1
|
Mynarek M, Rossius A, Guiard A, Ottensmeier H, von Hoff K, Obrecht-Sturm D, Bußenius L, Friedrich C, von Bueren AO, Gerber NU, Traunwieser T, Kortmann RD, Warmuth-Metz M, Bison B, Thomale UW, Krauss J, Pietsch T, Clifford SC, Pfister SM, Sturm D, Sahm F, Tischler T, Rutkowski S. Risk factors for domain-specific neurocognitive outcome in pediatric survivors of a brain tumor in the posterior fossa-Results of the HIT 2000 trial. Neuro Oncol 2024; 26:2113-2124. [PMID: 38835160 PMCID: PMC11534318 DOI: 10.1093/neuonc/noae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Neurocognition can be severely affected in pediatric brain tumor survivors. We analyzed the association of cognitive functioning with radiotherapy dose, postoperative cerebellar mutism syndrome (pCMS), hydrocephalus, intraventricular methotrexate (MTX) application, tumor localization, and biology in pediatric survivors of a posterior fossa tumor. METHODS Subdomain-specific neurocognitive outcome data from 279 relapse-free survivors of the HIT-2000 trial (241 medulloblastoma and 38 infratentorial ependymoma) using the Neuropsychological Basic Diagnostic tool based on Cattell-Horn-Carroll's model for intelligence were analyzed. RESULTS Cognitive performance 5.14 years (mean; range = 1.52-13.02) after diagnosis was significantly below normal for all subtests. Processing speed and psychomotor abilities were most affected. Influencing factors were domain-specific: CSI-dose had a strong impact on most subtests. pCMS was associated with psychomotor abilities (β = -0.25 to -0.16) and processing speed (β = -0.32). Postoperative hydrocephalus correlated with crystallized intelligence (β = -0.20) and short-term memory (β = -0.15), age with crystallized intelligence (β = 0.15) and psychomotor abilities (β = -0.16 and β = -0.17). Scores for fluid intelligence (β = -0.23), short-term memory (β = -0.17) and visual processing (β = -0.25) declined, and scores for selective attention improved (β = 0.29) with time after diagnosis. CONCLUSIONS The dose of CSI was strongly associated with neurocognitive outcomes. Low psychomotor abilities and processing speed both in patients treated with and without CSI suggest a strong contribution of the tumor and its surgery on these functions. Future research therefore should analyze strategies to both reduce CSI dose and toxicity caused by other treatment modalities.
Collapse
Affiliation(s)
- Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rossius
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Anika Guiard
- Department of Pediatrics, University Hospital Rostock, Rostock, Germany
| | - Holger Ottensmeier
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Wuerzburg, Wuerzburg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Charité—University Medicine, Berlin, Germany
| | - Denise Obrecht-Sturm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Lisa Bußenius
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Carsten Friedrich
- Department for General Pediatrics and Pediatric Hematology and Oncology, University Children’s Hospital Oldenburg, Oldenburg, Germany
| | - Andre O von Bueren
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
- Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Nicolas U Gerber
- Department of Oncology, University Children’s Hospital, Zurich, Switzerland
| | - Thomas Traunwieser
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Paediatrics and Adolescent Medicine, University of Augsburg, Augsburg, Germany
| | | | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brigitte Bison
- Department of Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Ulrich-W Thomale
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Juergen Krauss
- Department for Neurosurgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, Brain Tumor Reference Center of the German Society for Neuropathology and Neuroanatomy (DGNN), University of Bonn, DZNE German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, UK
| | - Stefan M Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominik Sturm
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tanja Tischler
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Paediatrics and Adolescent Medicine, University of Augsburg, Augsburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Mailhot Vega RB, Indelicato DJ, Bradley JA, Markatia A, Mobley EM, Sandler ES, Aldana PR, Gomez JE, Velasco D, Morris CG, Crisp AM, Mendenhall NP, Miller D. Evaluating Scholastic Achievement in Pediatric Brain Tumor Survivors Compared With Healthy Controls. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03406-0. [PMID: 39307321 DOI: 10.1016/j.ijrobp.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE Radiation therapy (RT) causes cognitive deficits in pediatric brain tumor survivors (PBTS). Traditionally, this is measured using neuropsychological testing, which lack prediagnosis baseline and do not necessarily trigger action. This pilot project investigated a novel patient-centered outcome of scholastic performance using state-collected educational data. METHODS AND MATERIALS We retrospectively analyzed scholastic achievements in children residing in Florida. Eligibility in the treatment group received brain-directed RT between 2007 and 2020 at our institution. Controls were matched at a 3:1 ratio by age, grade, district, and free or reduced lunch eligibility. The Florida Department of Education provided educational records for both groups. Generalized linear mixed-effects models were used to predict scholastic outcomes with covariates age, time (binary value of pre- or post-RT), treatment group, and the primary independent variable as the interaction term between time and treatment. Scholastic data were matched with institutional clinical data. RESULTS A total of 50 PBTS and 150 matched controls were included for analysis. The median age of PBTS was 12, 12% identified as Black, and 18% identified as Hispanic. Fifty-two percent were eligible for free or reduced lunch. Forty percent received craniospinal irradiation, and 56% received chemotherapy. Post-RT PBTS had 21 times the odds of receiving accommodations (P = .006), twice the odds of being retained (P = .010), and 42% lower odds than controls receiving a passing mathematics score (P = .068). CONCLUSIONS To our knowledge, this is the first American experience to successfully link individual scholastic and clinical data. Scholastic performance serves as a meaningful patient-centered outcome complementing the existing suite of neuropsychological testing.
