxicities. The treatment of metastatic melanoma has been transformed by new developments in immunotherapy. Immune checkpoint inhibitors (ICIs), monoclonal antibodies that target cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) and its ligand, PDL-1, have emerged as promising therapeutic options. Commonly used ICIs, such as ipilimumab, nivolumab and pembrolizumab, have been found to be associated with an improved median overall survival, recurrence-free survival and response rates compared to traditional chemotherapies. Combination therapies involving different types of ICIs, such as anti-PD1 with anti-CTLA-4, have further enhanced the overall survival and response rates by targeting various phases of T-cell activation. Additionally, the development of novel biomarkers has facilitated the assessment of responses to ICI therapy, with tissue and serum-based prognostic and predictive biomarkers now available. The increased response observed with ICIs also provides potential for immune-related adverse effects on various organ systems. Further research is required to evaluate the efficacy and safety of various combinations of ICIs, while ongoing clinical trials explore the potential of newer ICIs. Concerns regarding the development of resistance to ICIs also warrant attention. The present review summarizes and discusses the advent of ICIs with a marked significant breakthrough in the treatment of metastatic melanoma, providing improved outcomes compared to traditional therapies.
Collapse
Affiliation(s)
- Vedant Shah
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Viraj Panchal
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Abhi Shah
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Bhavya Vyas
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Siddharth Agrawal
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Sanket Bharadwaj
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| |
Collapse
|
8
|
Kerekes DM, Frey AE, Prsic EH, Tran TT, Clune JE, Sznol M, Kluger HM, Forman HP, Becher RD, Olino KL, Khan SA. Immunotherapy Initiation at the End of Life in Patients With Metastatic Cancer in the US. JAMA Oncol 2024; 10:342-351. [PMID: 38175659 PMCID: PMC10767643 DOI: 10.1001/jamaoncol.2023.6025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2024]
Abstract
Importance While immunotherapy is being used in an expanding range of clinical scenarios, the incidence of immunotherapy initiation at the end of life (EOL) is unknown. Objective To describe patient characteristics, practice patterns, and risk factors concerning EOL-initiated (EOL-I) immunotherapy over time. Design, Setting, and Participants Retrospective cohort study using a US national clinical database of patients with metastatic melanoma, non-small cell lung cancer (NSCLC), or kidney cell carcinoma (KCC) diagnosed after US Food and Drug Administration approval of immune checkpoint inhibitors for the treatment of each disease through December 2019. Mean follow-up was 13.7 months. Data analysis was performed from December 2022 to May 2023. Exposures Age, sex, race and ethnicity, insurance, location, facility type, hospital volume, Charlson-Deyo Comorbidity Index, and location of metastases. Main Outcomes and Measures Main outcomes were EOL-I immunotherapy, defined as immunotherapy initiated within 1 month of death, and characteristics of the cohort receiving EOL-I immunotherapy and factors associated with its use. Results Overall, data for 242 371 patients were analyzed. The study included 20 415 patients with stage IV melanoma, 197 331 patients with stage IV NSCLC, and 24 625 patients with stage IV KCC. Mean (SD) age was 67.9 (11.4) years, 42.5% were older than 70 years, 56.0% were male, and 29.3% received immunotherapy. The percentage of patients who received EOL-I immunotherapy increased over time for all cancers. More than 1 in 14 immunotherapy treatments in 2019 were initiated within 1 month of death. Risk-adjusted patients with 3 or more organs involved in metastatic disease were 3.8-fold more likely (95% CI, 3.1-4.7; P < .001) to die within 1 month of immunotherapy initiation than those with lymph node involvement only. Treatment at an academic or high-volume center rather than a nonacademic or very low-volume center was associated with a 31% (odds ratio, 0.69; 95% CI, 0.65-0.74; P < .001) and 30% (odds ratio, 0.70; 95% CI, 0.65-0.76; P < .001) decrease in odds of death within a month of initiating immunotherapy, respectively. Conclusions and Relevance Findings of this cohort study show that the initiation of immunotherapy at the EOL is increasing over time. Patients with higher metastatic burden and who were treated at nonacademic or low-volume facilities had higher odds of receiving EOL-I immunotherapy. Tracking EOL-I immunotherapy can offer insights into national prescribing patterns and serve as a harbinger for shifts in the clinical approach to patients with advanced cancer.
Collapse
Affiliation(s)
- Daniel M. Kerekes
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Alexander E. Frey
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Elizabeth H. Prsic
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Thuy T. Tran
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - James E. Clune
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Mario Sznol
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Harriet M. Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Howard P. Forman
- Department of Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Robert D. Becher
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Kelly L. Olino
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Sajid A. Khan
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Ogunremi O, Sirjuesingh D, Deshpande A. Metastatic Melanoma to the Urinary Bladder: A Rare Cause of Visible Haematuria. Case Rep Urol 2024; 2024:5516547. [PMID: 38463753 PMCID: PMC10923617 DOI: 10.1155/2024/5516547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
Bladder metastasis from cutaneous melanoma is a rare pathology. A 79-year-old woman presented to the haematuria clinic on account of painless visible haematuria. Ten years prior to this index presentation, she was diagnosed with melanoma on her right thigh following a total excision of the skin lesion. Cystoscopy showed a pigmented bladder tumour, and the histology report following a transurethral resection was consistent with metastatic melanoma, and further imaging revealed metastasis to the lungs, adrenals, and lymph nodes.
Collapse
Affiliation(s)
- Olawale Ogunremi
- Department of Urology, Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Colchester, UK
| | - Dinelle Sirjuesingh
- Department of Urology, Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Colchester, UK
| | - Aniket Deshpande
- Department of Urology, Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Colchester, UK
| |
Collapse
|
10
|
Frey AE, Kerekes DM, Khan SA, Tran TT, Kluger HM, Clune JE, Ariyan S, Sznol M, Ishizuka JJ, Olino KL. Immunotherapy utilization in stage IIIA melanoma: less may be more. Front Oncol 2024; 14:1336441. [PMID: 38380358 PMCID: PMC10876869 DOI: 10.3389/fonc.2024.1336441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Background Immunotherapy agents are approved for adjuvant treatment of stage III melanoma; however, evidence for survival benefit in early stage III disease is lacking. Current guidelines for adjuvant immunotherapy utilization in stage IIIA rely on clinician judgment, creating an opportunity for significant variation in prescribing patterns. This study aimed to characterize current immunotherapy practice variations and to compare patient outcomes for different prescribing practices in stage IIIA melanoma. Study design Patients with melanoma diagnosed from 2015-2019 that met American Joint Committee on Cancer 8th edition criteria for stage IIIA and underwent resection were identified in the National Cancer Database. Multiple imputation by chained equations replaced missing values. Factors associated with receipt of adjuvant immunotherapy were identified. Multivariable Cox proportional hazards regression compared overall survival across groups. Results Of 4,432 patients included in the study, 34% received adjuvant immunotherapy. Patients had lower risk-adjusted odds of receiving immunotherapy if they were treated at an academic center (OR=0.48, 95%CI=0.33-0.72, p<0.001 vs. community facility) or at a high-volume center (OR=0.69, 0.56-0.84, p<0.001 vs. low-volume). Immunotherapy receipt was not associated with risk-adjusted survival (p=0.095). Moreover, patients treated at high-volume centers experienced longer overall risk-adjusted survival than those treated at low-volume centers (HR=0.52, 0.29-0.93, p=0.030). Risk-adjusted survival trended toward being longer at academic centers than at community centers, but the difference was not statistically significant. Conclusion Academic and high-volume centers utilize significantly less adjuvant immunotherapy in stage IIIA melanoma than community and low-volume centers without compromise in overall survival. These findings suggest that this population may benefit from more judicious immunotherapy utilization.
Collapse
Affiliation(s)
- Alexander E Frey
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Daniel M Kerekes
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Sajid A Khan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Thuy T Tran
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, United States
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, United States
| | - James E Clune
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Stephan Ariyan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Mario Sznol
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, United States
| | - Jeffrey J Ishizuka
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, United States
| | - Kelly L Olino
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Duarte R, Trigo F, Luz I, Santos P. Small-vessel vasculitis leading to severe acute kidney injury after ipilimumab: a case report. Melanoma Res 2024; 34:76-79. [PMID: 38016155 DOI: 10.1097/cmr.0000000000000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Immune checkpoint inhibitors are effective monoclonal antibodies used in cancer treatment, particularly in metastatic melanoma. They target proteins responsible for cancer cells evading the immune system. However, their use can lead to immune-related adverse events, with the skin and gastrointestinal tract being commonly affected. Kidney involvement is rarer, with interstitial nephritis being the most common manifestation. In a unique case, kidney biopsy-proven small-vessel vasculitis with arteriolar immune deposition was observed following ipilimumab administration.
Collapse
Affiliation(s)
- Rui Duarte
- Nephrology Department, Centro Hospitalar do Médio Tejo, Torres Novas, Portugal
| | | | | | | |
Collapse
|
12
|
Calabrò L, Bronte G, Grosso F, Cerbone L, Delmonte A, Nicolini F, Mazza M, Di Giacomo AM, Covre A, Lofiego MF, Crinò L, Maio M. Immunotherapy of mesothelioma: the evolving change of a long-standing therapeutic dream. Front Immunol 2024; 14:1333661. [PMID: 38259475 PMCID: PMC10800748 DOI: 10.3389/fimmu.2023.1333661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Pleural mesothelioma (PM) is an aggressive and rare disease, characterized by a very poor prognosis. For almost two decades, the world standard treatment regimen for unresectable PM has consisted of a platinum-based drug plus pemetrexed, leading to an overall survival of approximately 12 months. The dramatic therapeutic scenario of PM has recently changed with the entry into the clinic of immune checkpoint inhibition, which has proven to be an effective approach to improve the survival of PM patients. The aim of the present review is to provide a comprehensive overview of the most promising immunotherapeutic-based strategies currently under investigation for advanced PM.
