1
|
Stormoen DR, Rohrberg KS, Mouw KW, Ørum K, Szallasi Z, Rossing M, Bagger FO, Pappot H. Similar genetic profile in early and late stage urothelial tract cancer. J Cancer Res Clin Oncol 2024; 150:339. [PMID: 38976041 PMCID: PMC11230994 DOI: 10.1007/s00432-024-05850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Urothelial tract cancer (UTC) ranks as the tenth most prevalent cancer and holds the seventh position in terms of mortality worldwide. Despite its prevalence and mortality ranking, there are still gaps in the knowledge of the mutational landscape in patients with advanced disease who have limited therapeutic options after multiple lines of prior treatment. This study compares the genomic and transcriptomic landscape, and targeted treatment options between metastatic UTC (mUTC) patients treated with multiple lines of therapy compared to newly diagnosed, untreated Muscle Invasive Bladder Cancer (MIBC). METHODS We compared genomic and clinical data from two cohorts: mUTC patients who received multiple lines of therapy and were referred to the Copenhagen Prospective Personalized Oncology (CoPPO) project at Rigshospitalet, University of Copenhagen. Data for MIBC UTC patients were acquired from the Cancer Genome Atlas Bladder Cancer (TCGA BLCA) cohort. Biopsies in CoPPO were performed at the time of enrollment. 523 highly important cancer-related genes (TrueSight Oncology-500 targeted sequencing panel) were used from both cohorts for comparative analysis. Analyses included RNA count data to compare predicted molecular subtypes in each cohort separately. RESULTS Patients from the CoPPO cohort had a lower median age at first-line treatment than the TCGA BLCA cohort, with no significant gender disparity. The predominant histology was urothelial cell carcinoma in both cohorts. Genomic analysis revealed no significant difference between the top mutated genes in the two cohorts, specifically looking into DNA damage repair genes. Molecular subtyping indicated a higher frequency of neuroendocrine differentiation in the CoPPO cohort. 13% of patients in the CoPPO cohort received targeted therapy based on genomic findings, and 16% received non-targeted treatment, totaling 29% receiving CoPPO treatment (9 patients). The remaining 71% received best supportive care. Kaplan-Meier analysis showed a non-significant survival benefit for the intervention group in the CoPPO cohort. CONCLUSION When focusing on 523 highly relevant cancer genes, the mutational profile of mUTC patients who have undergone numerous treatment lines resembles that of newly diagnosed MIBC. These alterations can be targeted, indicating the potential advantage of early genomic testing for personalized treatment within clinical trials.
Collapse
Affiliation(s)
- Dag Rune Stormoen
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, 5073, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Kristoffer Staal Rohrberg
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, 5073, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kent William Mouw
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Katrine Ørum
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, 5073, Denmark
| | - Zoltan Szallasi
- Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Translational Cancer Genomics Group, Danish Cancer Society, Copenhagen, Denmark
| | - Maria Rossing
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Department for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Helle Pappot
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, 5073, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Dao J, Conway PJ, Subramani B, Meyyappan D, Russell S, Mahadevan D. Using cfDNA and ctDNA as Oncologic Markers: A Path to Clinical Validation. Int J Mol Sci 2023; 24:13219. [PMID: 37686024 PMCID: PMC10487653 DOI: 10.3390/ijms241713219] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The detection of circulating tumor DNA (ctDNA) in liquid biopsy samples as an oncological marker is being used in clinical trials at every step of clinical management. As ctDNA-based liquid biopsy kits are developed and used in clinics, companies work towards increased convenience, accuracy, and cost over solid biopsies and other oncological markers. The technology used to differentiate ctDNA and cell-free DNA (cfDNA) continues to improve with new tests and methodologies being able to detect down to mutant allele frequencies of 0.001% or 1/100,000 copies. Recognizing this development in technology, the FDA has recently given pre-market approval and breakthrough device designations to multiple companies. The purpose of this review is to look at the utility of measuring total cfDNA, techniques used to differentiate ctDNA from cfDNA, and the utility of different ctDNA-based liquid biopsy kits using relevant articles from PubMed, clinicaltrials.gov, FDA approvals, and company newsletters. Measuring total cfDNA could be a cost-effective, viable prognostic marker, but various factors do not favor it as a monitoring tool during chemotherapy. While there may be a place in the clinic for measuring total cfDNA in the future, the lack of standardization means that it is difficult to move forward with large-scale clinical validation studies currently. While the detection of ctDNA has promising standardized liquid biopsy kits from various companies with large clinical trials ongoing, their applications in screening and minimal residual disease can suffer from lower sensitivity. However, researchers are working towards solutions to these issues with innovations in technology, multi-omics, and sampling. With great promise, further research is needed before liquid biopsies can be recommended for everyday clinical management.
Collapse
Affiliation(s)
- Jonathan Dao
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Patrick J. Conway
- Mays Cancer Center, University of Texas Health, San Antonio, TX 78229, USA
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Baskaran Subramani
- Mays Cancer Center, University of Texas Health, San Antonio, TX 78229, USA
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Devi Meyyappan
- Mays Cancer Center, University of Texas Health, San Antonio, TX 78229, USA
| | - Sammy Russell
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Daruka Mahadevan
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health, San Antonio, TX 78229, USA
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Morales-Barrera R, Suárez C, González M, Valverde C, Serra E, Mateo J, Raventos C, Maldonado X, Morote J, Carles J. The future of bladder cancer therapy: Optimizing the inhibition of the fibroblast growth factor receptor. Cancer Treat Rev 2020; 86:102000. [PMID: 32203842 DOI: 10.1016/j.ctrv.2020.102000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Abstract
Therapeutic options for metastatic bladder cancer (BC) have seen minimal evolution over the past 30 years, with platinum-based chemotherapy remaining the mainstay of standard of care for metastatic BC. Recently, five immune checkpoint inhibitors (ICIs) have been approved by the FDA as second-line therapy, and two ICIs are approved as first-line treatment in selected patients. Molecular alterations of muscle-invasive bladder cancer (MIBC) have been reported by The Cancer Genome Atlas. About 15% of patients with MIBC have molecular alterations in the fibroblast growth factor (FGF) axis. Several ongoing trials are testing novel FGF receptor (FGFR) inhibitors in patients with FGFR genomic aberrations. Recently, erdafitinib, a pan-FGFR inhibitor, was approved by the FDA in patients with metastatic BC who have progressed on platinum-based chemotherapy. We reviewed the literature over the last decade and provide a summary of current knowledge of FGF signaling, and the prognosis associated with FGFR mutations in BC. We cover the role of FGFR inhibition with non-selective and selective tyrosine kinase inhibitors as well as novel agents in metastatic BC. Efficacy and safety data including insights from mechanism-based toxicity are reported for selected populations of metastatic BC with FGFR aberrations. Current strategies to managing resistance to anti-FGFR agents is addressed, and the importance of developing reliable biomarkers as the therapeutic landscape moves towards an individualized therapeutic approach.
Collapse
Affiliation(s)
- Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Suárez
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Macarena González
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Claudia Valverde
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Joaquín Mateo
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carles Raventos
- Department of Urology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Maldonado
- Department of Radiation Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Morote
- Department of Urology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|