Collapse
Affiliation(s)
- Raymond B Mailhot Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida.
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Adeel Markatia
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Erin M Mobley
- Division of General Surgery and Surgical Oncology, Department of Surgery, University of Florida College of Medicine Jacksonville, Jacksonville, Florida
| | - Eric S Sandler
- Department of Pediatrics, Nemours Children's Specialty Clinic, Jacksonville, Florida
| | - Philipp R Aldana
- Department of Neurosurgery, University of Florida College of Medicine Jacksonville, Jacksonville, Florida
| | - Jasmin E Gomez
- University of Pennsylvania Graduate School of Education, Philadelphia, Pennsylvania
| | | | - Christopher G Morris
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Amy M Crisp
- Center for Data Solutions, University of Florida College of Medicine Jacksonville, Jacksonville, Florida
| | - Nancy P Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - David Miller
- School of Human Development and Organizational Studies in Education, University of Florida College of Education, Gainesville, Florida
| |
Collapse
|
3
|
Baron Nelson M, O'Neil SH, Cho SJ, Dhanani S, Tanedo J, Shin BJ, Rodman J, Olch A, Wong K, Nelson MD, Finlay J, Lepore N. Dose-dependent cranial irradiation associations with brain structures and neuropsychological outcomes in children with posterior fossa brain tumors. Brain Behav 2024; 14:e70019. [PMID: 39295085 PMCID: PMC11410875 DOI: 10.1002/brb3.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Posterior fossa irradiation with or without whole brain irradiation results in high doses of radiation to the thalamus, hippocampus, and putamen, structures critical to cognitive functioning. As a result, children with brain tumors treated with cranial irradiation (CRT) may experience significant cognitive late effects. We sought to determine the effect of radiation to those structures on neuropsychological outcome. METHODS Forty-seven children with a history of posterior fossa tumor (17 treated with surgery; 11 with surgery and chemotherapy; and 19 with surgery, chemotherapy, and CRT) underwent neuroimaging and neuropsychological assessment at a mean of 4.8 years after treatment, along with 17 healthy sibling controls. The putamen, thalamus, and hippocampus were segmented on each participant's magnetic resonance imaging for diffusion indices and volumes, and in the radiation treatment group, radiation dose to each structure was calculated. RESULTS Performance on visuoconstruction and spatial learning and memory was lower in patient groups than controls. Volume of the thalamus, when controlling for age, was smaller in the patient group treated with CRT than other groups. Higher radiation doses to the putamen correlated with higher fractional anisotropy in that structure. Higher radiation dose to the hippocampus correlated with lower spatial learning, and higher dose to thalami and putamina to lower verbal and nonverbal reasoning. CONCLUSIONS All children with posterior fossa tumors, regardless of treatment modality, had cognitive deficits compared to their sibling controls. Posterior fossa irradiation may affect thalamic volume and aspects of verbal and nonverbal cognitive functioning.
Collapse
Affiliation(s)
- Mary Baron Nelson
- Department of Radiology, Keck School of Medicine of USC, Los Angeles, California, USA
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Sharon H O'Neil
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, California, USA
- Neuropsychology Core, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
- Division of Neurology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Scarlet J Cho
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Psychological Science, School of Social Ecology, University of California Irvine, Irvine, California, USA
| | - Sofia Dhanani
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
- Division of Child Neurology, Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey Tanedo
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Brandon J Shin
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
- Kansas City University, College of Osteopathic Medicine, Joplin, Missouri, USA
| | - Jack Rodman
- Biostatistics, Epidemiology, and Research Design (BERD), Southern California Translational Science Institute, Los Angeles, California, USA
| | - Arthur Olch
- Department of Radiation Oncology, Keck School of Medicine of USC and Radiation Oncology Program, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Kenneth Wong
- Department of Radiation Oncology, Keck School of Medicine of USC and Radiation Oncology Program, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Marvin D Nelson
- Department of Radiology, Keck School of Medicine of USC, Los Angeles, California, USA
| | | | - Natasha Lepore
- Department of Radiology, Keck School of Medicine of USC, Los Angeles, California, USA
- CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Milano MT, Marks LB, Olch AJ, Yorke ED, Jackson A, Bentzen SM, Constine LS. Comparison of Risks of Late Effects From Radiation Therapy in Children Versus Adults: Insights From the QUANTEC, HyTEC, and PENTEC Efforts. Int J Radiat Oncol Biol Phys 2024; 119:387-400. [PMID: 38069917 DOI: 10.1016/j.ijrobp.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 05/19/2024]
Abstract
Pediatric Normal Tissue Effects in the Clinic (PENTEC) seeks to refine quantitative radiation dose-volume relationships for normal-tissue complication probabilities (NTCPs) in survivors of pediatric cancer. This article summarizes the evolution of PENTEC and compares it with similar adult-focused efforts (eg, Quantitative Analysis of Normal Tissue Effects in the Clinic [QUANTEC] and Hypofractionated Treatment Effects in the Clinic [HyTEC]) with respect to content, oversight, support, scope, and methodology of literature review. It then summarizes key organ-specific findings from PENTEC in an attempt to compare NTCP estimates in children versus adults. In brief, select normal-tissue risks within developing organs and tissues (eg, maldevelopment of musculoskeletal tissue, teeth, breasts, and reproductive organs) are primarily relevant only in children. For some organs and tissues, children appear to have similar (eg, brain for necrosis, optic apparatus, parotid gland, liver), greater (eg, brain for neurocognition, cerebrovascular, breast for lactation), less (ovary), or perhaps slightly less (eg, lung) risks of toxicity versus adults. Similarly, even within the broad pediatric age range (including adolescence), for some endpoints, younger children have greater (eg, hearing and brain for neurocognition) or lesser (eg, ovary, thyroid) risks of radiation-associated toxicities. NTCP comparisons in adults versus children are often confounded by marked differences in treatment paradigms that expose normal tissues to radiation (ie, cancer types, prescribed radiation therapy dose and fields, and chemotherapy agents used). To add to the complexity, it is unclear if age is best analyzed as a continuous variable versus with age groupings (eg, infants, young children, adolescents, young adults, middle-aged adults, older adults). Further work is needed to better understand the complex manner in which age and developmental status affect risk.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Arthur J Olch