Collapse
Affiliation(s)
- Luana Calabrò
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Oncology, University Hospital of Ferrara, Ferrara, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences On Ageing (IRCCS INRCA), Ancona, Italy
| | - Federica Grosso
- Mesothelioma, Melanoma and Sarcoma Unit, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Luigi Cerbone
- Mesothelioma, Melanoma and Sarcoma Unit, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Fabio Nicolini
- IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Massimiliano Mazza
- IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Siena, Italy
- Center for Immuno-Oncology, University of Siena, Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Siena, Italy
- Center for Immuno-Oncology, University of Siena, Siena, Italy
- EPigenetic Immune-Oncology Consortium Airc (EPICA), Siena, Italy
| | - Maria Fortunata Lofiego
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Siena, Italy
- Center for Immuno-Oncology, University of Siena, Siena, Italy
- EPigenetic Immune-Oncology Consortium Airc (EPICA), Siena, Italy
| | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Siena, Italy
- Center for Immuno-Oncology, University of Siena, Siena, Italy
- EPigenetic Immune-Oncology Consortium Airc (EPICA), Siena, Italy
- Fondazione Network Italiano per la Bioterapia dei Tumori (NIBIT) Onlus, Siena, Italy
| |
Collapse
|
13
|
Kemmotsu N, Ninomiya K, Kunimasa K, Ishino T, Nagasaki J, Otani Y, Michiue H, Ichihara E, Ohashi K, Inoue T, Tamiya M, Sakai K, Ueda Y, Dansako H, Nishio K, Kiura K, Date I, Togashi Y. Low frequency of intracranial progression in advanced NSCLC patients treated with cancer immunotherapies. Int J Cancer 2024; 154:169-179. [PMID: 37611176 DOI: 10.1002/ijc.34700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
Intracranial metastases are common in nonsmall-cell lung cancer (NSCLC) patients, whose prognosis is very poor. In addition, intracranial progression is common during systemic treatments due to the inability to penetrate central nervous system (CNS) barriers, whereas the intracranial effects of cancer immunotherapies remain unclear. We analyzed clinical data to evaluate the frequency of intracranial progression in advanced NSCLC patients treated with PD-1 blockade therapies compared with those treated without PD-1 blockade therapies, and found that the frequency of intracranial progression in advanced NSCLC patients treated with PD-1 blockade therapies was significantly lower than that in patients treated with cytotoxic chemotherapies. In murine models, intracranial rechallenged tumors after initial rejection by PD-1 blockade were suppressed. Accordingly, long-lived memory precursor effector T cells and antigen-specific T cells were increased by PD-1 blockade in intracranial lesions. However, intracranial rechallenged different tumors are not suppressed. Our results indicate that cancer immunotherapies can prevent intracranial progression, maintaining long-term effects intracranially as well as systemically. If intracranial recurrence occurs during the treatment with PD-1 blockade therapies, aggressive local therapies could be worthwhile.
Collapse
Affiliation(s)
- Naoya Kemmotsu
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kiichiro Ninomiya
- Department of Respiratory Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takamasa Ishino
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Joji Nagasaki
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroyuki Michiue
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Eiki Ichihara
- Department of Respiratory Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Respiratory Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takako Inoue
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Youki Ueda
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiromichi Dansako
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Katsuyuki Kiura
- Department of Respiratory Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
14
|
Martella S, Aiello MM, Bertaglia V, Cau R, Denaro N, Cadoni A, Novello S, Scartozzi M, Novello G, Soto Parra HJ, Saba L, Solinas C, Porcu M. Malignant Pleural Mesothelioma: Staging and Radiological Response Criteria in Patients Treated with Immune Checkpoint Inhibitors. Target Oncol 2024; 19:13-28. [PMID: 38063957 DOI: 10.1007/s11523-023-01017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 02/01/2024]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and challenging cancer associated with asbestos fiber exposure, which offers limited treatment options. Historically, platinum-based chemotherapy has been the primary approach, but recent developments have introduced immunotherapy as a promising alternative for the treatment of this disease. Nevertheless, the unique growth patterns and occasionally ambiguous progressive characteristics of MPM make the interpretation of radiological assessments complex. Immunotherapy further complicates matters by introducing unconventional treatment response patterns such as hyperprogression and pseudoprogression. Consequently, there is a growing imperative to integrate the standard RECIST criteria with the mesothelioma-specific mRECIST criteria (version 1.1), as outlined in iRECIST. This comprehensive review is driven by the intent to provide a valuable resource for radiologists and clinicians engaged in the diagnosis, treatment, and monitoring of MPM in the era of immunotherapy. Specifically, the current imaging methods employed for staging and follow-up will be exposed and discussed, with a focus on the technical specificities and the mRECIST 1.1 methodology. Furthermore, we will provide a discussion about major clinical trials related to the use of immunotherapy in MPM patients. Finally, the latest advancements in radiomics, the applications of artificial intelligence in MPM, and their potential impact on clinical practice for prognosis and therapy, are discussed.
Collapse
Affiliation(s)
- Serafina Martella
- Department of Medical Oncology, University Hospital Policlinico San Marco, Catania, Italy
| | - Marco Maria Aiello
- Department of Medical Oncology, University Hospital Policlinico San Marco, Catania, Italy
| | - Valentina Bertaglia
- Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Turin, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, S.S: 554, km 4,500, CAP: 09042, Monserrato (CA), Italy
| | - Nerina Denaro
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Andrea Cadoni
- Department of Medical Oncology, AOU Cagliari, Monserrato (CA), Italy
| | - Silvia Novello
- Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Turin, Italy
| | - Mario Scartozzi
- Department of Medical Oncology, AOU Cagliari, Monserrato (CA), Italy
| | - Giuseppe Novello
- Department of Medical Oncology, University Hospital Policlinico San Marco, Catania, Italy
| | - Hector Josè Soto Parra
- Department of Medical Oncology, University Hospital Policlinico San Marco, Catania, Italy
| | - Luca Saba
- Department of Radiology, AOU Cagliari, S.S: 554, km 4,500, CAP: 09042, Monserrato (CA), Italy
| | - Cinzia Solinas
- Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Turin, Italy
| | - Michele Porcu
- Department of Radiology, AOU Cagliari, S.S: 554, km 4,500, CAP: 09042, Monserrato (CA), Italy.
| |
Collapse
|
15
|
Aglietta M, Chiarion-Sileni V, Fava P, Guidoboni M, Depenni R, Minisini A, Consoli F, Ascierto PA, Rinaldi G, Banzi M, Marconcini R, Gueli R, Ferraresi V, Tucci M, Tonini G, Lo Re G, Guida M, Del Vecchio M, Marcon IG, Queirolo P. Outcomes in patients with BRAFV600-mutated melanoma and brain metastases at baseline treated with dabrafenib plus trametinib. TUMORI JOURNAL 2023; 109:537-545. [PMID: 37417313 DOI: 10.1177/03008916231179251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
BACKGROUND Brain metastases (BM) and lactate dehydrogenase (LDH) levels above the upper limit of normal (ULN) are associated with poor prognosis in patients with melanoma. Although treatment with the BRAF inhibitor dabrafenib and the MEK inhibitor trametinib have demonstrated long-term clinical benefit in patients with melanoma, data on their efficacy in patients with BM are limited. METHODS DESCRIBE Italy is an observational, retrospective, real-world study evaluating dabrafenib plus trametinib in 499 patients with BRAFV600-mutant stage III unresectable or stage IV melanoma from various sites across Italy. Here, we analyzed the clinical outcomes for the subgroup of patients receiving first-line treatment and presenting with BM at diagnosis and assessed the impact of predictive factors such as LDH levels and the presence of other metastases on median progression-free survival (mPFS). RESULTS Overall, 325 evaluable patients were on first-line therapy and are the focus of this analysis; of these, 76 patients (23.4%) had BM at baseline. mPFS was lower for patients with BM at baseline compared with overall patients (8.7 months vs 9.3 months, respectively). Patients with BM at diagnosis and LDH >ULN had a considerably shorter mPFS compared with patients with LDH ⩽ULN (5.3 months vs 9.9 months, respectively). mPFS was noticeably longer for patients with cerebral metastases only compared with patients with cerebral and other metastases (15.0 months vs 8.7 months, respectively). CONCLUSIONS Dabrafenib plus trametinib showed effectiveness in a real-world population of patients with advanced BRAFV600-mutated melanoma and BM at baseline, supporting its use in this population with poor outcomes.
Collapse
Affiliation(s)
- Massimo Aglietta
- Department of Oncology, University of Torino, Torino, Italy
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Paolo Fava
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Turin, Piemonte, Italy
| | - Massimo Guidoboni
- Immunotherapy - Cell Therapy and Biobank, IRCCS-IRST, Meldola (FC), Italy
| | - Roberta Depenni
- Department of Oncology and Hematology, University Hospital of Modena and Reggio Emilia, Modena, Emilia-Romagna, Italy
| | - Alessandro Minisini
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Francesca Consoli
- Department of Oncology, ASST Spedali Civili, Brescia, Lombardia, Italy
| | - Paolo Antonio Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Gaetana Rinaldi
- UOC Oncologia Medica Aoup Paolo Giaccone, Palermo, Sicilia, Italy
| | - Maria Banzi
- Oncology Unit, Presidio Ospedaliero Arcispedale Santa Maria Nuova AUSL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Riccardo Marconcini
- Presidio Ospedaliero S. Chiara - Az. Ospedaliero Universitaria Pisana, Pisa, Toscana, Italy
| | - Rossana Gueli
- Medical Oncology, ASST Sette Laghi, Circolo Hospital and Macchi Foundation, Varese, Lombardia, Italy
| | - Virginia Ferraresi
- Sarcomas and Rare Tumors Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Lazio, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, "Aldo Moro," Bari, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, University Campus Bio-Medico, Rome, Italy
| | - Giovanni Lo Re
- Medical Oncology and Immune-Related Tumors, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS Istituto dei Tumori Giovanni Paolo II, Bari, Italy
| | - Michele Del Vecchio
- Unit of Melanoma Medical Oncology, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Lombardia, Italy
| | | | - Paola Queirolo
- Oncology Division, Policlinico San Martino IRCCS, Genova, Liguria, Italy
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
16
|
Yeh YW, Hsu TW, Su YH, Wang CH, Liao PH, Chiu CF, Tseng PC, Chen TM, Lee WR, Tzeng YS. Silencing of Dicer enhances dacarbazine resistance in melanoma cells by inhibiting ADSL expression. Aging (Albany NY) 2023; 15:12873-12889. [PMID: 37976135 DOI: 10.18632/aging.205207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Dacarbazine (DTIC) is the primary first-line treatment for advanced-stage metastatic melanoma; thus, DTIC resistance is poses a major challenge. Therefore, investigating the mechanism underlying DTIC resistance must be investigated. Dicer, a type III cytoplasmic endoribonuclease, plays a pivotal role in the maturation of miRNAs. Aberrant Dicer expression may contribute to tumor progression, clinical aggressiveness, and poor prognosis in various tumors. Dicer inhibition led to a reduction in DTIC sensitivity and an augmentation in stemness in melanoma cells. Clinical analyses indicated a low Dicer expression level as a predictor of poor prognosis factor. Metabolic alterations in tumor cells may interfere with drug response. Adenylosuccinate lyase (ADSL) is a crucial enzyme in the purine metabolism pathway. An imbalance in ADSL may interfere with the therapeutic efficacy of drugs. We discovered that DTIC treatment enhanced ADSL expression and that Dicer silencing significantly reduced ADSL expression in melanoma cells. Furthermore, ADSL overexpression reversed Dicer silencing induced DTIC resistance and cancer stemness. These findings indicate that Dicer-mediated ADSL regulation influences DTIC sensitivity and stemness in melanoma cells.
