1
|
NGS-guided precision oncology in metastatic breast and gynecological cancer: first experiences at the CCC Munich LMU. Arch Gynecol Obstet 2020; 303:1331-1345. [PMID: 33277683 PMCID: PMC8053190 DOI: 10.1007/s00404-020-05881-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
Purpose Comprehensive genomic profiling identifying actionable molecular alterations aims to enable personalized treatment for cancer patients. The purpose of this analysis was to retrospectively assess the impact of personalized recommendations made by a multidisciplinary tumor board (MTB) on the outcome of patients with breast or gynecological cancers, who had progressed under standard treatment. Here, first experiences of our Comprehensive Cancer Center Molecular Tumor Board are reported. Methods All patients were part of a prospective local registry. 95 patients diagnosed with metastatic breast cancer or gynecological malignancies underwent extended molecular profiling. From May 2017 through March 2019, the MTB reviewed all clinical cases considering tumor profile and evaluated molecular alterations regarding further diagnostic and therapeutic recommendations. Results 95 patients with metastatic breast or gynecological cancers were discussed in the MTB (68% breast cancer, 20% ovarian cancer, 5% cervical cancer, 3% endometrial cancer and 4% others). Genes with highest mutation rate were PIK3CA and ERBB2. Overall, 34 patients (36%) received a biomarker-based targeted therapy recommendation. Therapeutic recommendations were implemented in nine cases; four patients experienced clinical benefit with a partial response or disease stabilization lasting over 4 months. Conclusion In the setting of a multidisciplinary molecular tumor board, a small but clinically meaningful group of breast and gynecological cancer patients benefits from comprehensive genomic profiling. Broad and successful implementation of precision medicine is complicated by patient referral at late stage disease and limited access to targeted agents and early clinical trials. Trial registration number 284-10 (03.05.2018).
Collapse
|
2
|
|
3
|
Strengthening the AntiTumor NK Cell Function for the Treatment of Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20040890. [PMID: 30791364 PMCID: PMC6412350 DOI: 10.3390/ijms20040890] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
The crosstalk between cancer cells and host cells is a crucial prerequisite for tumor growth and progression. The cells from both the innate and adaptive immune systems enter into a perverse relationship with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Epithelial ovarian cancer (EOC), the most lethal of all gynecological malignancies, is characterized by a unique TME that paves the way to the formation of metastasis and mediates therapy resistance through the deregulation of immune surveillance. A characteristic feature of the ovarian cancer TME is the ascites/peritoneal fluid, a malignancy-associated effusion occurring at more advanced stages, which enables the peritoneal dissemination of tumor cells and the formation of metastasis. The standard therapy for EOC involves a combination of debulking surgery and platinum-based chemotherapy. However, most patients experience disease recurrence. New therapeutic strategies are needed to improve the prognosis of patients with advanced EOC. Harnessing the body’s natural immune defenses against cancer in the form of immunotherapy is emerging as an innovative treatment strategy. NK cells have attracted attention as a promising cancer immunotherapeutic target due to their ability to kill malignant cells and avoid healthy cells. Here, we will discuss the recent advances in the clinical application of NK cell immunotherapy in EOC.
Collapse
|
4
|
Clinical benefit of controversial first line systemic therapies for advanced stage ovarian cancer – ESMO-MCBS scores. Cancer Treat Rev 2018; 69:233-242. [DOI: 10.1016/j.ctrv.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
|
5
|
Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat Commun 2018; 9:2270. [PMID: 29891938 PMCID: PMC5995921 DOI: 10.1038/s41467-018-04695-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/18/2018] [Indexed: 02/08/2023] Open
Abstract
The limitations of current anti-angiogenic therapies necessitate other targets with complimentary mechanisms. Here, we show for the first time that soluble E-cadherin (sE-cad) (an 80-kDa soluble form), which is highly expressed in the malignant ascites of ovarian cancer patients, is a potent inducer of angiogenesis. In addition to ectodomain shedding, we provide further evidence that sE-cad is abundantly released in the form of exosomes. Mechanistically, sE-cad-positive exosomes heterodimerize with VE-cadherin on endothelial cells and transduce a novel sequential activation of β-catenin and NFκB signaling. In vivo and clinical data prove the relevance of sE-cad-positive exosomes for malignant ascites formation and widespread peritoneal dissemination. These data advance our understanding of the molecular regulation of angiogenesis in ovarian cancer and support the therapeutic potential of targeting sE-cad. The exosomal release of sE-cad, which represents a common route for externalization in ovarian cancer, could potentially be biomarkers for diagnosis and prognosis. A soluble form E-cadherin is highly expressed in ovarian cancer. Here, the authors show that soluble E-cadherin is released by ovarian cancer cells packaged in exosomes and promotes tumor angiogenesis through β-catenin and NFkB signaling activation.