- Radiation Oncology Program, Children's Hospital Los Angeles/Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ellen D Yorke
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Søren M Bentzen
- Greenebaum Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
5
|
Sienna J, Kahalley LS, Mabbott D, Grosshans D, Santiago AT, Paulino ADC, Merchant TE, Manzar GS, Dama H, Hodgson DC, Chintagumpala M, Okcu MF, Whitehead WE, Laperriere N, Ramaswamy V, Bartels U, Tabori U, Bennett JM, Das A, Craig T, Tsang DS. Proton Therapy Mediates Dose Reductions to Brain Structures Associated With Cognition in Children With Medulloblastoma. Int J Radiat Oncol Biol Phys 2024; 119:200-207. [PMID: 38040059 PMCID: PMC11023754 DOI: 10.1016/j.ijrobp.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/27/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Emerging evidence suggests proton radiation therapy may offer cognitive sparing advantages over photon radiation therapy, yet dosimetry has not been compared previously. The purpose of this study was to examine dosimetric correlates of cognitive outcomes in children with medulloblastoma treated with proton versus photon radiation therapy. METHODS AND MATERIALS In this retrospective, bi-institutional study, dosimetric and cognitive data from 75 patients (39 photon and 36 proton) were analyzed. Doses to brain structures were compared between treatment modalities. Linear mixed-effects models were used to create models of global IQ and cognitive domain scores. RESULTS The mean dose and dose to 40% of the brain (D40) were 2.7 and 4.1 Gy less among proton-treated patients compared with photon-treated patients (P = .03 and .007, respectively). Mean doses to the left and right hippocampi were 11.2 Gy lower among proton-treated patients (P < .001 for both). Mean doses to the left and right temporal lobes were 6.9 and 7.1 Gy lower with proton treatment, respectively (P < .001 for both). Models of cognition found statistically significant associations between higher mean brain dose and reduced verbal comprehension, increased right temporal lobe D40 with reduced perceptual reasoning, and greater left temporal mean dose with reduced working memory. Higher brain D40 was associated with reduced processing speed and global IQ scores. CONCLUSIONS Proton therapy reduces doses to normal brain structures compared with photon treatment. This leads to reduced cognitive decline after radiation therapy across multiple intellectual endpoints. Proton therapy should be offered to children receiving radiation for medulloblastoma.
Collapse
Affiliation(s)
- Julianna Sienna
- Juravinski Cancer Centre, Hamilton Health Sciences, Hamilton, Ontario, Canada.
| | - Lisa S Kahalley
- Division of Psychology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Donald Mabbott
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Theresa Santiago
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gohar S Manzar
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hitesh Dama
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David C Hodgson
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Murali Chintagumpala
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Mehmet Fatih Okcu
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - William E Whitehead
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Normand Laperriere
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ute Bartels
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie M Bennett
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anirban Das
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tim Craig
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Mekki L, Acharya S, Ladra M, Lee J. Deep learning segmentation of organs-at-risk with integration into clinical workflow for pediatric brain radiotherapy. J Appl Clin Med Phys 2024; 25:e14310. [PMID: 38373283 DOI: 10.1002/acm2.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
PURPOSE Radiation therapy (RT) of pediatric brain cancer is known to be associated with long-term neurocognitive deficits. Although target and organs-at-risk (OARs) are contoured as part of treatment planning, other structures linked to cognitive functions are often not included. This paper introduces a novel automatic segmentation tool specifically designed for the unique challenges posed by pediatric patients undergoing brain RT, as well as its seamless integration into the existing clinical workflow. METHODS AND MATERIALS Images of 47 pediatric brain cancer patients aged 1 to 20 years old and 33 two-year-old healthy infants were used to train a vision transformer, UNesT, for the segmentation of five brain OARs. The trained model was then incorporated to clinical workflow via DICOM connections between a treatment planning system (TPS) and a server hosting the trained model such that scans are sent from TPS to the server, automatically segmented, and sent back to TPS for treatment planning. RESULTS The proposed automatic segmentation framework achieved a median dice similarity coefficient of 0.928 (frontal white matter), 0.908 (corpus callosum), 0.933 (hippocampi), 0.819 (temporal lobes), and 0.960 (brainstem) with a mean ± SD run time of 1.8 ± 0.67 s over 20 test cases. CONCLUSIONS The pediatric brain segmentation tool showed promising performance on five OARs linked to neurocognitive functions and can easily be extended for additional structures. The proposed integration to the clinic enables easy access to the tool from clinical platforms and minimizes disruption to existing workflow while maximizing its benefits.