Collapse
Affiliation(s)
- Yu-Wen Yeh
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Division of Dermatology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan
| | - Tung-Wei Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| | - Yen-Hao Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hsin Wang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Po-Hsiang Liao
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| | - Ching-Feng Chiu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Chen Tseng
- Department of Ophthalmology, Taipei City Hospital, Renai Branch, Taipei 106, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tim-Mo Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yuan-Sheng Tzeng
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
17
|
Rose MA, Miura J, Sharon C, Ermer JP, Karakousis G, Wachtel H. Current Patterns of Treatment and Outcomes in Advanced Melanoma at a Single Institution. J Surg Res 2023; 291:25-33. [PMID: 37331189 PMCID: PMC10524477 DOI: 10.1016/j.jss.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
INTRODUCTION Treatment of advanced melanoma has been transformed by novel systemic therapies. The purpose of this study is to describe the current utilization patterns of immunotherapies with respect to survival outcomes in advanced melanoma. METHODS We performed a retrospective cohort study of patients with Stage 3 and 4 melanoma at our institution (2009-2019). Primary outcomes included overall survival (OS) and progression free survival (PFS). Kaplan-Meier survival analysis and Cox proportional hazards regression analysis evaluated associations between covariates and survival outcomes. RESULTS Of 244 patients, 5-y OS was 62.4%. Lymphovascular invasion (hazard ratio [HR] = 2.462, P = 0.030) was associated with shorter PFS whereas female gender (HR = 0.324, P = 0.010) was associated with longer PFS. Residual tumor (HR = 146, P = 0.006) and Stage 4 disease (HR = 3.349, P = 0.011) were associated with shorter OS. Use of immunotherapy increased from 2% to 23% over the study period, and use of neoadjuvant immunotherapy also increased up to 2016. Timing of immunotherapy administration was not significantly associated with survival. Of the 193 patients who received 2 or more treatment types, the most common treatment sequence was surgery followed by immunotherapy (n = 117, 60.6%). CONCLUSIONS Immunotherapy is increasingly used for treatment of advanced melanoma. In this heterogeneous cohort, there was no significant association between timing of immunotherapy and survival outcomes.
Collapse
Affiliation(s)
- Michelle A Rose
- Perelman School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania
| | - John Miura
- Perelman School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania; Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cimarron Sharon
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jae P Ermer
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Giorgos Karakousis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania; Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Heather Wachtel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania; Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
18
|
Kukk AF, Scheling F, Panzer R, Emmert S, Roth B. Combined ultrasound and photoacoustic C-mode imaging system for skin lesion assessment. Sci Rep 2023; 13:17947. [PMID: 37864039 PMCID: PMC10589211 DOI: 10.1038/s41598-023-44919-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Accurate assessment of the size and depth of infiltration is critical for effectively treating and removing skin cancer, especially melanoma. However, existing methods such as skin biopsy and histologic examination are invasive, time-consuming, and may not provide accurate depth results. We present a novel system for simultaneous and co-localized ultrasound and photoacoustic imaging, with the application for non-invasive skin lesion size and depth measurement. The developed system integrates an acoustical mirror that is placed on an ultrasound transducer, which can be translated within a flexible water tank. This allows for 3D (C-mode) imaging, which is useful for mapping the skin structure and determine the invasion size and depth of lesions including skin cancer. For efficient reconstruction of photoacoustic images, we applied the open-source MUST library. The acquisition time per 2D image is <1 s and the pulse energies are below the legal Maximum Permissible Exposure (MPE) on human skin. We present the depth and resolution capabilities of the setup on several self-designed agar phantoms and demonstrate in vivo imaging on human skin. The setup also features an unobstructed optical window from the top, allowing for simple integration with other optical modalities. The perspective towards clinical application is demonstrated.
Collapse
Affiliation(s)
- Anatoly Fedorov Kukk
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, Nienburger Straße 17, 30167, Hannover, Germany.
| | - Felix Scheling
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, Nienburger Straße 17, 30167, Hannover, Germany
| | - Rüdiger Panzer
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, Nienburger Straße 17, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines), Welfengarten 1a, 30167, Hannover, Germany
| |
Collapse
|
19
|
Li R, Zhang J, Wang J, Wang J. Statistical considerations in long-term efficacy evaluation of anti-cancer therapies. Front Pharmacol 2023; 14:1265953. [PMID: 37854717 PMCID: PMC10579585 DOI: 10.3389/fphar.2023.1265953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Anti-cancer therapy has been a significant focus of research. Developing and marketing various types and mechanisms of anti-cancer therapies benefit a variety of patients significantly. The long-term benefit to patients in evaluating the risk-benefit ratio of anti-cancer therapy has become a significant concern. This paper discusses the evaluation of long-term efficacy within the estimand framework and summarizes the various strategies for addressing potential intercurrent events. Non-proportional hazards of survival data may arise with novel anti-cancer therapies, leading to potential bias in conventional evaluation methods. This paper reviews statistical methods for addressing this issue, including novel endpoints, hypothesis testing, and efficacy estimation methods. We also discuss the influences of treatment switching. Although advanced methods have been developed to address the non-proportional hazard, they still have limitations that require continued collaborative efforts to resolve issues.
Collapse
Affiliation(s)
- Ruobing Li
- Office of Biostatistics and Clinical Pharmacology, Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| | - Jingyi Zhang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingzhao Wang
- Office of Biostatistics and Clinical Pharmacology, Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| | - Jun Wang
- Office of Biostatistics and Clinical Pharmacology, Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| |
Collapse
|
20
|
Yan J, Zhu J, Li X, Yang R, Xiao W, Huang C, Zheng C. Blocking LTB 4 signaling-mediated TAMs recruitment by Rhizoma Coptidis sensitizes lung cancer to immunotherapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154968. [PMID: 37531900 DOI: 10.1016/j.phymed.2023.154968] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/31/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Immune checkpoint blockade (ICB) induces durable immune responses across a spectrum of advanced cancers and revolutionizes the oncology field. However, only a subset of patients achieves long-lasting clinical benefits. Tumor-associated macrophages (TAMs) usually secrete immunosuppressive cytokines and contribute to the failure of ICB therapy. Therefore, it is crucial to mechanically manipulate the abundance and function of TAMs in the tumor microenvironment (TME), which can offer a promising molecular basis to improve the clinical response efficacy of ICB in cancer patients. PURPOSE This study aims to investigate TAMs in the immunosuppressive microenvironment to identify new therapeutic targets, improve the ability to predict and guide responses to clinical immunotherapy, and develop new strategies for immunotherapy of lung tumors. METHODS Lewis lung carcinoma (LLC) xenograft-bearing mouse models were established to analyze the antitumor activity of Rhizoma Coptidis (RC) in vivo. A systems pharmacology strategy was used to predict the correlation between RC and M2 macrophages. The effect of RC on the abundance of M2 macrophages was analyzed by flow cytometry of murine samples. Western blot was performed to analyze the expression of Leukotriene A4 hydrolase (LTA4H) and LTB4 receptor 1 (BLT1) in harvested lung cancer tissues. The impact of blocking leukotriene B4 (LTB4) signaling by RC on the recruitment of M2 macrophages was assessed in vitro and in vivo. Transwell migration assays were conducted to clarify the inhibition of macrophage migration by blocking LTB4. Lta4h-/- mice were used to investigate the sensitivity of immunotherapy to lung cancer by blocking the LTB4 signaling. RESULTS Here, we report that RC, an herbal medicine from the family Ranunculaceae, suppresses the recruitment and immunosuppressive function of TAMs, which in turn sensitizes lung cancer to ICB therapy. Firstly, a systems pharmacology strategy was proposed to identify combinatorial drugs for ICB therapy with a systems biology perspective of drug-target-pathway-TME phenotype. We predicted and verified that RC significantly inhibits tumor growth and the infiltration of M2-TAMs into TME of LLC tumor-bearing mice. Then, RC inhibits the recruitment of macrophages to the tumor TME via blocking LTB4 signaling, and suppresses the expression of immunosuppressive factors (IL-10, TGF-β and VEGF). As a result, RC enables CD8+ T cells to retain their proliferative and infiltrative abilities within the TME. Ultimately, these events promote cytotoxic T-cell-mediated clearance of tumor cells, which is further enhanced by the addition of anti-PD-L1 therapy. Furthermore, we employed LTA4H deficient mice (Lta4h-/- mice) to evaluate the antitumor efficiency, the results showed that the efficacy of immunotherapy was enhanced due to the synergistic effect of LTB4 signaling blockage and ICB inhibition, leading to remarkable inhibition of tumor growth in a mouse model of lung adenocarcinoma. CONCLUSIONS Taken together, these findings suggest that RC enhances antitumor immunity, providing a rationale for combining RC with immunotherapies as a potential anti-cancer treatment strategy.
Collapse
Affiliation(s)
- Jiangna Yan
- College of Medicine, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Jinglin Zhu
- College of Medicine, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiaolan Li
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Ruijie Yang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu 222001, PR China
| | - Chao Huang
- School of Basic Medical Sciences, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China.
| | - Chunli Zheng
- College of Medicine, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| |
Collapse
|
21
|
Saad ED, Coart E, Deltuvaite-Thomas V, Garcia-Barrado L, Burzykowski T, Buyse M. Trial Design for Cancer Immunotherapy: A Methodological Toolkit. Cancers (Basel) 2023; 15:4669. [PMID: 37760636 PMCID: PMC10527464 DOI: 10.3390/cancers15184669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/12/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Immunotherapy with checkpoint inhibitors (CPIs) and cell-based products has revolutionized the treatment of various solid tumors and hematologic malignancies. These agents have shown unprecedented response rates and long-term benefits in various settings. These clinical advances have also pointed to the need for new or adapted approaches to trial design and assessment of efficacy and safety, both in the early and late phases of drug development. Some of the conventional statistical methods and endpoints used in other areas of oncology appear to be less appropriate in immuno-oncology. Conversely, other methods and endpoints have emerged as alternatives. In this article, we discuss issues related to trial design in the early and late phases of drug development in immuno-oncology, with a focus on CPIs. For early trials, we review the most salient issues related to dose escalation, use and limitations of tumor response and progression criteria for immunotherapy, the role of duration of response as an endpoint in and of itself, and the need to conduct randomized trials as early as possible in the development of new therapies. For late phases, we discuss the choice of primary endpoints for randomized trials, review the current status of surrogate endpoints, and discuss specific statistical issues related to immunotherapy, including non-proportional hazards in the assessment of time-to-event endpoints, alternatives to the Cox model in these settings, and the method of generalized pairwise comparisons, which can provide a patient-centric assessment of clinical benefit and be used to design randomized trials.
