1
|
Kekki H, Montoya Perez I, Taimen P, Boström PJ, Gidwani K, Pettersson K. Lectin-nanoparticle concept for free PSA glycovariant providing superior cancer specificity. Clin Chim Acta 2024; 559:119689. [PMID: 38677453 DOI: 10.1016/j.cca.2024.119689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Using lectins to target cancer-associated modifications of PSA glycostructure for identification of clinically significant prostate cancers, e.g., Gleason score (GS) ≥ 7, from benign and indolent cancers (GS 6), is highly promising yet technically challenging. From previous findings to quantify increased PSA fucosylation in urine, we set out to construct a robust, specific test concept suitable for plasma samples. METHODS Macrophage galactose-binding lectin (MGL) coupled to 100 nm Eu3 + -nanoparticles was used to probe PSA captured from cancer cell lines, seminal plasma, and plasma samples from 249 patients with a clinical suspicion of prostate cancer onto 3 mm dense spots of free PSA antibody fab fragments. Results were compared to four kallikrein tests: tPSA, fPSA, iPSA and hK2. RESULTS The fPSAMGLglycovariant provided superior discrimination of the GS ≥ 7 and benign + GS 6 groups (p 0.0003) compared to fPSA (NS). The corresponding AUC in ROC analysis was 0.70 compared to 0.66 for tPSA. In contrast to all four kallikrein tests, the fPSAMGLGV was independent of prostate gland volume. Using a logistic regression analysis the fPSAMGLGV significantly improved on the four-kallikrein model. CONCLUSIONS Due to Eu-nanoparticles and a dense fPSA capture spot, the fPSAMGL glycovariant identifies an fPSA subform with the highest cancer specificity compared to the four conventional kallikreins.
Collapse
Affiliation(s)
- H Kekki
- Biotechnology Unit, Department of Life Technologies, University of Turku, Finland.
| | - I Montoya Perez
- Department of Diagnostic Radiology, University of Turku, Turku, Finland; Department of Computing, University of Turku, Turku, Finland
| | - P Taimen
- Institute of Biomedicine, Department of Pathology, University of Turku, Turku University Hospital, Turku, Finland
| | - P J Boström
- Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - K Gidwani
- Biotechnology Unit, Department of Life Technologies, University of Turku, Finland
| | - K Pettersson
- Biotechnology Unit, Department of Life Technologies, University of Turku, Finland
| |
Collapse
|
2
|
Wang J, Yang X, Wang X, Wang W. Recent Advances in CRISPR/Cas-Based Biosensors for Protein Detection. Bioengineering (Basel) 2022; 9:512. [PMID: 36290480 PMCID: PMC9598526 DOI: 10.3390/bioengineering9100512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
CRISPR is an acquired immune system found in prokaryotes that can accurately recognize and cleave foreign nucleic acids, and has been widely explored for gene editing and biosensing. In the past, CRISPR/Cas-based biosensors were mainly applied to detect nucleic acids in the field of biosensing, and their applications for the detection of other types of analytes were usually overlooked such as small molecules and disease-related proteins. The recent work shows that CRISPR/Cas biosensors not only provide a new tool for protein analysis, but also improve the sensitivity and specificity of protein detections. However, it lacks the latest review to summarize CRISPR/Cas-based biosensors for protein detection and elucidate their mechanisms of action, hindering the development of superior biosensors for proteins. In this review, we summarized CRISPR/Cas-based biosensors for protein detection based on their mechanism of action in three aspects: antibody-assisted CRISPR/Cas-based protein detection, aptamer-assisted CRISPR/Cas-based protein detection, and miscellaneous CRISPR/Cas-based methods for protein detection, respectively. Moreover, the prospects and challenges for CRISPR/Cas-based biosensors for protein detection are also discussed.