Collapse
Affiliation(s)
- Lina Mekki
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sahaja Acharya
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew Ladra
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Castle J, Shaw G, Weller D, Fielder E, Egnuni T, Singh M, Skinner R, von Zglinicki T, Clifford SC, Short SC, Miwa S, Hicks D. In vivo modeling recapitulates radiotherapy delivery and late-effect profile for childhood medulloblastoma. Neurooncol Adv 2024; 6:vdae091. [PMID: 38946880 PMCID: PMC11212071 DOI: 10.1093/noajnl/vdae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Background Medulloblastoma (MB) is the most common malignant pediatric brain tumor, with 5-year survival rates > 70%. Cranial radiotherapy (CRT) to the whole brain, with posterior fossa boost (PFB), underpins treatment for non-infants; however, radiotherapeutic insult to the normal brain has deleterious consequences to neurocognitive and physical functioning, and causes accelerated aging/frailty. Approaches to ameliorate radiotherapy-induced late-effects are lacking and a paucity of appropriate model systems hinders their development. Methods We have developed a clinically relevant in vivo model system that recapitulates the radiotherapy dose, targeting, and developmental stage of childhood medulloblastoma. Consistent with human regimens, age-equivalent (postnatal days 35-37) male C57Bl/6J mice received computerized tomography image-guided CRT (human-equivalent 37.5 Gy EQD2, n = 12) ± PFB (human-equivalent 48.7 Gy EQD2, n = 12), via the small animal radiation research platform and were longitudinally assessed for > 12 months. Results CRT was well tolerated, independent of PFB receipt. Compared to a sham-irradiated group (n = 12), irradiated mice were significantly frailer following irradiation (frailty index; P = .0002) and had reduced physical functioning; time to fall from a rotating rod (rotarod; P = .026) and grip strength (P = .006) were significantly lower. Neurocognitive deficits were consistent with childhood MB survivors; irradiated mice displayed significantly worse working memory (Y-maze; P = .009) and exhibited spatial memory deficits (Barnes maze; P = .029). Receipt of PFB did not induce a more severe late-effect profile. Conclusions Our in vivo model mirrored childhood MB radiotherapy and recapitulated features observed in the late-effect profile of MB survivors. Our clinically relevant model will facilitate both the elucidation of novel/target mechanisms underpinning MB late effects and the development of novel interventions for their amelioration.
Collapse
Affiliation(s)
- Jemma Castle
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gary Shaw
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett St, Leeds, UK
| | - Dominic Weller
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Fielder
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Teklu Egnuni
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett St, Leeds, UK
| | - Mankaran Singh
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Roderick Skinner
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas von Zglinicki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Susan C Short
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett St, Leeds, UK
| | - Satomi Miwa
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Edvardsson A, Gorgisyan J, Andersson KM, Vallhagen Dahlgren C, Dasu A, Gram D, Björk-Eriksson T, Munck af Rosenschöld P. Robustness and dosimetric verification of hippocampal-sparing craniospinal pencil beam scanning proton plans for pediatric medulloblastoma. Phys Imaging Radiat Oncol 2024; 29:100555. [PMID: 38405431 PMCID: PMC10891325 DOI: 10.1016/j.phro.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Background and Purpose Hippocampal-sparing (HS) is a method that can potentially reduce late cognitive complications for pediatric medulloblastoma (MB) patients treated with craniospinal proton therapy (PT). The aim of this study was to investigate robustness and dosimetric plan verification of pencil beam scanning HS PT. Materials and Methods HS and non-HS PT plans for the whole brain part of craniospinal treatment were created for 15 pediatric MB patients. A robust evaluation of the plans was performed. Plans were recalculated in a water phantom and measured field-by-field using an ion chamber detector at depths corresponding to the central part of hippocampi. All HS and non-HS fields were measured with the standard resolution of the detector and in addition 16 HS fields were measured with high resolution. Measured and planned dose distributions were compared using gamma evaluation. Results The median mean hippocampus dose was reduced from 22.9 Gy (RBE) to 8.9 Gy (RBE), while keeping CTV V95% above 95 % for all nominal HS plans. HS plans were relatively robust regarding hippocampus mean dose, however, less robust regarding target coverage and maximum dose compared to non-HS plans. For standard resolution measurements, median pass rates were 99.7 % for HS and 99.5 % for non-HS plans (p < 0.001). For high-resolution measurements, median pass rates were 100 % in the hippocampus region and 98.2 % in the surrounding region. Conclusions A substantial reduction of dose in the hippocampus region appeared feasible. Dosimetric accuracy of HS plans was comparable to non-HS plans and agreed well with planned dose distribution in the hippocampus region.
