1
|
Bai H, Wang XF, Xu YH, Zaorsky NG, Wang HH, Niu GM, Li JC, Dong Y, Li JY, Yu L, Chen MF, Lu XT, Yuan ZY, Yang JL, Meng MB. Brachial plexopathy following stereotactic body radiation therapy in apical lung malignancies: A dosimetric pooled analysis of individual patient data. Radiother Oncol 2024; 200:110529. [PMID: 39255923 DOI: 10.1016/j.radonc.2024.110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study is to establish dosimetric constraints for the brachial plexus at risk of developing grade ≥ 2 brachial plexopathy in the context of stereotactic body radiation therapy (SBRT). PATIENTS AND METHODS Individual patient data from 349 patients with 356 apical lung malignancies who underwent SBRT were extracted from 5 articles. The anatomical brachial plexus was delineated following the guidelines provided in the atlases developed by Hall, et al. and Kong, et al.. Patient characteristics, pertinent SBRT dosimetric parameters, and brachial plexopathy grades (according to CTCAE 4.0 or 5.0) were obtained. Normal tissue complication probability (NTCP) models were used to estimate the risk of developing grade ≥ 2 brachial plexopathy through maximum likelihood parameter fitting. RESULTS The prescription dose/fractionation schedules for SBRT ranged from 27 to 60 Gy in 1 to 8 fractions. During a follow-up period spanning from 6 to 113 months, 22 patients (6.3 %) developed grade ≥2 brachial plexopathy (4.3 % grade 2, 2.0 % grade 3); the median time to symptoms onset after SBRT was 8 months (ranged, 3-54 months). NTCP models estimated a 10 % risk of grade ≥2 brachial plexopathy with an anatomic brachial plexus maximum dose (Dmax) of 20.7 Gy, 34.2 Gy, and 42.7 Gy in one, three, and five fractions, respectively. Similarly, the NTCP model estimates the risks of grade ≥2 brachial plexopathy as 10 % for BED Dmax at 192.3 Gy and EQD2 Dmax at 115.4 Gy with an α/β ratio of 3, respectively. Symptom persisted after treatment in nearly half of patients diagnosed with grade ≥2 brachial plexopathy (11/22, 50 %). CONCLUSIONS This study establishes dosimetric constraints ranging from 20.7 to 42.7 Gy across 1-5 fractions, aimed at mitigating the risk of developing grade ≥2 brachial plexopathy following SBRT. These findings provide valuable guidance for future ablative SBRT in apical lung malignancies.
Collapse
Affiliation(s)
- Hui Bai
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xiao-Feng Wang
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yi-Han Xu
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Huan-Huan Wang
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Geng-Min Niu
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jia-Cheng Li
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yang Dong
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jun-Yi Li
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Lu Yu
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mei-Feng Chen
- Department of Respiratory and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, PR China
| | - Xiao-Tong Lu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, PR China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Ji-Long Yang
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Mao-Bin Meng
- Department of Radiation Oncology, CyberKnife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
2
|
Bensenane R, Helfre S, Cao K, Carton M, Champion L, Girard N, Glorion M, Vieira T, Waissi W, Crehange G, Beddok A. Optimizing lung cancer radiation therapy: A systematic review of multifactorial risk assessment for radiation-induced lung toxicity. Cancer Treat Rev 2024; 124:102684. [PMID: 38278078 DOI: 10.1016/j.ctrv.2024.102684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Radiation therapy (RT) is essential in treating advanced lung cancer, but may lead to radiation pneumonitis (RP). This systematic review investigates the use of pulmonary function tests (PFT) and other parameters to predict and mitigate RP, thereby improving RT planning. METHODS A systematic review sifted through PubMed and on BioMed Central, targeting articles from September 2005 to December 2022 containing the keywords: Lung Cancer, Radiotherapy, and pulmonary function test. RESULTS From 1153 articles, 80 were included. RP was assessed using CTCAEv.4 in 30 % of these. Six studies evaluated post-RT quality of life in lung cancer patients, reporting no decline. Patients with RP and chronic obstructive pulmonary disease (COPD) generally exhibited poorer overall survival. Notably, forced expiratory volume in one second (FEV1) and diffusing capacity of the lung for carbon monoxide (DLCO) declined 24 months post-RT, while forced vital capacity (FVC) stayed stable. In the majority of studies, age over 60, tumors located in the lower part of the lung, and low FEV1 before RT were associated with a higher risk of RP. Dosimetric factors (V5, V20, MLD) and metabolic imaging emerged as significant predictors of RP risk. A clinical checklist blending patient and tumor characteristics, PFT results, and dosimetric criteria was proposed for assessing RP risk before RT. CONCLUSION The review reveals the multifactorial nature of RP development following RT in lung cancer. This approach should guide individualized management and calls for a prospective study to validate these findings and enhance RP prevention strategies.