Collapse
|
6
|
|
7
|
Abstract
Mammalian silent information regulator 1 (SIRT1) is reported to play a role in cancers of the secretory organs, including thyroid, pancreatic endocrine, and ovarian tumors [1, 2, 3, 4]. A recent meta-analysis conducted on 37 selected studies of human cancers analyzed the correlations of overall survival (OS), disease-free survival (DFS) and relapse-free survival (RFS) with SIRT1 expression [5]. This study reported that SIRT1 overexpression was associated with a worse OS in liver and lung cancers, while it was not correlated with OS in breast cancer, colorectal cancer, or gastric carcinoma. Collectively, the meta-analysis revealed that an unfavorable OS was associated with SIRT1 expression for solid malignancies. Given the growing importance of this class of lysine/histone deacetylases in human endocrine malignancies, a rational and focused literature assessment is desirable in light of future clinical translations.
Collapse
|
8
|
Stark DP, Cook A, Brown JM, Brundage MD, Embleton AC, Kaplan RS, Raja FA, Swart AMW, Velikova G, Qian W, Ledermann JA. Quality of life with cediranib in relapsed ovarian cancer: The ICON6 phase 3 randomized clinical trial. Cancer 2017; 123:2752-2761. [PMID: 28339098 PMCID: PMC5516140 DOI: 10.1002/cncr.30657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND The ICON6 trial showed that cediranib, an oral inhibitor of vascular endothelial growth factor receptors 1, 2, and 3, improved clinical outcomes for patients with platinum-sensitive relapsed ovarian cancer when it was used with chemotherapy and was continued as maintenance therapy. This study describes health-related quality of life (QOL) during the first year of treatment. METHODS Four hundred fifty-six women were randomly allocated to receive standard chemotherapy only, chemotherapy with concurrent cediranib, or chemotherapy with cediranib administered concurrently and continued as maintenance. Patients completed QOL questionnaires until disease progression every 3 weeks during chemotherapy and then every 6 weeks to 1 year. Patients alive with disease progression completed a QOL form 1 year after randomization. The primary QOL endpoint was the global score from the Quality of Life Questionnaire Core 30 (of the European Organization for Research and Treatment of Cancer) at 1 year, with the standard chemotherapy group compared with the concurrent-maintenance cediranib group. RESULTS The rate of questionnaire compliance was 90% at the baseline and 76% at 1 year and was similar across the 3 groups. The mean global QOL score at 1 year was 62.6 points for the standard chemotherapy group and 68.7 points for the concurrent-maintenance group (+4.5; 95% confidence interval, -2.0 to 11.0; P = .18). Sensitivity analyses suggested that this finding was robust to the effect of missing data, and the improvement became statistically significant after adjustments for self-reported diarrhea. CONCLUSIONS The 6th study by the International Collaboration in Ovarian Neoplasm (ICON6) showed a significant improvement in progression-free survival with cediranib as concurrent and maintenance therapy. No QOL detriment with cediranib was found 1 year after treatment was commenced. The maintenance of QOL along with prolonged cancer control suggests that cediranib has a valuable role in the treatment of relapsed ovarian cancer. Cancer 2017;123:2752-61. © 2017 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Dan P Stark
- St. James's Institute of Oncology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Adrian Cook
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Julia M Brown
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, United Kingdom
| | | | - Andrew C Embleton
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Richard S Kaplan
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Fharat A Raja
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Ann Marie W Swart
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Galina Velikova
- St. James's Institute of Oncology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Wendi Qian
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Jonathan A Ledermann
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| |
Collapse
|
9
|
Bauerschlag D, Meinhold-Heerlein I, Maass N, Bleilevens A, Bräutigam K, Al Rawashdeh W, Di Fiore S, Haugg AM, Gremse F, Steitz J, Fischer R, Stickeler E, Barth S, Hussain AF. Detection and Specific Elimination of EGFR + Ovarian Cancer Cells Using a Near Infrared Photoimmunotheranostic Approach. Pharm Res 2017; 34:696-703. [PMID: 28074431 DOI: 10.1007/s11095-017-2096-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Targeted theranostics is an alternative strategy in cancer management that aims to improve cancer detection and treatment simultaneously. This approach combines potent therapeutic and diagnostic agents with the specificity of different cell receptor ligands in one product. The success of antibody drug conjugates (ADCs) in clinical practice has encouraged the development of antibody theranostics conjugates (ATCs). However, the generation of homogeneous and pharmaceutically-acceptable ATCs remains a major challenge. The aim of this study is to detect and eliminate ovarian cancer cells on-demand using an ATC directed to EGFR. METHODS An ATC with a defined drug-to-antibody ratio was generated by the site-directed conjugation of IRDye®700 to a self-labeling protein (SNAP-tag) fused to an EGFR-specific antibody fragment (scFv-425). RESULTS In vitro and ex vivo imaging showed that the ATC based on scFv-425 is suitable for the highly specific detection of EGFR+ ovarian cancer cell, human tissues and ascites samples. The construct was also able to eliminate EGFR+ cells and human ascites cells with IC50 values of 45-66 nM and 40-90 nM, respectively. CONCLUSION Our experiments provide a framework to create a versatile technology platform for the development of ATCs for precise detection and treatment of ovarian cancer cells.