Collapse
Affiliation(s)
- Anneli Edvardsson
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jenny Gorgisyan
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | | | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Daniel Gram
- Department of Clinical Oncology and Palliative Care, Radiotherapy, Zealand University Hospital, Næstved, Denmark
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology – Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Björk-Eriksson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Regional Cancer Centre West, Western Sweden Healthcare Region, Gothenburg, Sweden
| | - Per Munck af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Chang L, Patel PP, Zhang Y, Cohen A, Cohen K, Jacobson L, Ladra M, Peterson RK, Acharya S. Impact of socioeconomic status and chemotherapy on neurocognitive performance in children with brain tumors. Neurooncol Pract 2023; 10:576-585. [PMID: 38009122 PMCID: PMC10666804 DOI: 10.1093/nop/npad049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023] Open
Abstract
Background Although the relationship between radiation and neurocognition has been extensively studied in the pediatric brain tumor population, it is increasingly recognized that neurocognitive impairment is multifactorial. Therefore, we quantified the effect of socioeconomic status (SES) and chemotherapy on neurocognitive impairment and decline post-treatment. Methods Eligible patients included those diagnosed with a brain tumor at < 22 years of age with ≥1 neurocognitive assessment. Neurocognitive impairment was defined as performance 1.5 standard deviations below the normative mean using age-standardized measures of intellectual function. Neurocognitive decline was defined as a negative slope. Neurocognitive outcomes included Wechsler indices of Full-Scale Intelligence Quotient (IQ). Logistic regression identified variables associated with neurocognitive impairment. Longitudinal data was analyzed using linear mixed models. Results Eligible patients (n = 152, median age at diagnosis = 9.6 years) had a mean neurocognitive follow-up of 50.2 months. After accounting for age and receipt of craniospinal irradiation, patients with public insurance had 8-fold increased odds of impaired IQ compared to private insurance (odds ratio [OR]: 7.59, P < .001). After accounting for age, change in IQ was associated with chemotherapy use (slope: -0.45 points/year with chemotherapy vs. 0.71 points/year without chemotherapy, P = .012). Conclusions Public insurance, an indicator of low SES, was associated with post-treatment impairment in IQ, highlighting the need to incorporate SES measures into prospective studies. Chemotherapy was associated with change in IQ. Further work is needed to determine whether impairment associated with low SES is secondary to baseline differences in IQ prior to brain tumor diagnosis, brain tumor/therapy itself, or some combination thereof.
Collapse
Affiliation(s)
- Leslie Chang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Palak P Patel
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yifan Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alan Cohen
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth Cohen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisa Jacobson
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew Ladra
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachel K Peterson
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sahaja Acharya
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Gordon JA, Pasli M, Cook CM, Connor R, Boyer PJ, Ju AW, Lee KS, Knudson KE, Peach MS. Novel combination of GammaTile cesium-131 brachytherapy with 5-aminolevulinic acid fluorescence-guided resection in the re-irradiation of pediatric recurrent high-grade glioma: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 6:CASE23346. [PMID: 37870768 PMCID: PMC10584082 DOI: 10.3171/case23346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Herein, the authors describe the successful utilization of 5-aminolevulinic acid (5-ALA) and the first case of GammaTile cesium-131 therapy in a pediatric patient with recurrent high-grade glioma. 5-ALA was utilized to optimize gross-total resection prior to GammaTile implantation. After conversion to an equivalent dose in 2-Gy fractions (EQD2), a composite was made of the GammaTile dose with the initial external beam radiotherapy. Two hypothetical plans consisting of a standard hypofractionated strategy for glioma reirradiation and a CyberKnife plan using GammaTile's planning target volume were developed and likewise underwent EQD2 conversion and composite plan generation with the initial radiotherapy. OBSERVATIONS 5-ALA was useful in achieving gross-total resection with no acute toxicity from the surgery or GammaTile irradiation. When compared with the hypothetical composite doses, GammaTile's composite, axium point dose (D0.03cc) to the brainstem was 32.9 Gy less than the hypofractionated and the CyberKnife composite plans at 38.7 Gy and 40.2 Gy, respectively. The right hippocampus demonstrated a substantially reduced composite plan dose with GammaTile with a D0.03cc of 62.4 Gy versus 71.7 and 80.7 Gy for the hypofractionated and CyberKnife composite plans, respectively. LESSONS Utilization of 5-ALA and GammaTile therapy yielded clinically superior tumor debulking and effective radiotherapy dose localization with sparing of organs at risk, respectively.
Collapse
Affiliation(s)
- Julian A. Gordon
- Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Melisa Pasli
- Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | | | | | - Philip J. Boyer
- Pathology and Laboratory Medicine, Brody School of Medicine at East Carolina University, Greenville, North Carolina; and
| | | | - K. Stuart Lee
- Department of Neurosurgery and Spine, East Carolina University Health, Greenville, North Carolina
| | - Kathleen E. Knudson
- Department of Neurosurgery and Spine, East Carolina University Health, Greenville, North Carolina
| | | |
Collapse
|
11
|
Wang JX, Li Y, Reddick WE, Conklin HM, Glass JO, Onar-Thomas A, Gajjar A, Cheng C, Lu ZH. A high-dimensional mediation model for a neuroimaging mediator: Integrating clinical, neuroimaging, and neurocognitive data to mitigate late effects in pediatric cancer. Biometrics 2023; 79:2430-2443. [PMID: 35962595 DOI: 10.1111/biom.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Pediatric cancer treatment, especially for brain tumors, can have profound and complicated late effects. With the survival rates increasing because of improved detection and treatment, a more comprehensive understanding of the impact of current treatments on neurocognitive function and brain structure is critically needed. A frontline medulloblastoma clinical trial (SJMB03) has collected data, including treatment, clinical, neuroimaging, and cognitive variables. Advanced methods for modeling and integrating these data are critically needed to understand the mediation pathway from the treatment through brain structure to neurocognitive outcomes. We propose an integrative Bayesian mediation analysis approach to model jointly a treatment exposure, a high-dimensional structural neuroimaging mediator, and a neurocognitive outcome and to uncover the mediation pathway. The high-dimensional imaging-related coefficients are modeled via a binary Ising-Gaussian Markov random field prior (BI-GMRF), addressing the sparsity, spatial dependency, and smoothness and increasing the power to detect brain regions with mediation effects. Numerical simulations demonstrate the estimation accuracy, power, and robustness. For the SJMB03 study, the BI-GMRF method has identified white matter microstructure that is damaged by cancer-directed treatment and impacts late neurocognitive outcomes. The results provide guidance on improving treatment planning to minimize long-term cognitive sequela for pediatric brain tumor patients.