Collapse
Affiliation(s)
- Rayan Bensenane
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris/Saint-Cloud/Orsay, France
| | - Sylvie Helfre
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris/Saint-Cloud/Orsay, France
| | - Kim Cao
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris/Saint-Cloud/Orsay, France
| | | | | | - Nicolas Girard
- Institut Curie, Department of Thoracic Oncology, Paris, France
| | | | - Thibaut Vieira
- Institut Mutualist Montsouris, Department of Pneumology, Paris, France
| | - Waisse Waissi
- Centre Léon Bérard, Department of Radiation Oncology, Lyon, France
| | - Gilles Crehange
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris/Saint-Cloud/Orsay, France
| | - Arnaud Beddok
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris/Saint-Cloud/Orsay, France; Institut Curie, PSL Research University, University Paris Saclay, Inserm LITO, 91898 Orsay, France.
| |
Collapse
|
3
|
Shan Y, Zheng L, Zhang S, Qian B. Abnormal expression of FOXM1 in carcinogenesis of renal cell carcinoma: From experimental findings to clinical applications. Biochem Biophys Res Commun 2024; 692:149251. [PMID: 38056162 DOI: 10.1016/j.bbrc.2023.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Renal cell carcinoma (RCC) is a prevalent malignancy within the genitourinary system. At present, patients with high-grade or advanced RCC continue to have a bleak prognosis. Mounting research have emphasized the significant involvement of Forkhead box M1 (FOXM1) in RCC development and progression. Therefore, it is imperative to consolidate the existing evidence regarding the contributions of FOXM1 to RCC tumorigenesis through a comprehensive review. This study elucidated the essential functions of FOXM1 in promoting RCC growth, invasion, and metastasis by regulating cell cycle progression, DNA repair, angiogenesis, and epithelial-mesenchymal transition (EMT). Also, FOXM1 might serve as a novel diagnostic and prognostic biomarker as well as a therapeutic target for RCC. Clinical findings demonstrated that the expression of FOXM1 was markedly upregulated in RCC samples, while a high level of FOXM1 was found to be associated with a poor overall survival rate of RCC. Furthermore, it is worth noting that FOXM1 may have a significant impact on the resistance of renal cell carcinoma (RCC) to radiotherapy. This observation suggests that inhibiting FOXM1 could be a promising strategy to impede the progression of RCC and enhance its sensitivity to radiotherapy. The present review highlighted the pivotal role of FOXM1 in RCC development. FOXM1 has the capacity to emerge as not only a valuable diagnostic and prognostic tool but also a viable therapeutic option for unresectable RCC.
Collapse
Affiliation(s)
- Yanmei Shan
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China; Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
4
|
Niu GM, Gao MM, Wang XF, Dong Y, Zhang YF, Wang HH, Guan Y, Cheng ZY, Zhao SZ, Song YC, Tao Z, Zhao LJ, Meng MB, Spring Kong FM, Yuan ZY. Dosimetric analysis of brachial plexopathy after stereotactic body radiotherapy: Significance of organ delineation. Radiother Oncol 2024; 190:110023. [PMID: 37995850 DOI: 10.1016/j.radonc.2023.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES Examine the significance of contouring the brachial plexus (BP) for toxicity estimation and select metrics for predicting radiation-induced brachial plexopathy (RIBP) after stereotactic body radiotherapy. MATERIALS AND METHODS Patients with planning target volume (PTV) ≤ 2 cm from the BP were eligible. The BP was contoured primarily according to the RTOG 1106 atlas, while subclavian-axillary veins (SAV) were contoured according to RTOG 0236. Apical PTVs were classified as anterior (PTV-A) or posterior (PTV-B) PTVs. Variables predicting grade 2 or higher RIBP (RIBP2) were selected through least absolute shrinkage and selection operator regression and logistic regression. RESULTS Among 137 patients with 140 BPs (median follow-up, 32.1 months), 11 experienced RIBP2. For patients with RIBP2, the maximum physical dose to the BP (BP-Dmax) was 46.5 Gy (median; range, 35.7 to 60.7 Gy). Of these patients, 54.5 % (6/11) satisfied the RTOG limits when using SAV delineation; among them, 83.3 % (5/6) had PTV-B. For patients with PTV-B, the maximum physical dose to SAV (SAV-Dmax) was 11.2 Gy (median) lower than BP-Dmax. Maximum and 0.3 cc biologically effective doses to the BP based on the linear-quadratic-linear model (BP-BEDmax LQL and BP-BED0.3cc LQL, α/β = 3) were selected as predictive variables with thresholds of 118 and 73 Gy, respectively. CONCLUSION Contouring SAV may significantly underestimate the RIBP2 risk in dosimetry, especially for patients with PTV-B. BP contouring indicated BP-BED0.3cc LQL and BP-BEDmax LQL as potential predictors of RIBP2.