Collapse
Affiliation(s)
- Everardo D. Saad
- International Drug Development Institute, Louvain-la-Neuve (IDDI), 1340 Ottignies-Louvain-la-Neuve, Belgium; (E.C.); (V.D.-T.); (L.G.-B.); (T.B.); (M.B.)
| | - Elisabeth Coart
- International Drug Development Institute, Louvain-la-Neuve (IDDI), 1340 Ottignies-Louvain-la-Neuve, Belgium; (E.C.); (V.D.-T.); (L.G.-B.); (T.B.); (M.B.)
| | - Vaiva Deltuvaite-Thomas
- International Drug Development Institute, Louvain-la-Neuve (IDDI), 1340 Ottignies-Louvain-la-Neuve, Belgium; (E.C.); (V.D.-T.); (L.G.-B.); (T.B.); (M.B.)
| | - Leandro Garcia-Barrado
- International Drug Development Institute, Louvain-la-Neuve (IDDI), 1340 Ottignies-Louvain-la-Neuve, Belgium; (E.C.); (V.D.-T.); (L.G.-B.); (T.B.); (M.B.)
| | - Tomasz Burzykowski
- International Drug Development Institute, Louvain-la-Neuve (IDDI), 1340 Ottignies-Louvain-la-Neuve, Belgium; (E.C.); (V.D.-T.); (L.G.-B.); (T.B.); (M.B.)
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Hasselt University, B-3500 Hasselt, Belgium
| | - Marc Buyse
- International Drug Development Institute, Louvain-la-Neuve (IDDI), 1340 Ottignies-Louvain-la-Neuve, Belgium; (E.C.); (V.D.-T.); (L.G.-B.); (T.B.); (M.B.)
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Hasselt University, B-3500 Hasselt, Belgium
| |
Collapse
|
22
|
Zhang Z, Pan Q, Lu M, Zhao B. Intermediate endpoints as surrogates for outcomes in cancer immunotherapy: a systematic review and meta-analysis of phase 3 trials. EClinicalMedicine 2023; 63:102156. [PMID: 37600482 PMCID: PMC10432823 DOI: 10.1016/j.eclinm.2023.102156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Background Cancer immunotherapy shows unique efficacy kinetics that differs from conventional treatment. These characteristics may lead to the prolongation of trial duration, hence reliable surrogate endpoints are urgently needed. We aimed to systematically evaluate the study-level performance of commonly reported intermediate clinical endpoints for surrogacy in cancer immunotherapy. Methods We searched the Embase, PubMed, and Cochrane databases, between database inception and October 18, 2022, for phase 3 randomised trials investigating the efficacy of immunotherapy in patients with advanced solid tumours. An updated search was done on July, 15, 2023. No language restrictions were used. Eligible trials had to set overall survival (OS) as the primary or co-primary endpoint and report at least one intermediate clinical endpoint including objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and 1-year overall survival. Other key inclusion and exclusion criteria included: (1) adult patients (>18 years old) with advanced solid tumour; (2) no immunotherapy conducted in the control arms; (3) follow-up is long enough to achieve OS; (4) data should be public available. A two-stage meta-analytic approach was conducted to evaluate the magnitude of the association between these intermediate endpoints and OS. A surrogate was identified if the coefficient of determination (R2) was 0.7 or greater. Leave-one-out cross-validation and pre-defined subgroup analysis were conducted to examine the heterogeneity. Potential publication bias was evaluated using the Egger's and Begg's tests. This trial was registered with PROSPERO, number CRD42022381648. Findings 52,342 patients with 15 types of tumours from 77 phase 3 studies were included. ORR (R2 = 0.11; 95% CI, 0.00-0.24), DCR (R2 = 0.01; 95% CI, 0.00-0.01), and PFS (R2 = 0.40; 95% CI, 0.23-0.56) showed weak associations with OS. However, a strong correlation was observed between 1-year survival and clinical outcome (R2 = 0.74; 95% CI, 0.64-0.83). These associations remained relatively consistent across pre-defined subgroups stratified based on tumour types, masking methods, line of treatments, drug targets, treatment strategies, and follow-up durations. No significant heterogeneities or publication bias were identified. Interpretation 1-year milestone survival was the only identified surrogacy endpoint for outcomes in cancer immunotherapy. Ongoing investigations and development of new endpoints and incorporation of biomarkers are needed to identify potential surrogate markers that can be more robust than 1-year survival. This work may provide important references in assisting the design and interpretation of future clinical trials, and constitute complementary information in drafting clinical practice guidelines. Funding None.
Collapse
Affiliation(s)
- Zhishan Zhang
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Qunxiong Pan
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Mingdong Lu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bin Zhao
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
23
|
Prod'homme C, Macaire C, Chevalier L, Templier C, Mortier L. ["Hope for the best and prepare for the worst": A case of metastatic melanoma progressing under last line of immunotherapy]. Bull Cancer 2023; 110:978-981. [PMID: 37164772 DOI: 10.1016/j.bulcan.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Affiliation(s)
- Chloé Prod'homme
- Université Lille, ULR 2694-METRICS : évaluation des technologies de santé et des pratiques médicales, CHU de Lille, clinique de médecine palliative, 59000 Lille, France.
| | - Camille Macaire
- Université Lille, Inserm U1189, CHU de Lille, service de dermatologie, 59000 Lille, France
| | - Luc Chevalier
- Université Lille, ULR 2694-METRICS : évaluation des technologies de santé et des pratiques médicales, CHU de Lille, clinique de médecine palliative, 59000 Lille, France
| | - Carole Templier
- Université Lille, Inserm U1189, CHU de Lille, service de dermatologie, 59000 Lille, France
| | - Laurent Mortier
- Université Lille, Inserm U1189, CHU de Lille, service de dermatologie, 59000 Lille, France
| |
Collapse
|
24
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther 2023; 8:320. [PMID: 37635168 PMCID: PMC10460796 DOI: 10.1038/s41392-023-01522-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 08/29/2023] Open
Abstract
Immune-checkpoint inhibitors (ICBs), in addition to targeting CTLA-4, PD-1, and PD-L1, novel targeting LAG-3 drugs have also been approved in clinical application. With the widespread use of the drug, we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect. Over the past decades, these agents have demonstrated dramatic efficacy, especially in patients with melanoma and non-small cell lung cancer (NSCLC). Nonetheless, in the field of a broad concept of solid tumours, non-specific indications, inseparable immune response and side effects, unconfirmed progressive disease, and complex regulatory networks of immune resistance are four barriers that limit its widespread application. Fortunately, the successful clinical trials of novel ICB agents and combination therapies, the advent of the era of oncolytic virus gene editing, and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently. In this review, we enumerate the mechanisms of each immune checkpoint targets, associations between ICB with tumour mutation burden, key immune regulatory or resistance signalling pathways, the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety. Finally, we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangliang Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
25
|
Tian Y, Jing H, Wang Q, Hu S, Wu Z, Duan Y. Dissolving microneedles-based programmed delivery system for enhanced chemo-immunotherapy of melanoma. J Control Release 2023; 360:630-646. [PMID: 37414221 DOI: 10.1016/j.jconrel.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Immune checkpoint blockade, especially the programmed cell death ligand 1 (PD-L1) blockade, has revolutionized the treatment of melanoma. However, PD-1/PD-L1 monotherapy leads to unsatisfactory therapeutic outcomes. The immunotherapy of melanoma could be improved by adding doxorubicin (DOX), which triggers immunogenic cell death (ICD) effect to activate anti-tumor immunity. Additionally, microneedles, especially dissolving microneedles (dMNs), can further enhance outcomes of chemo-immunotherapy due to the physical adjuvant effect of dMNs. Herein, we developed the dMNs-based programmed delivery system that incorporated pH-sensitive and melanoma-targeting liposomes to co-deliver DOX and siPD-L1, achieving enhanced chemo-immunotherapy of melanoma (si/DOX@LRGD dMNs). The incorporated si/DOX@LRGD LPs demonstrated uniform particle size, pH-sensitive drug release, high in vitro cytotoxicity and targeting ability. Besides, si/DOX@LRGD LPs effectively downregulated the expression of PD-L1, induced tumor cell apoptosis and triggered ICD effect. The si/DOX@LRGD LPs also showed deep penetration (approximately 80 μm) in 3D tumor spheroids. Moreover, si/DOX@LRGD dMNs dissolved rapidly into the skin and had sufficient mechanical strength to penetrate skin, reaching a depth of approximately 260 μm in mice skin. In mice model of melanoma tumor, si/DOX@LRGD dMNs exhibited better anti-tumor efficacy than monotherapy by dMNs and tail intravenous injection at the same dose. This was due to the higher cytotoxic CD8+ T cells and the secreted cytotoxic cytokine IFN-γ evoked by si/DOX@LRGD dMNs, thereby eliciting strong T-cell mediated immune response and resulted in enhanced anti-tumor effects. In conclusion, these findings suggested that si/DOX@LRGD dMNs provided a promising and effective strategy for enhanced chemo-immunotherapy of melanoma.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongshu Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Suxian Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Sharma D, Xuan Leong K, Palhares D, Czarnota GJ. Radiation combined with ultrasound and microbubbles: A potential novel strategy for cancer treatment. Z Med Phys 2023; 33:407-426. [PMID: 37586962 PMCID: PMC10517408 DOI: 10.1016/j.zemedi.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 08/18/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Several emerging technologies are helping to battle cancer. Cancer therapies have been effective at killing cancer cells, but a large portion of patients still die to this disease every year. As such, more aggressive treatments of primary cancers are employed and have been shown to be capable of saving a greater number of lives. Recent research advances the field of cancer therapy by employing the use of physical methods to alter tumor biology. It uses microbubbles to enhance radiation effect by damaging tumor vasculature followed by tumor cell death. The technique can specifically target tumor volumes by conforming ultrasound fields capable of microbubbles stimulation and localizing it to avoid vascular damage in surrounding tissues. Thus, this new application of ultrasound-stimulated microbubbles (USMB) can be utilized as a novel approach to cancer therapy by inducing vascular disruption resulting in tumor cell death. Using USMB alongside radiation has showed to augment the anti-vascular effect of radiation, resulting in enhanced tumor response. Recent work with nanobubbles has shown vascular permeation into intracellular space, extending the use of this new treatment method to potentially further improve the therapeutic effect of the ultrasound-based therapy. The significant enhancement of localized tumor cell kill means that radiation-based treatments can be made more potent with lower doses of radiation. This technique can manifest a greater impact on radiation oncology practice by increasing treatment effectiveness significantly while reducing normal tissue toxicity. This review article summarizes the past and recent advances in USMB enhancement of radiation treatments. The review mainly focuses on preclinical findings but also highlights some clinical findings that use USMB as a therapeutic modality in cancer therapy.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Daniel Palhares
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Long GV, Swetter SM, Menzies AM, Gershenwald JE, Scolyer RA. Cutaneous melanoma. Lancet 2023:S0140-6736(23)00821-8. [PMID: 37499671 DOI: 10.1016/s0140-6736(23)00821-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 07/29/2023]
Abstract
Cutaneous melanoma is a malignancy arising from melanocytes of the skin. Incidence rates are rising, particularly in White populations. Cutaneous melanoma is typically driven by exposure to ultraviolet radiation from natural sunlight and indoor tanning, although there are several subtypes that are not related to ultraviolet radiation exposure. Primary melanomas are often darkly pigmented, but can be amelanotic, with diagnosis based on a combination of clinical and histopathological findings. Primary melanoma is treated with wide excision, with margins determined by tumour thickness. Further treatment depends on the disease stage (following histopathological examination and, where appropriate, sentinel lymph node biopsy) and can include surgery, checkpoint immunotherapy, targeted therapy, or radiotherapy. Systemic drug therapies are recommended as an adjunct to surgery in patients with resectable locoregional metastases and are the mainstay of treatment in advanced melanoma. Management of advanced melanoma is complex, particularly in those with cerebral metastasis. Multidisciplinary care is essential. Systemic drug therapies, particularly immune checkpoint inhibitors, have substantially increased melanoma survival following a series of landmark approvals from 2011 onward.