Collapse
Affiliation(s)
- Jade Xiaoqing Wang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wilburn E Reddick
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Heather M Conklin
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John O Glass
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amar Gajjar
- Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zhao-Hua Lu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
12
|
Yao B, Delaidelli A, Vogel H, Sorensen PH. Pediatric Brain Tumours: Lessons from the Immune Microenvironment. Curr Oncol 2023; 30:5024-5046. [PMID: 37232837 PMCID: PMC10217418 DOI: 10.3390/curroncol30050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
In spite of recent advances in tumour molecular subtyping, pediatric brain tumours (PBTs) remain the leading cause of cancer-related deaths in children. While some PBTs are treatable with favourable outcomes, recurrent and metastatic disease for certain types of PBTs remains challenging and is often fatal. Tumour immunotherapy has emerged as a hopeful avenue for the treatment of childhood tumours, and recent immunotherapy efforts have been directed towards PBTs. This strategy has the potential to combat otherwise incurable PBTs, while minimizing off-target effects and long-term sequelae. As the infiltration and activation states of immune cells, including tumour-infiltrating lymphocytes and tumour-associated macrophages, are key to shaping responses towards immunotherapy, this review explores the immune landscape of the developing brain and discusses the tumour immune microenvironments of common PBTs, with hopes of conferring insights that may inform future treatment design.
Collapse
Affiliation(s)
- Betty Yao
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannes Vogel
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
13
|
Can We Compare the Health-Related Quality of Life of Childhood Cancer Survivors Following Photon and Proton Radiation Therapy? A Systematic Review. Cancers (Basel) 2022; 14:cancers14163937. [PMID: 36010929 PMCID: PMC9405962 DOI: 10.3390/cancers14163937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Proton radiation therapy is a radiation oncology innovation expected to produce superior health-related quality of life (HRQoL) outcomes for children with cancer, compared to conventional photon radiation therapy. The review aim is to identify if clinical evidence exists to support the anticipated HRQoL improvements for children receiving proton radiation therapy. HRQoL outcomes of 1986 childhood cancer survivors are described. There is insufficient quality evidence to compare HRQoL outcomes between proton and photon radiation therapy. Therefore, the current state of the literature does not conclude that proton radiation therapy produces superior HRQoL outcomes for childhood cancer survivors. Despite recommendations, no evidence of routine HRQoL assessment using patient-reported outcomes in paediatric radiation oncology are identified. Further rigorous collection and reporting of HRQoL data is essential to improve patient outcomes, and to adequately compare HRQoL between radiation therapy modalities. Abstract Paediatric cancer patients have a risk of late side effects after curative treatment. Proton radiation therapy (PRT) has the potential to reduce the incidence and severity of toxicities produced by conventional photon radiation therapy (XRT), which may improve the health-related quality of life (HRQoL) in children. This systematic review aimed to identify the evidence of HRQoL outcomes in childhood cancer survivors following XRT and PRT. Medline, Embase, and Scopus were systematically searched. Thirty studies were analysed, which described outcomes of 1986 childhood cancer survivors. Most studies (n = 24) described outcomes for children with a central nervous system (CNS) tumour, four studies reported outcomes for children with a non-CNS tumour, and two studies combined CNS and non-CNS diagnoses within a single cohort. No studies analysed routine HRQoL collection during paediatric radiation oncology clinical practice. There is insufficient quality evidence to compare HRQoL outcomes between XRT and PRT. Therefore, the current state of the literature does not conclude that PRT produces superior HRQoL outcomes for childhood cancer survivors. Standardised clinical implementation of HRQoL assessment using patient-reported outcomes is recommended to contribute to improvements in clinical care whilst assisting the progression of knowledge comparing XRT and PRT.
Collapse
|
14
|
Wilson LJ, Bryce-Atkinson A, Green A, Li Y, Merchant TE, van Herk M, Vasquez Osorio E, Faught AM, Aznar MC. Image-based data mining applies to data collected from children. Phys Med 2022; 99:31-43. [PMID: 35609381 PMCID: PMC9197776 DOI: 10.1016/j.ejmp.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Image-based data mining (IBDM) is a novel voxel-based method for analyzing radiation dose responses that has been successfully applied in adult data. Because anatomic variability and side effects of interest differ for children compared to adults, we investigated the feasibility of IBDM for pediatric analyses. METHODS We tested IBDM with CT images and dose distributions collected from 167 children (aged 10 months to 20 years) who received proton radiotherapy for primary brain tumors. We used data from four reference patients to assess IBDM sensitivity to reference selection. We quantified spatial-normalization accuracy via contour distances and deviations of the centers-of-mass of brain substructures. We performed dose comparisons with simplified and modified clinical dose distributions with a simulated effect, assessing their accuracy via sensitivity, positive predictive value (PPV) and Dice similarity coefficient (DSC). RESULTS Spatial normalizations and dose comparisons were insensitive to reference selection. Normalization discrepancies were small (average contour distance < 2.5 mm, average center-of-mass deviation < 6 mm). Dose comparisons identified differences (p < 0.01) in 81% of simplified and all modified clinical dose distributions. The DSCs for simplified doses were high (peak frequency magnitudes of 0.9-1.0). However, the PPVs and DSCs were low (maximum 0.3 and 0.4, respectively) in the modified clinical tests. CONCLUSIONS IBDM is feasible for childhood late-effects research. Our findings may inform cohort selection in future studies of pediatric radiotherapy dose responses and facilitate treatment planning to reduce treatment-related toxicities and improve quality of life among childhood cancer survivors.
