1
|
Chatziioannou E, Roßner J, Aung TN, Rimm DL, Niessner H, Keim U, Serna-Higuita LM, Bonzheim I, Kuhn Cuellar L, Westphal D, Steininger J, Meier F, Pop OT, Forchhammer S, Flatz L, Eigentler T, Garbe C, Röcken M, Amaral T, Sinnberg T. Deep learning-based scoring of tumour-infiltrating lymphocytes is prognostic in primary melanoma and predictive to PD-1 checkpoint inhibition in melanoma metastases. EBioMedicine 2023; 93:104644. [PMID: 37295047 PMCID: PMC10363450 DOI: 10.1016/j.ebiom.2023.104644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Recent advances in digital pathology have enabled accurate and standardised enumeration of tumour-infiltrating lymphocytes (TILs). Here, we aim to evaluate TILs as a percentage electronic TIL score (eTILs) and investigate its prognostic and predictive relevance in cutaneous melanoma. METHODS We included stage I to IV cutaneous melanoma patients and used hematoxylin-eosin-stained slides for TIL analysis. We assessed eTILs as a continuous and categorical variable using the published cut-off of 16.6% and applied Cox regression models to evaluate associations of eTILs with relapse-free, distant metastasis-free, and overall survival. We compared eTILs of the primaries with matched metastasis. Moreover, we assessed the predictive relevance of eTILs in therapy-naïve metastases according to the first-line therapy. FINDINGS We analysed 321 primary cutaneous melanomas and 191 metastatic samples. In simple Cox regression, tumour thickness (p < 0.0001), presence of ulceration (p = 0.0001) and eTILs ≤16.6% (p = 0.0012) were found to be significant unfavourable prognostic factors for RFS. In multiple Cox regression, eTILs ≤16.6% (p = 0.0161) remained significant and downgraded the current staging. Lower eTILs in the primary tissue was associated with unfavourable relapse-free (p = 0.0014) and distant metastasis-free survival (p = 0.0056). In multiple Cox regression adjusted for tumour thickness and ulceration, eTILs as continuous remained significant (p = 0.019). When comparing TILs in primary tissue and corresponding metastasis of the same patient, eTILs in metastases was lower than in primary melanomas (p < 0.0001). In therapy-naïve metastases, an eTILs >12.2% was associated with longer progression-free survival (p = 0.037) and melanoma-specific survival (p = 0.0038) in patients treated with anti-PD-1-based immunotherapy. In multiple Cox regression, lactate dehydrogenase (p < 0.0001) and eTILs ≤12.2% (p = 0.0130) were significantly associated with unfavourable melanoma-specific survival. INTERPRETATION Assessment of TILs is prognostic in primary melanoma samples, and the eTILs complements staging. In therapy-naïve metastases, eTILs ≤12.2% is predictive of unfavourable survival outcomes in patients receiving anti-PD-1-based therapy. FUNDING See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.
Collapse
Affiliation(s)
- Eftychia Chatziioannou
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
| | - Jana Roßner
- Department of Dermatology, University of Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Thazin New Aung
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Heike Niessner
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
| | - Ulrike Keim
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany
| | - Lina Maria Serna-Higuita
- Department of Clinical Epidemiology and Applied Biostatistics, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Luis Kuhn Cuellar
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Skin Cancer Center at the University Cancer Center and National Center for Tumor Diseases, Technical University Dresden, 01307 Dresden, Germany
| | - Julian Steininger
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Skin Cancer Center at the University Cancer Center and National Center for Tumor Diseases, Technical University Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Skin Cancer Center at the University Cancer Center and National Center for Tumor Diseases, Technical University Dresden, 01307 Dresden, Germany
| | - Oltin Tiberiu Pop
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Stephan Forchhammer
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany
| | - Lukas Flatz
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Thomas Eigentler
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Claus Garbe
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany
| | - Martin Röcken
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
| | - Teresa Amaral
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
| | - Tobias Sinnberg
- Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany; Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
2
|
Atkins SLP, Zimmer AS. Neurologic complications of breast cancer. Cancer 2023; 129:505-520. [PMID: 36537474 DOI: 10.1002/cncr.34518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Breast cancer is a heterogeneous disease with unique neurologic complications that can arise from central nervous system (CNS) involvement or secondary to treatments themselves. As progress is made, with more targeted therapies and combinations available, particularly in the realm of human epidermal growth factor receptor 2 (HER2)-positive disease, the role of these new agents in patients with CNS disease is gradually evolving, although intracranial efficacy itself is lagging. At the same time, both systemic and local standard therapies pose clinical challenges regarding neurologic complications, such as peripheral neuropathy and cognitive changes. The development of new agents, such as immunotherapy, and new strategies, such as incorporating systemic therapies into local therapy, unveil new presentations of neurological complications.
Collapse
Affiliation(s)
- Sarah L P Atkins
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexandra S Zimmer
- Hematology and Medical Oncology Division, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, USA
| |
Collapse
|
3
|
Watase C, Shiino S, Shimoi T, Noguchi E, Kaneda T, Yamamoto Y, Yonemori K, Takayama S, Suto A. Breast Cancer Brain Metastasis-Overview of Disease State, Treatment Options and Future Perspectives. Cancers (Basel) 2021; 13:cancers13051078. [PMID: 33802424 PMCID: PMC7959316 DOI: 10.3390/cancers13051078] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In this review, we present the latest information on the pathophysiology, diagnosis, and local and systemic treatment of brain metastases from breast cancer, with a focus on recent publications. Improving the local treatment and subtype-specific systemic therapies through advancements in basic and translational research will contribute to better clinical outcomes for patients with breast cancer brain metastasis. Abstract Breast cancer is the second most common origin of brain metastasis after lung cancer. Brain metastasis in breast cancer is commonly found in patients with advanced course disease and has a poor prognosis because the blood–brain barrier is thought to be a major obstacle to the delivery of many drugs in the central nervous system. Therefore, local treatments including surgery, stereotactic radiation therapy, and whole-brain radiation therapy are currently considered the gold standard treatments. Meanwhile, new targeted therapies based on subtype have recently been developed. Some drugs can exceed the blood–brain barrier and enter the central nervous system. New technology for early detection and personalized medicine for metastasis are warranted. In this review, we summarize the historical overview of treatment with a focus on local treatment, the latest drug treatment strategies, and future perspectives using novel therapeutic agents for breast cancer patients with brain metastasis, including ongoing clinical trials.
Collapse
Affiliation(s)
- Chikashi Watase
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Sho Shiino
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Tatsunori Shimoi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Emi Noguchi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Tomoya Kaneda
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Kan Yonemori
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Shin Takayama
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Akihiko Suto
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
- Correspondence: ; Tel.: +81-3-3542-2511; Fax: +81-3-3545-3567
| |
Collapse
|