Collapse
Affiliation(s)
- Georgina V Long
- Melanoma Institute Australia, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW, Australia; Department of Medical Oncology, Mater Hospital, Sydney, NSW, Australia.
| | - Susan M Swetter
- Department of Dermatology and Pigmented Lesion and Melanoma Program, Stanford University Medical Center and Cancer Institute, Stanford, CA, USA; Department of Dermatology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Alexander M Menzies
- Melanoma Institute Australia, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW, Australia; Department of Medical Oncology, Mater Hospital, Sydney, NSW, Australia
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard A Scolyer
- Melanoma Institute Australia, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; NSW Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
28
|
Mahdiabadi S, Momtazmanesh S, Karimi A, Rezaei N. Immune checkpoint inhibitors in advanced cutaneous melanoma: a systematic review and meta-analysis of efficacy and review of characteristics. Expert Rev Anticancer Ther 2023; 23:1281-1293. [PMID: 37908134 DOI: 10.1080/14737140.2023.2278509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVES Immune checkpoint inhibitors (ICIs) are one of the most promising approaches toward advanced melanoma. Here, we aimed to perform a meta-analysis of randomized controlled trials (RCTs) to evaluate the efficacy of all studied ICIs. METHODS We conducted a comprehensive search to identify the relevant publications (PROSPERO registration ID: CRD42023470649). Then we performed a meta-analysis to evaluate the efficacy of different ICIs for metastatic melanoma. We used Cochrane's tool to assess the quality of studies. The outcome measures were overall survival (OS), progression-free survival (PFS), and recurrence-free survival (RFS). RESULTS Twenty reports of RCTs entered our systematic review, 18 of which were included in our data analysis. ICIs showed improved survival compared with control group (hazard ratio (HR) = 0.57; 95% CI: 0.43-0.71; P<0.001). Using a meta-regression, we found a significant relation between patients' mean age and their OS (P<0.001, R 2 = 100.00%). Also, our analysis revealed greater HR for CTLA-4 inhibitors than PD-1/PD-L1 inhibitors (HR = 0.71, 95%CI: 0.63-0.79, P<0.001 vs. HR = 0.63, 95%CI: 0.46-0.79, P<0.001). The effect sizes of different types of PD-1/PD-L1 inhibitors were comparable. CONCLUSION Our results suggest that ICI-based immunotherapy is associated with enhanced OS, PFS, and RFS (P < 0.001) and will assist clinicians in choosing the optimal approach toward treating metastatic melanoma.
Collapse
Affiliation(s)
- Sara Mahdiabadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Dermatology Research (NDR), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Dermatology Research (NDR), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Boutros A, Tanda ET, Croce E, Catalano F, Ceppi M, Bruzzone M, Cecchi F, Arecco L, Fraguglia M, Pronzato P, Genova C, Del Mastro L, Lambertini M, Spagnolo F. Activity and safety of first-line treatments for advanced melanoma: A network meta-analysis. Eur J Cancer 2023; 188:64-79. [PMID: 37196485 DOI: 10.1016/j.ejca.2023.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Treatment options for advanced melanoma have increased with the US Food and Drug Administration approval of the anti-LAG3 plus anti-PD-1 relatlimab/nivolumab combination. To date, ipilimumab/nivolumab is the benchmark of overall survival, despite a high toxicity profile. Furthermore, in BRAF-mutant patients, BRAF/MEK inhibitors and the atezolizumab/vemurafenib/cobimetinib triplet are also available treatments, making the first-line therapy selection more complex. To address this issue, we conducted a systematic review and network meta-analysis of the available first-line treatment options in advanced melanoma. METHODS Randomised clinical trials of previously untreated, advanced melanoma were included if at least one intervention arm contained a BRAF/MEK or an immune-checkpoint inhibitor (ICI). The aim was to indirectly compare the ICIs combinations ipilimumab/nivolumab and relatlimab/nivolumab, and these combinations with all the other first-line treatment options for advanced melanoma (irrespective of BRAF status) in terms of activity and safety. The coprimary end-points were progression-free survival (PFS), overall response rate (ORR) and grade ≥3 treatment-related adverse events (≥ G3 TRAEs) rate, defined according to Common Terminology Criteria for Adverse Events. RESULTS A total of 9070 metastatic melanoma patients treated in 18 randomised clinical trials were included in the network meta-analysis. No difference in PFS and ORR was observed between ipilimumab/nivolumab and relatlimab/nivolumab (HR = 0.99 [95% CI 0.75-1.31] and RR = 0.99 [95% CI 0.78-1.27], respectively). The PD-(L)1/BRAF/MEK inhibitors triplet combinations were superior to ipilimumab/nivolumab in terms of both PFS (HR = 0.56 [95% CI 0.37-0.84]) and ORR (RR = 3.07 [95% CI 1.61-5.85]). Ipilimumab/nivolumab showed the highest risk of developing ≥ G3 TRAEs. Relatlimab/nivolumab trended to a lower risk of ≥ G3 TRAEs (RR = 0.71 [95% CI 0.30-1.67]) versus ipilimumab/nivolumab. CONCLUSION Relatlimab/nivolumab showed similar PFS and ORR compared to ipilimumab/nivolumab, with a trend for a better safety profile.
Collapse
Affiliation(s)
- Andrea Boutros
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy.
| | - Enrica Teresa Tanda
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elena Croce
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Fabio Catalano
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Cecchi
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Arecco
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Fraguglia
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Paolo Pronzato
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Del Mastro
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), Plastic Surgery, University of Genova, Genoa, Italy
| |
Collapse
|
30
|
Kraehenbuehl L, Schneider S, Pawlik L, Mangana J, Cheng P, Dummer R, Meier-Schiesser B. Cutaneous Adverse Events of Systemic Melanoma Treatments: A Retrospective Single-Center Analysis. Pharmaceuticals (Basel) 2023; 16:935. [PMID: 37513847 PMCID: PMC10383648 DOI: 10.3390/ph16070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Recent progress in the treatment of advanced melanoma has led to the improved survival of affected patients. However, novel treatments also lead to considerable and distinct skin toxicity. To further characterize cutaneous adverse events (AE) of systemic treatments, we conducted a single-center retrospective study of biopsy-proven cutaneous adverse events of melanoma treatment over a period of 10 years at the University Hospital of Zurich, Switzerland. In 102 identified patients, 135 individual skin AEs developed. Immune checkpoint blockade (ICB) was causal for 81 skin AEs, and 54 were related to targeted therapies (TT). Recorded types of skin AEs included lichenoid, maculopapular, acneiform, urticarial, panniculitis, folliculitis, psoriasiform, granulomatous, eczematous, and others. The incidence of skin AEs was higher with TT (18.54%) than with ICB (9.64%, p = 0.0029). Most AEs were low-grade, although 19.21% of AEs were common terminology criteria for adverse events (CTCAE) Grades 3 or 4. A large spectrum of skin AEs was documented during treatment of advanced melanoma, and distinct phenotypes were observed, depending on treatment classes. AEs occurred earlier during treatment with TT than with ICB, and distinct types of skin AEs were associated with respective treatment classes. This study comprehensively describes skin AEs occurring during systemic treatment for melanoma at a single center.
Collapse
Affiliation(s)
- Lukas Kraehenbuehl
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Stephanie Schneider
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Laura Pawlik
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Joanna Mangana
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Barbara Meier-Schiesser
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| |
Collapse
|
31
|
Vasu D, Reidl CT, Wang E, Yang S, Silverman RB. Improved synthesis and anticancer activity of a potent neuronal nitric oxide synthase inhibitor. Bioorg Med Chem Lett 2023; 90:129329. [PMID: 37196870 PMCID: PMC10330524 DOI: 10.1016/j.bmcl.2023.129329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
An improved synthesis of 4-methyl-7-(3-((methylamino)methyl)phenethyl)quinolin-2-amine (1) is reported. A scalable, rapid, and efficient methodology was developed to access this compound with an overall yield of 35%, which is 5.9-fold higher than the previous report. The key differences in the improved synthesis are a high yielding quinoline synthesis by a Knorr reaction, a copper-mediated Sonogashira coupling to the internal alkyne in excellent yield, and a crucial deprotection of the N-acetyl and N-Boc groups achieved under acidic conditions in a single step rather than a poor yielding quinoline N-oxide strategy, basic deprotection conditions, and low yielding copper-free conditions that were reported in the previous report. Compound 1, which previously was shown to inhibit IFN-γ-induced tumor growth in a human melanoma xenograft mouse model, was found to inhibit the growth of metastatic melanoma, glioblastoma, and hepatocellular carcinoma in vitro.
