1
|
Tibbetts R, Yeo KK, Muthugounder S, Lee MH, Jung C, Porras-Corredor T, Sheard MA, Asgharzadeh S. Anti-disialoganglioside antibody internalization by neuroblastoma cells as a mechanism of immunotherapy resistance. Cancer Immunol Immunother 2022; 71:153-164. [PMID: 34043024 PMCID: PMC10991857 DOI: 10.1007/s00262-021-02963-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/06/2021] [Indexed: 01/18/2023]
Abstract
Neuroblastoma (NBL) accounts for a disproportionate number of deaths among childhood malignancies despite intensive multimodal therapy that includes antibody targeting disialoganglioside GD2, a NBL antigen. Unfortunately, resistance to anti-GD2 immunotherapy is frequent and we aimed to investigate mechanisms of resistance in NBL. GD2 expression was quantified by flow cytometry and anti-GD2 antibody internalization was measured using real-time microscopy in 20 human NBL cell lines. Neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) assays were performed on a subset of the cell lines (n = 12), and results were correlated with GD2 expression and antibody internalization. GD2 was expressed on 19 of 20 NBL cell lines at variable levels, and neutrophil-mediated ADCC was observed only in GD2-expressing cell lines. We found no correlation between level of GD2 expression and sensitivity to neutrophil-mediated ADCC, suggesting that GD2 expression of many cell lines was above a threshold required for maximal ADCC, such that expression level could not be used to predict subsequent cytotoxicity. Instead, anti-GD2 antibody internalization, a process that occurred universally but differentially across GD2-expressing NBL cell lines, was inversely correlated with ADCC. Treatment with endocytosis inhibitors EIPA, chlorpromazine, MBCD, and cytochalasin-D showed potential to inhibit antibody internalization; however, only MBCD resulted in significantly increased sensitivity to neutrophil-mediated ADCC in 4 of 4 cell lines in vitro. Our data suggest that antibody internalization may represent a novel mechanism of immunotherapy escape by NBL and provide proof-of-principle that targeting pathways involved in antibody internalization may improve the efficacy of anti-GD2 immunotherapies.
Collapse
Affiliation(s)
- Rachelle Tibbetts
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kee Kiat Yeo
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Dana-Farber/Boston Childrens Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Sakunthala Muthugounder
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
| | - Meng-Hua Lee
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
| | - Cham Jung
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
| | - Tania Porras-Corredor
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
| | - Michael A Sheard
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA
| | - Shahab Asgharzadeh
- Children's Hospital Los Angeles, The Saban Research Institute, 4650 Sunset Boulevard, MS 57, Los Angeles, CA, 90027, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Moreno L, Pearson ADJ, Paoletti X, Jimenez I, Geoerger B, Kearns PR, Zwaan CM, Doz F, Baruchel A, Vormoor J, Casanova M, Pfister SM, Morland B, Vassal G. Early phase clinical trials of anticancer agents in children and adolescents - an ITCC perspective. Nat Rev Clin Oncol 2017; 14:497-507. [PMID: 28508875 DOI: 10.1038/nrclinonc.2017.59] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past decade, the landscape of drug development in oncology has evolved dramatically; however, this paradigm shift remains to be adopted in early phase clinical trial designs for studies of molecularly targeted agents and immunotherapeutic agents in paediatric malignancies. In drug development, prioritization of drugs on the basis of knowledge of tumour biology, molecular 'drivers' of disease and a drug's mechanism of action, and therapeutic unmet needs are key elements; these aspects are relevant to early phase paediatric trials, in which molecular profiling is strongly encouraged. Herein, we describe the strategy of the Innovative Therapies for Children with Cancer (ITCC) Consortium, which advocates for the adoption of trial designs that enable uninterrupted patient recruitment, the extrapolation from studies in adults when possible, and the inclusion of expansion cohorts. If a drug has neither serious dose-related toxicities nor a narrow therapeutic index, then studies should generally be started at the adult recommended phase II dose corrected for body surface area, and act as dose-confirmation studies. The use of adaptive trial designs will enable drugs with promising activity to progress rapidly to randomized studies and, therefore, will substantially accelerate drug development for children and adolescents with cancer.
Collapse
Affiliation(s)
- Lucas Moreno
- Paediatric Phase I-II Clinical Trials Unit, Paediatric Haematology &Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Andrew D J Pearson
- Paediatric Drug Development, Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK; and at the Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - Xavier Paoletti
- Biostatistics and Epidemiology, INSERM U1018, Gustave Roussy, Paris, France
| | - Irene Jimenez
- Department of Paediatric, Adolescents and Young Adults Oncology, Institut Curie; and at the University Paris Descartes, Paris, France
| | - Birgit Geoerger
- Department of Paediatric and Adolescent Oncology, CNRS UMR 8203 Vectorology and Anticancer Treatments, Gustave Roussy, University Paris-Sud, Villejuif, France
| | - Pamela R Kearns
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - C Michel Zwaan
- Department of Paediatric Oncology/Haematology, Erasmus MC/Sophia Children's Hospital, Rotterdam, Netherlands
| | - Francois Doz
- Department of Paediatric, Adolescents and Young Adults Oncology, Institut Curie; and at the University Paris Descartes, Paris, France
| | - Andre Baruchel
- Department of Paediatric Haematology, Hôpital Robert Debré, AP-HP; and at the University Paris Diderot, Paris, France
| | - Josef Vormoor
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University; and at the Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michela Casanova
- Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefan M Pfister
- German Cancer Research Center (DKFZ); German Cancer Consortium (DKTK); and at the Heidelberg University Hospital, Heidelberg, Germany
| | - Bruce Morland
- Department of Paediatric Oncology, Birmingham Children's Hospital, Birmingham, UK
| | - Gilles Vassal
- Department of Clinical Research, Gustave Roussy, Paris-Sud University, Paris, France
| |
Collapse
|