Collapse
Affiliation(s)
- Jing Wang
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Xifang Yang
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Xueliang Wang
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Wanhe Wang
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| |
Collapse
|
3
|
Circulating cancer biomarkers: current status and future prospects. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Duffy MJ. Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin Chem Lab Med 2021; 58:326-339. [PMID: 31714881 DOI: 10.1515/cclm-2019-0693] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
Abstract
In recent years, several new biomarkers supplementing the role of prostate-specific antigen (PSA) have become available for men with prostate cancer. Although widely used in an ad hoc manner, the role of PSA in screening asymptomatic men for prostate cancer is controversial. Several expert panels, however, have recently recommended limited PSA screening following informed consent in average-risk men, aged 55-69 years. As a screening test for prostate cancer however, PSA has limited specificity and leads to overdiagnosis which in turn results in overtreatment. To increase specificity and reduce the number of unnecessary biopsies, biomarkers such as percent free PSA, prostate health index (PHI) or the 4K score may be used, while Progensa PCA3 may be measured to reduce the number of repeat biopsies in men with a previously negative biopsy. In addition to its role in screening, PSA is also widely used in the management of patients with diagnosed prostate cancer such as in surveillance following diagnosis, monitoring response to therapy and in combination with both clinical and histological criteria in risk stratification for recurrence. For determining aggressiveness and predicting outcome, especially in low- or intermediate-risk men, tissue-based multigene tests such as Decipher, Oncotype DX (Prostate), Prolaris and ProMark, may be used. Emerging therapy predictive biomarkers include AR-V7 for predicting lack of response to specific anti-androgens (enzalutamide, abiraterone), BRAC1/2 mutations for predicting benefit from PARP inhibitor and PORTOS for predicting benefit from radiotherapy. With the increased availability of multiple biomarkers, personalised treatment for men with prostate cancer is finally on the horizon.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland.,UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Penson DF, Resnick MJ. Reply to I.E. Haines. J Clin Oncol 2017; 35:1626-1627. [PMID: 28113013 DOI: 10.1200/jco.2016.71.6621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- David F Penson
- David F. Penson and Matthew J. Resnick, Vanderbilt University, Nashville, TN
| | - Matthew J Resnick
- David F. Penson and Matthew J. Resnick, Vanderbilt University, Nashville, TN
| |
Collapse
|
6
|
Ferrer-Batallé M, Llop E, Ramírez M, Aleixandre RN, Saez M, Comet J, de Llorens R, Peracaula R. Comparative Study of Blood-Based Biomarkers, α2,3-Sialic Acid PSA and PHI, for High-Risk Prostate Cancer Detection. Int J Mol Sci 2017; 18:ijms18040845. [PMID: 28420168 PMCID: PMC5412429 DOI: 10.3390/ijms18040845] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
Prostate Specific Antigen (PSA) is the most commonly used serum marker for prostate cancer (PCa), although it is not specific and sensitive enough to allow the differential diagnosis of the more aggressive tumors. For that, new diagnostic methods are being developed, such as PCA-3, PSA isoforms that have resulted in the 4K score or the Prostate Health Index (PHI), and PSA glycoforms. In the present study, we have compared the PHI with our recently developed PSA glycoform assay, based on the determination of the α2,3-sialic acid percentage of serum PSA (% α2,3-SA), in a cohort of 79 patients, which include 50 PCa of different grades and 29 benign prostate hyperplasia (BPH) patients. The % α2,3-SA could distinguish high-risk PCa patients from the rest of patients better than the PHI (area under the curve (AUC) of 0.971 vs. 0.840), although the PHI correlated better with the Gleason score than the % α2,3-SA. The combination of both markers increased the AUC up to 0.985 resulting in 100% sensitivity and 94.7% specificity to differentiate high-risk PCa from the other low and intermediate-risk PCa and BPH patients. These results suggest that both serum markers complement each other and offer an improved diagnostic tool to identify high-risk PCa, which is an important requirement for guiding treatment decisions.
Collapse
Affiliation(s)
- Montserrat Ferrer-Batallé
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt (Girona), Spain.
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain.
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt (Girona), Spain.
| | - Manel Ramírez
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt (Girona), Spain.
- Catalan Health Institute, University Hospital of Girona Dr. Josep Trueta, 17007 Girona, Spain.
| | - Rosa Núria Aleixandre
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt (Girona), Spain.
- Catalan Health Institute, University Hospital of Girona Dr. Josep Trueta, 17007 Girona, Spain.
| | - Marc Saez
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, 17003 Girona, Spain.
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
| | - Josep Comet
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt (Girona), Spain.
- Catalan Health Institute, University Hospital of Girona Dr. Josep Trueta, 17007 Girona, Spain.
| | - Rafael de Llorens
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain.
- Catalan Health Institute, University Hospital of Girona Dr. Josep Trueta, 17007 Girona, Spain.
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain.
- Catalan Health Institute, University Hospital of Girona Dr. Josep Trueta, 17007 Girona, Spain.
| |
Collapse
|
7
|
Abstract
OBJECTIVE To review the current state of prostate cancer screening and future directions. DATA SOURCES Nursing, medical and scientific literature related to prostate cancer screening, and national and international professional recommendations. CONCLUSION Prostate cancer screening has been a topic of robust discussion for a number of years. Research continues to examine novel options for prostate cancer screening to either replace or compliment the prostate specific antigen test, but require additional validation before they will be widely accepted into clinical practice. IMPLICATIONS FOR NURSING PRACTICE As new data emerges and professional organizations update their recommendations, it is important for oncology nurses to keep abreast of the latest developments to educate patients.
Collapse
|
8
|
Penson DF, Resnick MJ. Let's Not Throw the Baby out With the Bathwater in Prostate Cancer Screening. J Clin Oncol 2016; 34:3489-3491. [PMID: 27432920 DOI: 10.1200/jco.2016.68.7194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- David F Penson
- Vanderbilt University; and the VA Tennessee Valley Geriatric Research, Education, and Clinical Center, Nashville, TN
| | - Matthew J Resnick
- Vanderbilt University; and the VA Tennessee Valley Geriatric Research, Education, and Clinical Center, Nashville, TN
| |
Collapse
|