Collapse
Affiliation(s)
- Dhananjayan Vasu
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, United States
| | - Cory T Reidl
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, United States
| | - Eric Wang
- Trabuco Hill High School, Class of 2024, Mission Viejo, CA 92691, United States
| | - Sun Yang
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA 92618, United States
| | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, United States; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
32
|
Huang X, Gou W, Song Q, Huang Y, Wen C, Bo X, Jiang X, Feng J, Gao H. A BRAF mutation-associated gene risk model for predicting the prognosis of melanoma. Heliyon 2023; 9:e15939. [PMID: 37205993 PMCID: PMC10189240 DOI: 10.1016/j.heliyon.2023.e15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
BRAF mutation plays an important role in the pathogenesis and progression of melanoma and is correlated to the prognosis of melanoma patients. However, fewer studies have attempted to develop a BRAF mutation-associated gene risk model for predicting the prognosis of melanoma. The current research explores BRAF mutation-related biological features in melanoma and establishes a prognostic signature. First, we identified three significantly enriched KEGG pathways (glycosphingolipid biosynthesis - ganglio series, ether lipid metabolism, and glycosaminoglycan biosynthesis - keratan sulfate) and corresponding genes in the BRAF mutant group by gene set enrichment analysis. We then developed a prognostic signature based on 7 BRAF-associated genes (PLA2G2D, FUT8, PLA2G4E, PLA2G5, PLA2G1B, B3GNT2, and ST3GAL5) and assessed its prediction accuracy using ROC curve analysis. Finally, the nomogram was established according to the prognostic signature and independent clinical characteristics to predict the survival of melanoma patients. Furthermore, we found higher proportions of naive B cells, plasma cells, CD8 T cells, CD4 memory-activated T cells, and regulatory T cells in the low-risk group. Whereas lower proportions of M0, M1, and M2 macrophages and resting NK cells were observed in the high-risk group. The analysis also showed a significantly higher expression of immune checkpoint molecules (PD-1, PD-L1, CTLA4, BTLA, CD28, CD80, CD86, HAVCR2, ICOS, LAG3, and TIGIT) in the low-risk group. Our results provide novel insights into the effect of BRAF mutation on melanoma growth and indicate a promising direction toward immunotherapy and precision medicine in melanoma patients.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wanrong Gou
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qinxian Song
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yan Huang
- Department of Dermatology, Suining First People's Hospital, Suining, 629000, Sichuan, China
| | - Chunlei Wen
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xue Bo
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xian Jiang
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Corresponding author.
| | - Hong Gao
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Corresponding author.
| |
Collapse
|
33
|
Creemers JHA, Ankan A, Roes KCB, Schröder G, Mehra N, Figdor CG, de Vries IJM, Textor J. In silico cancer immunotherapy trials uncover the consequences of therapy-specific response patterns for clinical trial design and outcome. Nat Commun 2023; 14:2348. [PMID: 37095077 PMCID: PMC10125995 DOI: 10.1038/s41467-023-37933-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Late-stage cancer immunotherapy trials often lead to unusual survival curve shapes, like delayed curve separation or a plateauing curve in the treatment arm. It is critical for trial success to anticipate such effects in advance and adjust the design accordingly. Here, we use in silico cancer immunotherapy trials - simulated trials based on three different mathematical models - to assemble virtual patient cohorts undergoing late-stage immunotherapy, chemotherapy, or combination therapies. We find that all three simulation models predict the distinctive survival curve shapes commonly associated with immunotherapies. Considering four aspects of clinical trial design - sample size, endpoint, randomization rate, and interim analyses - we demonstrate how, by simulating various possible scenarios, the robustness of trial design choices can be scrutinized, and possible pitfalls can be identified in advance. We provide readily usable, web-based implementations of our three trial simulation models to facilitate their use by biomedical researchers, doctors, and trialists.
Collapse
Affiliation(s)
- Jeroen H A Creemers
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Ankur Ankan
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Section Biostatistics, Radboud university medical center, Nijmegen, The Netherlands
| | - Gijs Schröder
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes Textor
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands.
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
34
|
Simonetti E, Cutarella S, Valente M, Sani T, Ravara M, Maio M, Di Giacomo AM. From Co-Stimulation to Co-Inhibition: A Continuum of Immunotherapy Care Toward Long-Term Survival in Melanoma. Onco Targets Ther 2023; 16:227-232. [PMID: 37041860 PMCID: PMC10083011 DOI: 10.2147/ott.s368408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Harnessing the immune system with immune-checkpoint(s) blockade (ICB) has dramatically changed the treatment landscape of advanced melanoma patients in the last decade. Indeed, durable clinical responses and long-term survival can be achieved with anti-Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) and anti-Programmed cell Death-1 (PD-1) monoclonal antibodies (mAb) either alone or in combination. Despite these unprecedented results, due to intrinsic or acquired resistance to ICB-based immunotherapy, about half of metastatic melanoma (MM) patients neither respond to therapy nor experience durable clinical benefit or long-term survival. To improve the efficacy of ICB therapy among a larger proportion of MM patients, in addition to the targeting of immune-checkpoint(s) inhibitors (ICI) such as CTLA-4 or PD-1, several co-stimulatory molecules, such as Inducible T-cell COStimulator (ICOS), CD137 and OX40, have been investigated in MM, with initial signs of activity. Thus, a number of MM patients have been exposed to co-inhibitory and co-stimulatory mAb in the course of their disease. Being aware of the clinical outcome of such patients may pave the way to novel and more effective clinical approaches and therapeutic sequences for MM patients. Here we report a paradigmatic clinical case of a cutaneous MM patient who achieved multiple and durable complete responses, leading to an extraordinary long-term survival with sequential ICB therapies, suggesting the possibility to build a highly effective continuum of care with co-inhibitory and co-stimulatory therapeutic mAb.
Collapse
Affiliation(s)
| | | | - Monica Valente
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
| | | | | | - Michele Maio
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
- NIBIT Foundation Onlus, Genoa, Italy
| | - Anna Maria Di Giacomo
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
- NIBIT Foundation Onlus, Genoa, Italy
- Correspondence: Anna Maria Di Giacomo, Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Viale Bracci, 14, Siena, 53100, Italy, Email
| |
Collapse
|
35
|
Pham JP, Joshua AM, da Silva IP, Dummer R, Goldinger SM. Chemotherapy in Cutaneous Melanoma: Is There Still a Role? Curr Oncol Rep 2023; 25:609-621. [PMID: 36988735 PMCID: PMC10164011 DOI: 10.1007/s11912-023-01385-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/30/2023]
Abstract
Abstract
Purpose of Review
In the preceding decade, the management of metastatic cutaneous melanoma has been revolutionised with the development of highly effective therapies including immune checkpoint inhibitors (specifically CTLA-4 and PD-1 inhibitors) and targeted therapies (BRAF and MEK inhibitors). The role of chemotherapy in the contemporary management of melanoma is undefined.
Recent Findings
Extended analyses highlight substantially improved 5-year survival rates of approximately 50% in patients with metastatic melanoma treated with first-line therapies. However, most patients will progress on these first-line treatments. Sequencing of chemotherapy following failure of targeted and immunotherapies is associated with low objective response rates and short progression-free survival, and thus, meaningful benefits to patients are minimal.
Summary
Chemotherapy has limited utility in the contemporary management of cutaneous melanoma (with a few exceptions, discussed herein) and should not be the standard treatment sequence following failure of first-line therapies. Instead, enrolment onto clinical trials should be standard-of-care in these patients.
Collapse
Affiliation(s)
- James P Pham
- Medical Oncology, The Kinghorn Cancer Centre, St. Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Anthony M Joshua
- Medical Oncology, The Kinghorn Cancer Centre, St. Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Hospital, Darlinghurst, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Wollstonecraft, NSW, Australia
| | - Ines P da Silva
- Melanoma Institute Australia, The University of Sydney, Wollstonecraft, NSW, Australia
- Medical Oncology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Simone M Goldinger
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Carroll CE, Landrum MB, Wright AA, Keating NL. Adoption of Innovative Therapies Across Oncology Practices-Evidence From Immunotherapy. JAMA Oncol 2023; 9:324-333. [PMID: 36602811 PMCID: PMC9857528 DOI: 10.1001/jamaoncol.2022.6296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/03/2022] [Indexed: 01/06/2023]
Abstract
Importance Immunotherapies reflect an important breakthrough in cancer treatment, substantially improving outcomes for patients with a variety of cancer types, yet little is known about which practices have adopted this novel therapy or the pace of adoption. Objective To assess adoption of immunotherapies across US oncology practices and examine variation in adoption by practice type. Design, Setting, and Participants This cohort study used data from Medicare fee-for-service beneficiaries undergoing 6-month chemotherapy episodes between 2010 and 2017. Data were analyzed January 19, 2021, to September 28, 2022, for patients with cancer types for which immunotherapy was approved by the US Food and Drug Administration (FDA) during the study period: melanoma, kidney cancer, lung cancer, and head and neck cancer. Exposures Oncology practice location (rural vs urban), affiliation type (academic system, nonacademic system, independent), and size (1 to 5 physicians vs 6 or more physicians). Main Outcomes and Measures The primary outcome was whether a practice adopted immunotherapy. Adoption rates for each practice type were estimated using multivariate linear models that adjusted for patient characteristics (age, sex, race and ethnicity, cancer type, Charlson Comorbidity Index, and median household income). Results Data included 71 659 episodes at 1732 oncology practices. Of these, 264 practices (15%) were rural, 900 (52%) were independent, and 492 (28%) had 1 to 5 physicians. Most practices adopted immunotherapy within 2 years of FDA approval, but there was substantial variation in adoption rates across practice types. After FDA approval, adoption of immunotherapy was 11 (95% CI, -16 to -6) percentage points lower at rural practices than urban practices and 27 (95% CI, -32 to -22) percentage points lower at practices with 1 to 5 physicians than practices with 6 or more physicians. Adoption rates were similar at independent practices and nonacademic systems; however, both practice types had lower adoption than academic systems (independent practice difference, -6 [95% CI, -9 to -3] percentage points; nonacademic systems difference, -9 [95% CI, -11 to -6] percentage points). Conclusions and Relevance In this cohort study of Medicare claims, practice characteristics, especially practice size and rural location, were associated with adoption of immunotherapy. These findings suggest that there may be geographic disparities in access to important innovations for treating patients with cancer.
