1
|
Porter RL, Matulonis UA. Mirvetuximab soravtansine for platinum-resistant epithelial ovarian cancer. Expert Rev Anticancer Ther 2023; 23:783-796. [PMID: 37458180 DOI: 10.1080/14737140.2023.2236793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Mirvetuximab soravtansine (mirvetuximab) is an antibody drug conjugate (ADC) comprised of a humanized folate receptor alpha (FRα)-binding monoclonal antibody attached via a cleavable linker to the cytotoxic maytansinoid molecule, DM4. FRα is expressed in several epithelial cancers, including high grade serous ovarian cancer (HGSOC). Mirvetuximab received accelerated approval by the United States Food and Drug Administration (FDA) in November 2022 based on the results of the SORAYA trial, which tested mirvetuximab for the treatment of patients with recurrent platinum resistant HGSOC with high FRα expression and showed an overall response rate (ORR) of 32.4% and a median duration of response of 6.9 months. Mirvetuximab toxicities included low grade ocular and gastrointestinal toxicities. The National Comprehensive Cancer Network (NCCN) ovarian cancer 2023 guidelines adopted mirvetuximab as 2A, and mirvetuximab combined with bevacizumab as 2B, recommendations. AREAS COVERED This manuscript will review the preclinical and clinical development of mirvetuximab, the toxicities associated with mirvetuximab and mitigation strategies, and future applications of mirvetuximab. EXPERT OPINION Mirvetuximab represents the first biomarker-directed therapy with an indication specifically for the treatment of PROC. The efficacy and favorable safety profile support further development of mirvetuximab and mirvetuximab combinations in platinum sensitive and newly diagnosed ovarian cancer.
Collapse
Affiliation(s)
- Rebecca L Porter
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, United States of America
| | - Ursula A Matulonis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, United States of America
| |
Collapse
|
2
|
Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-Drug Conjugates for Cancer Therapy. Molecules 2020; 25:E4764. [PMID: 33081383 PMCID: PMC7587605 DOI: 10.3390/molecules25204764] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance. We conclude with perspectives about the future development of the next generations of ADCs, including the role of molecular imaging in drug development.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Sagun Parakh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
| |
Collapse
|
3
|
Abstract
INTRODUCTION Ovarian cancer typically presents at an advanced stage and while initial chemotherapy response rates are favorable, a majority of patients experience recurrence with the subsequent development of chemoresistance. Recurrent, platinum-resistant disease is associated with a very poor prognosis as treatment in this setting is often limited by systemic toxicity. Antibody-drug conjugates (ADCs) are novel therapeutic agents designed to target antigens specific to ovarian tumor cells with direct delivery of cytotoxic agents to combat recurrent, platinum-resistant disease while limiting systemic toxicity. AREAS COVERED The basic structure and function of ADCs will be reviewed as well as the current data on ADCs under investigation in ovarian cancer. EXPERT OPINION ADCs represent a promising class of targeted therapy in recurrent ovarian cancer with excellent response rates particularly when utilized as combination therapy. While mirvetuximab soravtansine is the only ADC that has been evaluated in a phase 3 trial, many other ADCs and trials are on the horizon. As the field of targeted therapy continues to evolve, continued development of target antigens and ADCs are likely to represent a key development in treatment of recurrent, platinum-resistant disease.
Collapse
Affiliation(s)
- Corinne A Calo
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Ohio State University, Columbus, OH, USA
| | - David M O'Malley
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Abstract
The concept of exploiting the specific binding properties of monoclonal antibodies as a mechanism for selective delivery of cytotoxic agents to tumor cells is an attractive solution to the challenge of increasing the therapeutic index of cell-killing agents for treating cancer. All three parts of an antibody-drug conjugate (ADC)-the antibody, the cytotoxic payload, and the linker chemistry that joins them together-as well as the biologic properties of the cell-surface target antigen are important in designing an effective anticancer agent. The approval of brentuximab vedotin in 2011 for treating relapsed Hodgkin's lymphoma and systemic anaplastic large cell lymphoma, and the approval of ado-trastuzumab emtansine in 2013 for treating HER2-positive metastatic breast cancer, have sparked vigorous research in the field, with >65 ADCs currently in clinical evaluation. This review highlights the ADCs that are approved for marketing, in pivotal clinical trials, or in at least phase II clinical development for treating both hematologic malignancies and solid tumors.
Collapse
|
5
|
Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J Clin 2019; 69:280-304. [PMID: 31099893 DOI: 10.3322/caac.21559] [Citation(s) in RCA: 703] [Impact Index Per Article: 117.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the second most common cause of gynecologic cancer death in women around the world. The outcomes are complicated, because the disease is often diagnosed late and composed of several subtypes with distinct biological and molecular properties (even within the same histological subtype), and there is inconsistency in availability of and access to treatment. Upfront treatment largely relies on debulking surgery to no residual disease and platinum-based chemotherapy, with the addition of antiangiogenic agents in patients who have suboptimally debulked and stage IV disease. Major improvement in maintenance therapy has been seen by incorporating inhibitors against poly (ADP-ribose) polymerase (PARP) molecules involved in the DNA damage-repair process, which have been approved in a recurrent setting and recently in a first-line setting among women with BRCA1/BRCA2 mutations. In recognizing the challenges facing the treatment of ovarian cancer, current investigations are enlaced with deep molecular and cellular profiling. To improve survival in this aggressive disease, access to appropriate evidence-based care is requisite. In concert, realizing individualized precision medicine will require prioritizing clinical trials of innovative treatments and refining predictive biomarkers that will enable selection of patients who would benefit from chemotherapy, targeted agents, or immunotherapy. Together, a coordinated and structured approach will accelerate significant clinical and academic advancements in ovarian cancer and meaningfully change the paradigm of care.
Collapse
Affiliation(s)
- Stephanie Lheureux
- Clinician Investigator, Bras Drug Development Program; and Staff Medical Oncologist and Gynecology Site Leader, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Assistant Professor, University of Toronto, Toronto, ON, Canada
| | - Marsela Braunstein
- Scientific Associate, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Chief, Division of Medical Oncology and Hematology; Director, Cancer Clinical Research Unit; and Director, Bras Drug Development Program, Princess Margaret Cancer Centre, University Health Network and Mt. Sinai Health System, Toronto, ON, Canada
- Professor of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Lee EK, Liu JF. Antibody-drug conjugates in gynecologic malignancies. Gynecol Oncol 2019; 153:694-702. [DOI: 10.1016/j.ygyno.2019.03.245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/26/2022]
|