Collapse
Affiliation(s)
- Lydia J Wilson
- St. Jude Children's Research Hospital, Department of Radiation Oncology, Memphis, TN, USA.
| | - Abigail Bryce-Atkinson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew Green
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yimei Li
- St. Jude Children's Research Hospital, Department of Biostatistics, Memphis, TN, USA
| | - Thomas E Merchant
- St. Jude Children's Research Hospital, Department of Radiation Oncology, Memphis, TN, USA
| | - Marcel van Herk
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Austin M Faught
- St. Jude Children's Research Hospital, Department of Radiation Oncology, Memphis, TN, USA
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Tsang DS, Khandwala MM, Liu ZA, Richard N, Shen G, Sekely A, Bernstein LJ, Simpson R, Mason W, Chung C, de Moraes FY, Murray L, Shultz D, Laperriere N, Millar BA, Edelstein K. Neurocognitive performance in adults treated with radiation for a primary brain tumour. Adv Radiat Oncol 2022; 7:101028. [DOI: 10.1016/j.adro.2022.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 07/05/2022] [Indexed: 10/31/2022] Open
|
16
|
Saran F, Eisenstat DD. The relapse doesn't fall far from the radiotherapy field: Lessons to be learned for the future of radiotherapy in medulloblastoma from the relapse patterns of SJMB03. Neuro Oncol 2022; 24:1176-1177. [PMID: 35325220 PMCID: PMC9248383 DOI: 10.1093/neuonc/noac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frank Saran
- Corresponding Authors: Frank Saran, MD, FRCR, Department of Radiation Oncology, Auckland City Hospital, Auckland 1023, New Zealand ()
| | - David D Eisenstat
- David D. Eisenstat, MD, MA, FRCPC, Children’s Cancer Centre, The Royal Children’s Hospital Melbourne, Parkville, VIC 3052, Australia ()
| |
Collapse
|
17
|
Lehrer EJ, Jones BM, Dickstein DR, Green S, Germano IM, Palmer JD, Laack N, Brown PD, Gondi V, Wefel JS, Sheehan JP, Trifiletti DM. The Cognitive Effects of Radiotherapy for Brain Metastases. Front Oncol 2022; 12:893264. [PMID: 35847842 PMCID: PMC9279690 DOI: 10.3389/fonc.2022.893264] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Brain metastases are the most common intracranial neoplasm and are seen in upwards of 10-30% of patients with cancer. For decades, whole brain radiation therapy (WBRT) was the mainstay of treatment in these patients. While WBRT is associated with excellent rates of intracranial tumor control, studies have demonstrated a lack of survival benefit, and WBRT is associated with higher rates of cognitive deterioration and detrimental effects on quality of life. In recent years, strategies to mitigate this risk, such as the incorporation of memantine and hippocampal avoidance have been employed with improved results. Furthermore, stereotactic radiosurgery (SRS) has emerged as an appealing treatment option over the last decade in the management of brain metastases and is associated with superior cognitive preservation and quality of life when compared to WBRT. This review article evaluates the pathogenesis and impact of cranial irradiation on cognition in patients with brain metastases, as well as current and future risk mitigation techniques.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brianna M. Jones
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel R. Dickstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sheryl Green
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Isabelle M. Germano
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern Medicine Cancer Center Warrenville and Proton Center, Warrenville, IL, United States
| | - Jeffrey S. Wefel
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Daniel M. Trifiletti,
| |
Collapse
|
18
|
Gupta T, Kalra B, Goswami S, Deodhar J, Rane P, Epari S, Moiyadi A, Dasgupta A, Chatterjee A, Chinnaswamy G. Neurocognitive function and survival in children with average-risk medulloblastoma treated with hyperfractionated radiation therapy alone: Long-term mature outcomes of a prospective study. Neurooncol Pract 2022; 9:236-245. [PMID: 35601967 PMCID: PMC9113282 DOI: 10.1093/nop/npac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The purpose of this study was to report long-term neurocognitive and clinical outcomes in children treated for average-risk medulloblastoma with hyperfractionated radiation therapy (HFRT) alone. Methods Between 2006 and 2010, 20 children with rigorously staged average-risk medulloblastoma were treated on a prospective study with HFRT without upfront adjuvant systemic chemotherapy after written informed consent. HFRT was delivered as twice-daily fractions (1 Gy/fraction, 6-8 hours apart, 5 days/week) to craniospinal axis (36 Gy/36 fractions) plus conformal tumor-bed boost (32 Gy/32 fractions). Neurocognitive function was assessed at baseline and periodically on follow-up using age-appropriate intelligence quotient (IQ) scales. Results Median age was 8 years (range 5-14 years) with 70% being males. Mean and standard deviation (SD) scores at baseline were 90.5 (SD = 17.08), 88 (SD = 16.82) and 88 (SD = 17.24) for Verbal Quotient (VQ), Performance Quotient (PQ), and Full-Scale IQ (FSIQ) respectively. Mean scores remained stable in the short-to-medium term but declined gradually beyond 5 years with borderline statistical significance for VQ (P = .042), but nonsignificant decline in PQ (P = .259) and FSIQ (P = .108). Average rate of neurocognitive decline was <1 IQ point per year over a 10-year period. Regression analysis stratified by age, gender, and baseline FSIQ failed to demonstrate any significant impact of the tested covariates on longitudinal neurocognitive function. At a median follow-up of 145 months, 10-year Kaplan-Meier estimates of progression-free survival and overall survival were 63.2% and 74.1% respectively. Conclusion HFRT alone without upfront adjuvant chemotherapy in children with average-risk medulloblastoma is associated with modest decline in neurocognitive functioning with acceptable long-term survival outcomes and may be most appropriate for resource-constrained settings.