Collapse
Affiliation(s)
- Caitlin E. Carroll
- Division of Health Policy and Management, University of Minnesota School of Public Health, Minneapolis
| | - Mary Beth Landrum
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Alexi A. Wright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Nancy L. Keating
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
- Division of General Internal Medicine and Primary Care, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
37
|
Immune-related adverse events as potential surrogates of immune checkpoint inhibitors' efficacy: a systematic review and meta-analysis of randomized studies. ESMO Open 2023; 8:100787. [PMID: 36842300 PMCID: PMC9984799 DOI: 10.1016/j.esmoop.2023.100787] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Immune-related adverse events (irAEs) are frequently reported during immune checkpoint inhibitor (ICI) therapy and are associated with long-term outcomes. It is unknown if the irAE occurrence is a valid surrogate of ICIs' efficacy. METHODS We identified articles reporting the results of randomized trials of experimental ICI therapy in solid tumors with a systematic search. The control arms could be placebo, cytotoxic/targeted therapy, or ICI therapy. We extracted the hazard ratios for overall survival (OS) with the number of OS events per arm and the number and percentages of overall and specific irAEs of grade 1-2 and grade 3-4 per arm. We estimated the treatment effect on the potential surrogate outcome with the odds ratio of the irAE rate between the experimental and the control arm. The statistical analysis consisted of weighted linear regression on a logarithmic scale between treatment effects on irAE rate and treatment effects on OS. RESULTS Sixty-two randomized trials were included for a total of 79 contrasts and 42 247 patients. The analyses found no significant association between the treatment effects for overall grade 1-2 or grade 3-4 irAE rates or specific (skin, gastrointestinal, endocrine) irAE rates. In the non-small-cell lung cancer (NSCLC) trial subset, we observed a negative association between treatment effects on overall grade 1-2 irAEs and treatment effects on OS in studies with patients selected for programmed death-ligand 1 expression (R2 = 0.55; 95% confidence interval 0.20-0.95; R = -0.69). In the melanoma trial subset, a negative association was shown between treatment effects on gastrointestinal grade 3-4 irAEs and treatment effects on OS in trials without an ICI-based control arm (R2 = 0.77; 95% confidence interval 0.24-0.99; R = -0.89). CONCLUSIONS We found low-strength correlations between the ICI therapy effects on overall or specific irAE rates and the treatment effects on OS in several cancer types.
Collapse
|
38
|
Gao Y, Wang Z, Cui Y, Xu M, Weng L. Emerging Strategies of Engineering and Tracking Dendritic Cells for Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:24-43. [PMID: 36520013 DOI: 10.1021/acsabm.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), a kind of specialized immune cells, play key roles in antitumor immune response and promotion of innate and adaptive immune responses. Recently, many strategies have been developed to utilize DCs in cancer therapy, such as delivering antigens and adjuvants to DCs and using scaffold to recruit and activate DCs. Here we outline how different DC subsets influence antitumor immunity, summarize the FDA-approved vaccines and cancer vaccines under clinical trials, discuss the strategies for engineering DCs and noninvasive tracking of DCs to improve antitumor immunotherapy, and reveal the potential of artificial neural networks for the design of DC based vaccines.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhixuan Wang
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ying Cui
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Miaomiao Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
39
|
Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C, Li J, Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22:10. [PMID: 36635761 PMCID: PMC9835394 DOI: 10.1186/s12943-022-01708-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skin cancer has emerged as the fifth most commonly reported cancer in the world, causing a burden on global health and the economy. The enormously rising environmental changes, industrialization, and genetic modification have further exacerbated skin cancer statistics. Current treatment modalities such as surgery, radiotherapy, conventional chemotherapy, targeted therapy, and immunotherapy are facing several issues related to cost, toxicity, and bioavailability thereby leading to declined anti-skin cancer therapeutic efficacy and poor patient compliance. In the context of overcoming this limitation, several nanotechnological advancements have been witnessed so far. Among various nanomaterials, nanoparticles have endowed exorbitant advantages by acting as both therapeutic agents and drug carriers for the remarkable treatment of skin cancer. The small size and large surface area to volume ratio of nanoparticles escalate the skin tumor uptake through their leaky vasculature resulting in enhanced therapeutic efficacy. In this context, the present review provides up to date information about different types and pathology of skin cancer, followed by their current treatment modalities and associated drawbacks. Furthermore, it meticulously discusses the role of numerous inorganic, polymer, and lipid-based nanoparticles in skin cancer therapy with subsequent descriptions of their patents and clinical trials.
Collapse
Affiliation(s)
- Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Jamaica, NY, 11439, USA
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Jia Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|
40
|
Ma M, Li J, Zeng Z, Zheng Z, Kang W. Integrated analysis from multicentre studies identities m7G-related lncRNA-derived molecular subtypes and risk stratification systems for gastric cancer. Front Immunol 2023; 14:1096488. [PMID: 36936957 PMCID: PMC10017847 DOI: 10.3389/fimmu.2023.1096488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Gastric cancer (GC) is the fourth leading cause of cancer death worldwide. Due to the lack of effective chemotherapy methods for advanced gastric cancer and poor prognosis, the emergence of immunotherapy has brought new hope to gastric cancer. Further research is needed to improve the response rate to immunotherapy and identify the populations with potential benefits of immunotherapy. It is unclear whether m7G-related lncRNAs influence tumour immunity and the prognosis of immunotherapy. Methods This study evaluated 29 types of immune cells and immune functions in gastric cancer patients, and m7G-related lncRNAs and their molecular subtypes were identified. In addition, we also studied the biological function characteristics of m7G-related lncRNA molecular subtypes. Finally, the patient's risk score was calculated based on m7G-related lncRNAs, and a nomogram of staging and risk groups was established to predict the prognosis. For experimental verification, RT-qPCR were preformed from the native cohort. Results After identifying m7G-related lncRNAs and their molecular subtypes, we found three molecular subtypes, the B subtype had the highest level of infiltration, and the B subtype may benefit more from immunotherapy. We divided GC patients into two regulator subtypes based on biological function. The two subtypes have significant immunological differences and can be used to judge ICI treatment. We established a risk score formula based on five lncRNAs, including LINC00924, LINC00944, LINC00865, LINC00702, and ZFAS1. Patients with poor prognoses were closely related to patients in the high-risk group. After comprehensive analysis of different risk groups, the efficacy of the high-risk group on bleomycin, cisplatin, docetaxel, doxorubicin and etoposide was better than that of the low-risk group, suggesting that risk subgroups based on risk scores play a guiding role in chemotherapy and that the high-risk group may benefit more from immunotherapy. RT-qPCR results showed that LINC00924, LINC00944, and LINC00865 were highly expressed in tumour tissues, while LINC00702 and ZFAS1 were expressed at low levels in tumour tissues. Discussion In conclusion, we were the first to discover that m7G-related lncRNAs play a vital role in the tumour immune microenvironment of gastric cancer, and a risk prediction model was established to identify patients with potential benefits from immunotherapy and predict the prognosis of GC patients.
Collapse
|
41
|
Ben Aïssa A. Immunotherapy in Melanoma: Highlights for the General Practitioner. PRAXIS 2023; 112:135-142. [PMID: 36855885 DOI: 10.1024/1661-8157/a003972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Melanoma is the most aggressive skin cancer, and surgery is the standard of care for localised disease. However, a risk of local and distant relapse exists despite tumour removal, particularly with thick or ulcerated tumours or lymph node involvement. Immunotherapy with immune checkpoint inhibitors (ICIs) targeting PD-1, PD-L-1 or CTLA-4 demonstrated improved relapse-free survival and distant metastasis-free survival against placebo after surgery for stage-III and high-risk stage-II melanoma. In unresectable localised and metastatic tumours, the double immunotherapy with ICIs (anti-PD-1+ anti-CTLA-4) allows for long-term survival in more than 50% of the patients. Novel immunotherapies (anti-LAG-3 ICI, adoptive cell therapy, intra-tumoural immunotherapy, cancer vaccines) and new combinations are in development to overcome resistance and improve patients' survival. Therapeutic decisions for each patient should be discussed in a specialised multidisciplinary team.
Collapse
Affiliation(s)
- Assma Ben Aïssa
- Service d'oncologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| |
Collapse
|
42
|
Yin L, Liu X, Wu J, Yang J, Wang J, Dou H, Hou Y. LS-007 inhibits melanoma growth via inducing apoptosis and cell cycle arrest and regulating macrophage polarization. Melanoma Res 2022; 32:419-427. [PMID: 36094494 DOI: 10.1097/cmr.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
LS-007, an inhibitor of cyclin-dependent kinase 9 (CDK9), exhibits potential antitumor activity against chronic lymphocytic leukemia and ovarian cancer, but its effect on melanoma and tumor microenvironment (TME) has not been reported yet. This study aimed to investigate the role of LS-007 in B16F10 melanoma and relevant mechanisms. LS-007 significantly inhibited viability and induced apoptosis of B16F10 cells in a dose-dependent manner, which were accompanied with the increased ratio of Bax to Bcl-2 and decreased Mcl-1 mRNA level. Western blot analysis showed that LS-007 increased the expression of cleaved caspase-3 and poly ADP-ribose polymerase (PARP). Furthermore, flow cytometry analysis and qRT-PCR results showed that LS-007 treatment resulted in cell cycle arrest by changing cell cycle-related gene expression. Notably, in vivo evaluation showed that LS-007 significantly decreased the weight and volume of tumor and the expression of Ki67, promoted the expression of iNOS and inhibited the expression of CD206, suggesting that LS-007 might inhibit tumor growth by suppressing polarization of macrophages into tumor-associated macrophages (TAMs) in the TME. The increase in M1/M2 treated with LS-007 detected by flow cytometry hinted that macrophages were polarized towards an antitumor phenotype. In addition, LS-007 induced higher apoptotic rate of B16F10 cells when co-cultured B16F10 with BMDMs. LS-007 has inhibitory effects on B16F10 cells in vivo and in vitro via inducing apoptosis, cell cycle arrest, and changing macrophage function in the TME.
Collapse
Affiliation(s)
- Lijie Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
| | - Xinghan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
| | - Jinjin Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
| | - Jingjing Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
43
|
Fomchenko EI, Bayley JC, Alvarez-Breckenridge C, Rhines LD, Tatsui CE. Spinal Metastases and the Evolving Role of Molecular Targeted Therapy, Chemotherapy, and Immunotherapy. Neurospine 2022; 19:978-993. [PMID: 36597635 PMCID: PMC9816609 DOI: 10.14245/ns.2244290.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022] Open
Abstract
Metastatic involvement of the spine is a common complication of systemic cancer progression. Surgery and external beam radiotherapy are palliative treatment modalities aiming to preserve neurological function, control pain and maintain functional status. More recently, with development of image guidance and stereotactic delivery of high doses of conformal radiation, local tumor control has improved; however recurrent or radiation refractory disease remains a significant clinical problem with limited treatment options. This manuscript represents a narrative overview of novel targeted molecular therapies, chemotherapies, and immunotherapy treatments for patients with breast, lung, melanoma, renal cell, prostate, and thyroid cancers, which resulted in improved responses compared to standard chemotherapy. We present clinical examples of excellent responses in spinal metastatic disease which have not been specifically documented in the literature, as most clinical trials evaluate treatment response based on visceral disease. This review is useful for the spine surgeons treating patients with metastatic disease as knowledge of these responses could help with timing and planning of surgical interventions, as well as promote multidisciplinary discussions, allowing development of an individualized treatment strategy to patients presenting with widespread multifocal progressive disease, where surgery could lead to suboptimal results.