Collapse
Affiliation(s)
- Geng-Min Niu
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Miao-Miao Gao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiao-Feng Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang Dong
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yi-Fan Zhang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Nankai University School of Medicine, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yong Guan
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Ze-Yuan Cheng
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Shu-Zhou Zhao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Yong-Chun Song
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhen Tao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Lu-Jun Zhao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Mao-Bin Meng
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, HKU Shenzhen Hospital, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Shenzhen, Hong Kong, China.
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
5
|
Ao YQ, Gao J, Jiang JH, Wang HK, Wang S, Ding JY. Comprehensive landscape and future perspective of long noncoding RNAs in non-small cell lung cancer: it takes a village. Mol Ther 2023; 31:3389-3413. [PMID: 37740493 PMCID: PMC10727995 DOI: 10.1016/j.ymthe.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Bao W, Zhou X, Gu F, Lin J, Li B. Neoadjuvant immune checkpoint inhibitor therapy and chemotherapy improve pulmonary ventilation and diffusion function in patients with lung cancer. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:588-593. [PMID: 37899399 PMCID: PMC10630051 DOI: 10.3724/zdxbyxb-2023-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/08/2023] [Indexed: 10/31/2023]
Abstract
OBJECTIVES To investigate changes of pulmonary ventilation function and diffusion function in lung cancer patients after neoadjuvant immune checkpoint inhibitors (ICIs) therapy combined with chemotherapy treatment. METHODS Patients with newly diagnosed lung cancer (Ⅱa-Ⅲb) admitted to Zhejiang Cancer Hospital from October 2021 to July 2022, who received ICIs combined with chemotherapy for more than two courses were enrolled. Patients underwent pulmonary ventilation function and diffusion function assessments before and after treatment. The demographic information, sizes and locations of cancer lesions, doses and duration of ICIs used, pulmonary function results before and after treatment, and the tumor regression were documented. The changes of pulmonary function parameters before and after the treatment were analyzed with paired t test and Wilcoxon rank-sum test. The factors influencing the pulmonary function changes were analyzed by multiple linear Lasso regression and ridge regression. RESULTS Among the 52 patients, 50 cases were males (96.15%) and 43 cases were squamous carcinoma (82.69%). The medium age of the patients was 67 years. After neoadjuvant therapy, 36 patients (69.23%) showed remission of tumor lesions. After treatment, the parameters of pulmonary ventilation inspiratory vital capacity (IVC) and the area under the expiratory flow-volume curve (AREAex), and the parameter of pulmonary diffusion total lung capacity increased compared with the baseline (all P<0.05). Forced vital capacity (FVC) and forced expiratory volume in first second (FEV1) also showed an increasing trend. Multivariate linear Lasso regression and ridge regression showed that baseline IVC had a significant negative effect on IVC improvement (Beta=-0.435, t=-2.968, P<0.01), baseline TLC had a significant negative effect on the improvement of TLC (Beta=-0.266, t=-2.474, P<0.05), and the remission of obstructive pneumonia favored the improvement of TLC (Beta=0.308, t=2.443, P<0.05). CONCLUSIONS After ICIs neoadjuvant treatment combined with chemotherapy, the lung ventilation and diffusion function can be improved in lung cancer patients, particularly for those with reduced baseline ventilation and diffusion function.