Collapse
Affiliation(s)
- Tejpal Gupta
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Babusha Kalra
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Savita Goswami
- Clinical Psychology & Psychiatry Unit, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Jayita Deodhar
- Clinical Psychology & Psychiatry Unit, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Pallavi Rane
- Clinical Research Secretariat, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Sridhar Epari
- Department of Pathology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neuro-Surgery, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| | - Girish Chinnaswamy
- Department of Pediatric Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, India
| |
Collapse
|
19
|
Tohidinezhad F, Di Perri D, Zegers CML, Dijkstra J, Anten M, Dekker A, Van Elmpt W, Eekers DBP, Traverso A. Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review. Front Psychol 2022; 13:853472. [PMID: 35432113 PMCID: PMC9009149 DOI: 10.3389/fpsyg.2022.853472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Although an increasing body of literature suggests a relationship between brain irradiation and deterioration of neurocognitive function, it remains as the standard therapeutic and prophylactic modality in patients with brain tumors. This review was aimed to abstract and evaluate the prediction models for radiation-induced neurocognitive decline in patients with primary or secondary brain tumors. Methods MEDLINE was searched on October 31, 2021 for publications containing relevant truncation and MeSH terms related to “radiotherapy,” “brain,” “prediction model,” and “neurocognitive impairments.” Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool. Results Of 3,580 studies reviewed, 23 prediction models were identified. Age, tumor location, education level, baseline neurocognitive score, and radiation dose to the hippocampus were the most common predictors in the models. The Hopkins verbal learning (n = 7) and the trail making tests (n = 4) were the most frequent outcome assessment tools. All studies used regression (n = 14 linear, n = 8 logistic, and n = 4 Cox) as machine learning method. All models were judged to have a high risk of bias mainly due to issues in the analysis. Conclusion Existing models have limited quality and are at high risk of bias. Following recommendations are outlined in this review to improve future models: developing cognitive assessment instruments taking into account the peculiar traits of the different brain tumors and radiation modalities; adherence to model development and validation guidelines; careful choice of candidate predictors according to the literature and domain expert consensus; and considering radiation dose to brain substructures as they can provide important information on specific neurocognitive impairments.
Collapse
Affiliation(s)
- Fariba Tohidinezhad
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Dario Di Perri
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Jeanette Dijkstra
- Department of Medical Psychology, School for Mental Health and Neurosciences (MHeNS), Maastricht University Medical Center, Maastricht, Netherlands
| | - Monique Anten
- Department of Neurology, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Wouter Van Elmpt
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Alberto Traverso
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
20
|
Optimization of hippocampus sparing during whole brain radiation therapy with simultaneous integrated boost-tutorial and efficacy of complete directional hippocampal blocking. Strahlenther Onkol 2022; 198:537-546. [PMID: 35357511 PMCID: PMC9165264 DOI: 10.1007/s00066-022-01916-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
Abstract
Purpose Hippocampus-avoidance whole brain radiotherapy with simultaneous integrated boost (HA-WBRT+SIB) is a complex treatment option for patients with multiple brain metastases, aiming to prevent neurocognitive decline and simultaneously increase tumor control. Achieving efficient hippocampal dose reduction in this context can be challenging. The aim of the current study is to present and analyze the efficacy of complete directional hippocampal blocking in reducing the hippocampal dose during HA-WBRT+SIB. Methods A total of 30 patients with multiple metastases having undergone HA-WBRT+SIB were identified. The prescribed dose was 30 Gy in 12 fractions to the whole brain, with 98% of the hippocampus receiving ≤ 9 Gy and 2% ≤ 17 Gy and with SIB to metastases/resection cavities of 36–51 Gy in 12 fractions. Alternative treatment plans were calculated using complete directional hippocampal blocking and compared to conventional plans regarding target coverage, homogeneity, conformity, dose to hippocampi and organs at risk. Results All alternative plans reached prescription doses. Hippocampal blocking enabled more successful sparing of the hippocampus, with a mean dose of 8.79 ± 0.99 Gy compared to 10.07 ± 0.96 Gy in 12 fractions with the conventional method (p < 0.0001). The mean dose to the whole brain (excluding metastases and hippocampal avoidance region) was 30.52 ± 0.80 Gy with conventional planning and 30.28 ± 0.11 Gy with hippocampal blocking (p = 0.11). Target coverage, conformity and homogeneity indices for whole brain and metastases, as well as doses to organs at risk were similar between planning methods (p > 0.003). Conclusion Complete directional hippocampal blocking is an efficient method for achieving improved hippocampal sparing during HA-WBRT+SIB.
Collapse
|