Collapse
Affiliation(s)
- Dirk Bauerschlag
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Nicolai Maass
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Andreas Bleilevens
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Karen Bräutigam
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Wa'el Al Rawashdeh
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Stefano Di Fiore
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Anke Maria Haugg
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Felix Gremse
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Julia Steitz
- Institute for Laboratory Animal Science, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.,Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Elmar Stickeler
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Stefan Barth
- Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.,South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Ahmad Fawzi Hussain
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, Brenton JD, Chiappinelli KB, Martins FC, Coukos G, Drapkin R, Edmondson R, Fotopoulou C, Gabra H, Galon J, Gourley C, Heong V, Huntsman DG, Iwanicki M, Karlan BY, Kaye A, Lengyel E, Levine DA, Lu KH, McNeish IA, Menon U, Narod SA, Nelson BH, Nephew KP, Pharoah P, Powell DJ, Ramos P, Romero IL, Scott CL, Sood AK, Stronach EA, Balkwill FR. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 2015; 15:668-79. [PMID: 26493647 PMCID: PMC4892184 DOI: 10.1038/nrc4019] [Citation(s) in RCA: 803] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
Affiliation(s)
- David D Bowtell
- Cancer Genomics and Genetics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia; and the Kinghorn Cancer Centre, Garvan Institute for Medical Research, Darlinghurst, Sydney, 2010 New South Wales, Australia
| | - Steffen Böhm
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| | - Ahmed A Ahmed
- Nuffield Department of Obstetrics and Gynaecology and the Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Paul-Joseph Aspuria
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Robert C Bast
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Valerie Beral
- University of Oxford, Headington, Oxford, OX3 7LF, UK
| | | | | | - Sarah Blagden
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | | | - Filipe Correia Martins
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - George Coukos
- University Hospital of Lausanne, Lausanne, Switzerland
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Philadelphia, Pennsylvania 19104, USA
| | | | - Christina Fotopoulou
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Jérôme Galon
- Institut National de la Santé et de la Recherche Médicale, UMRS1138, Laboratory of Integrative Cancer Immunology, Cordeliers Research Center, Université Paris Descartes, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ Paris 06, 75006 Paris, France
| | - Charlie Gourley
- Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Valerie Heong
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - David G Huntsman
- University of British Columbia, Departments of Pathology and Laboratory Medicine and Obstetrics and Gynecology, Faculty of Medicine, Vancouver, British Columbia V6T 2B5, Canada
| | | | - Beth Y Karlan
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | | | | | - Douglas A Levine
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Karen H Lu
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | | | - Usha Menon
- Women's Cancer, Institute for Women's Health, University College London, London WC1E 6BT, UK
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario M5G 1N8, Canada
| | - Brad H Nelson
- British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada
| | - Kenneth P Nephew
- Indiana University School of Medicine &Simon Cancer Center, Bloomington, IN 47405-4401, USA
| | - Paul Pharoah
- University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Daniel J Powell
- University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Pilar Ramos
- Translational Genomics Research Institute (Tgen), Phoenix, Arizona 85004, USA
| | | | - Clare L Scott
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Anil K Sood
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Euan A Stronach
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| |
Collapse
|
11
|
Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. NATURE REVIEWS. CANCER 2015. [PMID: 26493647 DOI: 10.1038/nrc4019]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
|
12
|
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, Brenton JD, Chiappinelli KB, Martins FC, Coukos G, Drapkin R, Edmondson R, Fotopoulou C, Gabra H, Galon J, Gourley C, Heong V, Huntsman DG, Iwanicki M, Karlan BY, Kaye A, Lengyel E, Levine DA, Lu KH, McNeish IA, Menon U, Narod SA, Nelson BH, Nephew KP, Pharoah P, Powell DJ, Ramos P, Romero IL, Scott CL, Sood AK, Stronach EA, Balkwill FR. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. NATURE REVIEWS. CANCER 2015. [PMID: 26493647 DOI: 10.1038/nrc4019] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
Affiliation(s)
- David D Bowtell
- Cancer Genomics and Genetics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia; and the Kinghorn Cancer Centre, Garvan Institute for Medical Research, Darlinghurst, Sydney, 2010 New South Wales, Australia
| | - Steffen Böhm
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| | - Ahmed A Ahmed
- Nuffield Department of Obstetrics and Gynaecology and the Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Paul-Joseph Aspuria