Collapse
Affiliation(s)
- Wu'an Bao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Xia Zhou
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Feiying Gu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Juan Lin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Bin Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
7
|
Wu TC, Stube A, Felix C, Oseguera D, Romero T, Goldman J, Garon EB, Lee JM, Glaspy J, Lisberg AE, Rusthoven CG, Camidge DR, Siva S, Solomon B, Lee A, Tenn SE, Shaverdian N, Steinberg ML, Raldow AC, Lee P. Safety and Efficacy Results From iSABR, a Phase 1 Study of Stereotactic ABlative Radiotherapy in Combination With Durvalumab for Early-Stage Medically Inoperable Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2023; 117:118-122. [PMID: 37023987 DOI: 10.1016/j.ijrobp.2023.03.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Affiliation(s)
- Trudy C Wu
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Annalise Stube
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Carol Felix
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Denise Oseguera
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California
| | - Tahmineh Romero
- Department of Medicine, University of California, Los Angeles, California
| | - Jonathan Goldman
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California
| | - Edward B Garon
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California
| | - Jay M Lee
- Department of Surgery, Division of Thoracic Surgery, University of California, Los Angeles, California
| | - John Glaspy
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California
| | - Aaron E Lisberg
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - D Ross Camidge
- Department of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alan Lee
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Stephen E Tenn
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Narek Shaverdian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael L Steinberg
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Ann C Raldow
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Percy Lee
- Department of Radiation Oncology, City of Hope, Los Angeles, California.
| |
Collapse
|
8
|
Wu Z, Chen T, Qian Y, Luo G, Liao F, He X, Xu W, Pu J, Ding S. High-Dose Ionizing Radiation Accelerates Atherosclerotic Plaque Progression by Regulating P38/NCOA4-Mediated Ferritinophagy/Ferroptosis of Endothelial Cells. Int J Radiat Oncol Biol Phys 2023; 117:223-236. [PMID: 37059236 DOI: 10.1016/j.ijrobp.2023.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE Radiation therapy (RT) significantly increased the incidence of coronary artery diseases, especially atherosclerosis. Endothelial dysfunction has been the major side effect of RT among tumor patients who received RT. However, the involvement between endothelial dysfunction and radiation-induced atherosclerosis (RIA) remains unclear. Here, we constructed a murine model of RIA, aiming to uncover its underlying mechanisms and identify novel strategies for RIA prevention and treatment. METHODS AND MATERIALS Eight-week-old ApoE-/- mice that were fed a Western diet were subjected to partial carotid ligation (PCL). Four weeks later, ionizing radiation (IR) of 10 Gy was performed to verify the detrimental role of IR on atherogenesis. Ultrasound imaging, RT quantitative polymerase chain reaction, histopathology and immunofluorescence, and biochemical analysis were performed 4 weeks after IR. To study the involvement of endothelial ferroptosis induced by IR in RIA, mice after IR were administrated with ferroptosis agonist (cisplatin) or antagonist (ferrostatin-1) intraperitoneally. Western blotting, autophagic flux measurement, reactive oxygen species level detection, and coimmunoprecipitation assay were carried out in vitro. Furthermore, to determine the effect of ferritinophagy inhibition on RIA, in vivo knockdown of NCOA4 was carried out by pluronic gel. RESULTS We verified that accelerated plaque progression was concomitant with endothelial cell (EC) ferroptosis after IR induction, as suggested by a higher level of lipid peroxidation and changes in ferroptosis-associated genes in the PCL + IR group than in the PCL group within vasculature. In vitro experiments further validated the devastating effects of IR on oxidative stress and ferritinophagy in ECs. Mechanistic experiments revealed that IR induced EC ferritinophagy and subsequent ferroptosis in a P38/NCOA4-dependent manner. Both in vitro and in vivo experiments confirmed the therapeutic effect of NCOA4 knockdown in alleviating IR-induced ferritinophagy/ferroptosis of EC and RIA. CONCLUSIONS Our findings provide novel insights into the regulatory mechanisms of RIA and first prove that IR accelerates atherosclerotic plaque progression by regulating ferritinophagy/ferroptosis of ECs in a P38/NCOA4-dependent manner.