Collapse
Affiliation(s)
| | - James C. Bayley
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Claudio E. Tatsui
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA,Corresponding Author Claudio E. Tatsui Department of Neurosurgery, MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, USA
| |
Collapse
|
44
|
Hooiveld-Noeken JS, Eggen AC, Rácz E, de Vries EG, Reyners AK, Jalving M. Towards less mutilating treatments in patients with advanced non-melanoma skin cancers by earlier use of immune checkpoint inhibitors. Crit Rev Oncol Hematol 2022; 180:103855. [DOI: 10.1016/j.critrevonc.2022.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
|
45
|
Corrie P, Meyer N, Berardi R, Guidoboni M, Schlueter M, Kolovos S, Macabeo B, Trouiller JB, Laramée P. Comparative efficacy and safety of targeted therapies for BRAF-mutant unresectable or metastatic melanoma: Results from a systematic literature review and a network meta-analysis. Cancer Treat Rev 2022; 110:102463. [PMID: 36099854 DOI: 10.1016/j.ctrv.2022.102463] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The objective of this study was to estimate the relative efficacy and safety of targeted therapies for the treatment of metastatic melanoma using a network meta-analysis (NMA). METHODS A systematic literature review (SLR) identified studies in Medline, Embase and Cochrane published until November 2020. Screening used prespecified eligibility criteria. Following a transitivity assessment across included studies, Bayesian NMA was conducted. RESULTS A total of 43 publications reporting 15 targeted therapy trials and 42 reporting 18 immunotherapy trials were retained from the SLR and considered for the NMA. Due to substantial between-study heterogeneity with immunotherapy trials, the analysis considered a network restricted to targeted therapies. Among combination therapies, encorafenib + binimetinib was superior to dabrafenib + trametinib for overall response rate (OR = 1.86; 95 % credible interval [CrI] 1.10, 3.17), superior to vemurafenib + cobimetinib with fewer serious adverse events (SAEs) (OR = 0.51; 95 % CrI 0.29, 0.91) and fewer discontinuations due to AEs (OR = 0.45; 95 % CrI 0.21, 0.96), and superior to atezolizumab + vemurafenib + cobimetinib with fewer SAEs (OR = 0.41; 95 % CrI 0.21, 0.82). Atezolizumab + vemurafenib + cobimetinib and encorafenib + binimetinib were generally comparable for efficacy endpoints. Among double combination therapies, encorafenib + binimetinib showed high probabilities of being better for all efficacy and safety endpoints. CONCLUSIONS This NMA confirms that combination therapies are more efficacious than monotherapies. Encorafenib + binimetinib has a favourable efficacy profile compared to other double combination therapies and a favourable safety profile compared to both double and triple combination therapies.
Collapse
Affiliation(s)
- Pippa Corrie
- Oncology Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Nicolas Meyer
- Institut Universitaire du Cancer et CHU de Toulouse, Toulouse, France; Inserm UMR 1037 - CRCT, Toulouse, France
| | - Rossana Berardi
- Clinica Oncologica, AOU Ospedali Riuniti, Ancona, Università Politecnica delle Marche, Ancona, Italy
| | - Massimo Guidoboni
- Experimental and Clinical Oncology of Immunotherapy and Rare Tumors, IRCCS IRST "Dino Amadori", Meldola, FC, Italy
| | | | | | - Bérengère Macabeo
- Aix-Marseille Université, Marseille, France; Pierre Fabre Laboratories, Paris, France
| | | | - Philippe Laramée
- Aix-Marseille Université, Marseille, France; Pierre Fabre Laboratories, Paris, France.
| |
Collapse
|
46
|
Fontes SS, Nogueira ML, Dias RB, Rocha CAG, Soares MBP, Vannier-Santos MA, Bezerra DP. Combination Therapy of Curcumin and Disulfiram Synergistically Inhibits the Growth of B16-F10 Melanoma Cells by Inducing Oxidative Stress. Biomolecules 2022; 12:1600. [PMID: 36358950 PMCID: PMC9687191 DOI: 10.3390/biom12111600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 10/05/2023] Open
Abstract
Oxidative stress plays a central role in the pathophysiology of melanoma. Curcumin (CUR) is a polyphenolic phytochemical that stimulates reactive oxygen species (ROS) production, while disulfiram (DSS) is a US FDA-approved drug for the treatment of alcoholism that can act by inhibiting the intracellular antioxidant system. Therefore, we hypothesized that they act synergistically against melanoma cells. Herein, we aimed to study the antitumor potential of the combination of CUR with DSS in B16-F10 melanoma cells using in vitro and in vivo models. The cytotoxic effects of different combination ratios of CUR and DSS were evaluated using the Alamar Blue method, allowing the production of isobolograms. Apoptosis detection, DNA fragmentation, cell cycle distribution, and mitochondrial superoxide levels were quantified by flow cytometry. Tumor development in vivo was evaluated using C57BL/6 mice bearing B16-F10 cells. The combinations ratios of 1:2, 1:3, and 2:3 showed synergic effects. B16-F10 cells treated with these combinations showed improved apoptotic cell death and DNA fragmentation. Enhanced mitochondrial superoxide levels were observed at combination ratios of 1:2 and 1:3, indicating increased oxidative stress. In vivo tumor growth inhibition for CUR (20 mg/kg), DSS (60 mg/kg), and their combination were 17.0%, 19.8%, and 28.8%, respectively. This study provided data on the potential cytotoxic activity of the combination of CUR with DSS and may provide a useful tool for the development of a therapeutic combination against melanoma.
Collapse
Affiliation(s)
- Sheila S. Fontes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Mateus L. Nogueira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Rosane B. Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-909, BA, Brazil
| | - Clarissa A. Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-909, BA, Brazil
| | - Milena B. P. Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- SENAI Institute for Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador 41650-010, BA, Brazil
| | | | - Daniel P. Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| |
Collapse
|
47
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
48
|
Bhattarai RS, Bariwal J, Kumar V, Hao C, Deng S, Li W, Mahato RI. pH-sensitive nanomedicine of novel tubulin polymerization inhibitor for lung metastatic melanoma. J Control Release 2022; 350:569-583. [PMID: 36037976 PMCID: PMC10322201 DOI: 10.1016/j.jconrel.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Microtubule binding agents such as paclitaxel and vincristine have activity in metastatic melanoma. However, even responsive tumors develop resistance, highlighting the need to investigate new drug molecules. Here, we showed that a new compound, CH-2-102, developed by our group, has high anti-tumor efficacy in human and murine melanoma cells. We confirmed that CH-2-102 robustly suppresses the microtubule polymerization process by directly interacting with the colchicine binding site. Our results unveil that CH-2-102 suppresses microtubule polymerization and subsequently induces G2 phase cell arrest as one of the possible mechanisms. Notably, CH-2-102 maintains its efficacy even in the paclitaxel resistance melanoma cells due to different binding sites and a non-Pgp substrate. We developed a pH-responsive drug-polymer Schiff bases linker for high drug loading into nanoparticles (NPs). Our CH-2-102 conjugated NPs induced tumor regression more effectively than Abraxane® (Nab-paclitaxel, N-PTX), free drug, and non-sensitive NPs in B16-F10 cell-derived lung metastasis mouse model. Furthermore, our results suggest that the formulation has a high impact on the in vivo efficacy of the drug and warrants further investigation in other cancers, particularly taxane resistant. In conclusion, the microtubule polymerization inhibitor CH-2-102 conjugated pH-responsive NPs induce tumor regression in lung metastasis melanoma mice, suggesting it may be an effective strategy for treating metastatic melanoma.
Collapse
Affiliation(s)
- Rajan S Bhattarai
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jitender Bariwal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chen Hao
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
49
|
Rashid S, Shaughnessy M, Tsao H. Melanoma classification and management in the era of molecular medicine. Dermatol Clin 2022; 41:49-63. [DOI: 10.1016/j.det.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Lin EPY, Hsu CY, Berry L, Bunn P, Shyr Y. Analysis of Cancer Survival Associated With Immune Checkpoint Inhibitors After Statistical Adjustment: A Systematic Review and Meta-analyses. JAMA Netw Open 2022; 5:e2227211. [PMID: 35976648 PMCID: PMC9386543 DOI: 10.1001/jamanetworkopen.2022.27211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
IMPORTANCE Appropriate clinical decision-making relies on accurate data interpretation, which in turn relies on the use of suitable statistical models. Long tails and early crossover-2 features commonly observed in immune checkpoint inhibitor (ICI) survival curves-raise questions as to the suitability of Cox proportional hazards regression for ICI survival analysis. Cox proportional hazards-Taylor expansion adjustment for long-term survival data (Cox-TEL) adjustment may provide possible solutions in this setting. OBJECTIVE To estimate overall survival and progression-free survival benefits of ICI therapy vs chemotherapy using Cox-TEL adjustment. DATA SOURCES A PubMed search was performed for all cataloged publications through May 22, 2022. STUDY SELECTION The search was restricted to randomized clinical trials with search terms for ICIs and lung cancer, melanoma, or urothelial carcinoma. The publications identified were further reviewed for inclusion. DATA EXTRACTION AND SYNTHESIS Cox proportional hazards ratios (HRs) were transformed to Cox-TEL HRs for patients with short-term treatment response (ie, short-term survivor) (ST-HR) and difference in proportions for patients with long-term survival (LT-DP) by Cox-TEL. Meta-analyses were performed using a frequentist random-effects model. MAIN OUTCOMES AND MEASURES Outcomes of interest were pooled overall survival (primary outcome) and progression-free survival (secondary outcome) HRs, ST-HRs, and LT-DPs. Subgroup analyses stratified by cancer type also were performed. RESULTS A total of 1036 publications was identified. After 3 levels of review against inclusion criteria, 13 clinical trials (7 in non-small cell lung cancer, 3 in melanoma, and 3 in urothelial carcinoma) were selected for the meta-analysis. In the primary analysis, pooled findings were 0.75 (95% CI, 0.70-0.81) for HR, 0.86 (95% CI, 0.81-0.92) for ST-HR, and 0.08 (95% CI, 0.06-0.10) for LT-DP. In the secondary analysis, the pooled values for progression-free survival were 0.77 (95% CI, 0.64-0.91) for HR, 1.02 (95% CI, 0.84-1.24) for ST-HR, and 0.10 (95% CI, 0.06-0.14) for LT-DP. CONCLUSIONS AND RELEVANCE This systematic review and meta-analysis of ICI clinical trial results noted consistently larger ST-HRs vs Cox HRs for ICI therapy, with an LT-DP of approximately 10%. These results suggest that Cox HRs may not provide a full picture of survival outcomes when the risk reduction from treatment is not constant, which may aid in the decision-making process of oncologists and patients.
Collapse
Affiliation(s)
- Emily Pei-Ying Lin
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Yuan Hsu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lynne Berry
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paul Bunn
- Department of Medicine, University of Colorado School of Medicine, Aurora
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|