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Robert C Bast
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Valerie Beral
- University of Oxford, Headington, Oxford, OX3 7LF, UK
| | | | | | - Sarah Blagden
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | | | - Filipe Correia Martins
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - George Coukos
- University Hospital of Lausanne, Lausanne, Switzerland
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Philadelphia, Pennsylvania 19104, USA
| | | | - Christina Fotopoulou
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Jérôme Galon
- Institut National de la Santé et de la Recherche Médicale, UMRS1138, Laboratory of Integrative Cancer Immunology, Cordeliers Research Center, Université Paris Descartes, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ Paris 06, 75006 Paris, France
| | - Charlie Gourley
- Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Valerie Heong
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - David G Huntsman
- University of British Columbia, Departments of Pathology and Laboratory Medicine and Obstetrics and Gynecology, Faculty of Medicine, Vancouver, British Columbia V6T 2B5, Canada
| | | | - Beth Y Karlan
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | | | | | - Douglas A Levine
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Karen H Lu
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | | | - Usha Menon
- Women's Cancer, Institute for Women's Health, University College London, London WC1E 6BT, UK
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario M5G 1N8, Canada
| | - Brad H Nelson
- British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada
| | - Kenneth P Nephew
- Indiana University School of Medicine &Simon Cancer Center, Bloomington, IN 47405-4401, USA
| | - Paul Pharoah
- University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Daniel J Powell
- University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Pilar Ramos
- Translational Genomics Research Institute (Tgen), Phoenix, Arizona 85004, USA
| | | | - Clare L Scott
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Anil K Sood
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Euan A Stronach
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| |
Collapse
|
13
|
Gadducci A, Lanfredini N, Sergiampietri C. Antiangiogenic agents in gynecological cancer: State of art and perspectives of clinical research. Crit Rev Oncol Hematol 2015; 96:113-28. [PMID: 26126494 DOI: 10.1016/j.critrevonc.2015.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/08/2015] [Accepted: 05/12/2015] [Indexed: 12/27/2022] Open
Abstract
Vascular endothelial growth factor [VEGF] pathway, which plays a key role in angiogenesis, may be blocked by either extracellular interference with VEGF itself (bevacizumab [BEV] or aflibercept), or intracytoplasmic inhibition of VEGF receptor (pazopanib, nintedanib, cediranid, sunitinib and sorafenib). An alternative approach is represented by trebananib, a fusion protein that prevents the interaction of angiopoietin [Ang]-1 and Ang-2 with Tie2 receptor on vascular endothelium. The combination of antiangiogenic agents, especially BEV, and chemotherapy is a rational therapeutic option for primary or recurrent ovarian carcinoma. However, it will be difficult to accept that it represents the new standard treatment, until biological characterization of ovarian carcinoma has not identified subsets of tumors with different responsiveness to BEV. Anti-angiogenesis is an interesting target also for recurrent cervical or endometrial cancer, but nowadays the use of anti-angiogenic agents in these malignancies should be reserved to patients enrolled in clinical trials.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy.
| | - Nora Lanfredini
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy
| | - Claudia Sergiampietri
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy
| |
Collapse
|
14
|
Herzog TJ, Coleman RL, Monk BJ, Armstrong DK, Alvarez RD. In Assessing Surrogate Clinical Trial End Points: Drug Safety Is a Requisite. J Clin Oncol 2015; 33:1511-2. [DOI: 10.1200/jco.2014.59.8169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
McGuire WP. Reply to T.J. Herzog et al. J Clin Oncol 2015; 33:1512. [DOI: 10.1200/jco.2014.60.3571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Hoffman-Censits J, Wong YN. Perioperative and Maintenance Therapy After First-Line Therapy as Paradigms for Drug Discovery in Urothelial Carcinoma. Clin Genitourin Cancer 2015; 13:302-308. [PMID: 25987535 DOI: 10.1016/j.clgc.2015.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/25/2022]
Abstract
Perioperative chemotherapy provided to increase the chance of cure for localized disease and maintenance therapy for metastatic disease represent 2 distinct aspects of the urothelial cancer disease treatment spectrum. The ability to access both pre- and postchemotherapy tissue in the neoadjuvant setting provides important opportunities for translational research to test novel therapies and identify predictors of response to therapy. The maintenance setting may be more complex, and study design and endpoints need to be determined on the basis of the candidate drugs' mechanisms of action and toxicity.
Collapse
Affiliation(s)
- Jean Hoffman-Censits
- Department of Medical Oncology, Thomas Jefferson University School of Medicine, Philadelphia, PA
| | - Yu-Ning Wong
- Department of Medical Oncology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA.
| |
Collapse
|