Collapse
Affiliation(s)
- Zhinan Wu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taiwei Chen
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxuan Qian
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guqing Luo
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Liao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjie He
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyi Xu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Song Ding
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
Chi A, Nguyen NP. Mechanistic rationales for combining immunotherapy with radiotherapy. Front Immunol 2023; 14:1125905. [PMID: 37377970 PMCID: PMC10291094 DOI: 10.3389/fimmu.2023.1125905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Immunotherapy consisted mainly of immune checkpoint inhibitors (ICIs) has led to significantly improved antitumor response. However, such response has been observed only in tumors possessing an overall responsive tumor immune micro-environment (TIME), in which the presence of functional tumor-infiltrating lymphocytes (TILs) is critical. Various mechanisms of immune escape from immunosurveillance exist, leading to different TIME phenotypes in correlation with primary or acquired resistance to ICIs. Radiotherapy has been shown to induce antitumor immunity not only in the irradiated primary tumor, but also at unirradiated distant sites of metastases. Such antitumor immunity is mainly elicited by radiation's stimulatory effects on antigenicity and adjuvanticity. Furthermore, it may be significantly augmented when irradiation is combined with immunotherapy, such as ICIs. Therefore, radiotherapy represents one potential therapeutic strategy to restore anti-tumor immunity in tumors presenting with an unresponsive TIME. In this review, the generation of anti-tumor immunity, its impairment, radiation's immunogenic properties, and the antitumor effects of combining radiation with immunotherapy will be comprehensively discussed.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Capital Medical University Xuanwu Hospital, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nam Phong Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| |
Collapse
|
10
|
García-Pardo M, Chang A, Schmid S, Dong M, Brown MC, Christiani D, Tindel HA, Brennan P, Chen C, Zhang J, Ryan BM, Zaridze D, Schabath MB, Leal LF, Reis RM, Tardon A, Fernández-Tardon G, Shete SS, Andrew A, Brenner H, Xu W, Hung RJ, Liu G. Respiratory and Cardiometabolic Comorbidities and Stages I to III NSCLC Survival: A Pooled Analysis From the International Lung Cancer Consortium. J Thorac Oncol 2023; 18:313-323. [PMID: 36396063 PMCID: PMC10463560 DOI: 10.1016/j.jtho.2022.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION We explored the association of respiratory and cardiometabolic comorbidities with NSCLC overall survival (OS) and lung cancer-specific survival (LCSS), by stage, in a large, multicontinent NSCLC pooled data set. METHODS On the basis of patients pooled from 11 International Lung Cancer Consortium studies with available respiratory and cardiometabolic comorbidity data, adjusted hazard ratios (aHRs) were estimated using Cox models for OS. LCSS was evaluated using competing risk Grey and Fine models and cumulative incidence functions. Logistic regression (adjusted OR [aOR]) was applied to assess factors associated with surgical resection. RESULTS OS analyses used patients with NSCLC with respiratory health or cardiometabolic health data (N = 16,354); a subset (n = 11,614) contributed to LCSS analyses. In stages I to IIIA NSCLC, patients with respiratory comorbidities had worse LCCS (stage IA aHR = 1.51, confidence interval [CI]: 1.17-1.95; stages IB-IIIA aHR = 1.20, CI: 1.06-1.036). In contrast, patients with stages I to IIIA NSCLC with cardiometabolic comorbidities had a higher risk of death from competing (non-NSCLC) causes (stage IA aHR = 1.34, CI: 1.12-1.69). The presence of respiratory comorbidities was inversely associated with having surgical resection (stage IA aOR = 0.54, CI: 0.35-0.83; stages IB-IIIA aOR = 0.57, CI: 0.46-0.70). CONCLUSIONS The presence of either cardiometabolic or respiratory comorbidities is associated with worse OS in stages I to III NSCLC. Patients with respiratory comorbidities were less likely to undergo surgery and had worse LCSS, whereas patients with cardiometabolic comorbidities had a higher risk of death from competing causes. As more treatment options for stages I to III NSCLC are introduced into the practice, accounting for cardiometabolic and respiratory comorbidities becomes essential in trial interpretation and clinical management.
Collapse
Affiliation(s)
- Miguel García-Pardo
- The Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Amy Chang
- The Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sabine Schmid
- Department of Medical Oncology, University Hospital Berne, Berne, Switzerland
| | - Mei Dong
- The Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - M Catherine Brown
- The Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David Christiani
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Hilary Aurora Tindel
- Division of Internal Medicine & Public Health and Vanderbilt Ingram Cancer Center (VICC), Vanderbilt University Medical Centre, Nashville, Tennessee
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jie Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Brid M Ryan
- Laboratory of Human Carcinogenesis, Centre for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russia
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil; Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Adonina Tardon
- IUOPA, University of Oviedo and ISPA (Health Research Institute of the Principality of Asturias) and CIBERESP, Asturias, Spain
| | - Guillermo Fernández-Tardon
- IUOPA, University of Oviedo and ISPA (Health Research Institute of the Principality of Asturias) and CIBERESP, Asturias, Spain
| | - Sanjay S Shete
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Hermann Brenner
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Network of Aging Research, Heidelberg University, Heidelberg, Germany
| | - Wei Xu
- The Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Rayjean J Hung
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, Canada
| | - Geoffrey Liu
- The Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Yang WY, He Y, Peng M, Zhang Z, Xie S, Wu Z, Hu Q, Yu F. Thermal ablation versus radiotherapy for inoperable stage III non-small cell lung cancer: a propensity score matching analysis. Int J Hyperthermia 2022; 40:2154577. [PMID: 36535924 DOI: 10.1080/02656736.2022.2154577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To compare the survival benefits of thermal ablation (TA) and radiotherapy in inoperable patients with stage III non-small cell lung cancer (NSCLC). METHOD A retrospective analysis was conducted using the data from the Surveillance, Epidemiology, and End Results (SEER) program. Propensity score matching (PSM) was conducted to balance potential baseline confounding factors. Survival analyses were conducted using Kaplan-Meier and Cox regression methods. RESULTS The present study included 33,393 inoperable patients with stage III NSCLC, including 106 patients treated with TA and 33,287 patients treated with radiotherapy. No statistical difference in overall survival (OS) (p = .065) or cancer-specific survival (CSS) (p = .996) was found between the patients treated with TA and those treated with radiotherapy. Using 1:3 matching, a matched cohort of 420 patients (105 patients treated with TA, 315 patients treated with radiotherapy) was identified. The differences in OS (p = .177) and CSS (p = .605) were still not significant between the radiotherapy and TA groups after PSM. According to subgroup analyses, TA showed comparable survival benefits in almost all subgroups compared to radiotherapy. CONCLUSION For inoperable stage III NSCLC, the survival benefit of TA was comparable to radiotherapy. TA may be a potential therapeutic modality for inoperable stage III NSCLC.
Collapse
Affiliation(s)
- Wei-Yu Yang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhe Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shouzhi Xie
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zeyu Wu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
Melichar B. Biomarkers in the management of lung cancer: changing the practice of thoracic oncology. Clin Chem Lab Med 2022; 61:906-920. [PMID: 36384005 DOI: 10.1515/cclm-2022-1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Lung cancer currently represents a leading cause of cancer death. Substantial progress achieved in the medical therapy of lung cancer during the last decade has been associated with the advent of targeted therapy, including immunotherapy. The targeted therapy has gradually shifted from drugs suppressing general mechanisms of tumor growth and progression to agents aiming at transforming mechanisms like driver mutations in a particular tumor. Knowledge of the molecular characteristics of a tumor has become an essential component of the more targeted therapeutic approach. There are specific challenges for biomarker determination in lung cancer, in particular a commonly limited size of tumor sample. Liquid biopsy is therefore of particular importance in the management of lung cancer. Laboratory medicine is an indispensable part of multidisciplinary management of lung cancer. Clinical
Chemistry and Laboratory Medicine (CCLM) has played and will continue playing a major role in updating and spreading the knowledge in the field.
Collapse
Affiliation(s)
- Bohuslav Melichar
- Department of Oncology , Palacký University Medical School and Teaching Hospital , Olomouc , Czech Republic
- Department of Oncology and Radiotherapy and Fourth Department of Medicine , Charles University Medical School and Teaching Hospital , Hradec Králové , Czech Republic
| |
Collapse
|
13
|
Faroni L, Collie L, Gabrielli F, Baldotto C, Moraes F. Role of Stereotactic Radiation Therapy in Operable and Inoperable Early-Stage Non-small Cell Lung Cancer. Curr Treat Options Oncol 2022; 23:1185-1200. [PMID: 35969313 DOI: 10.1007/s11864-022-01002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
OPINION STATEMENT Radiation therapy is becoming an increasingly important part of non-small cell lung cancer (NSCLC) management. Approximately 60% of all cancer patients require radiation therapy (RT) as part of their treatment. For lung cancer, this number is even higher, reaching approximately 77% of all patients, from radical to palliative modalities of RT. This percentage may even be underestimated, as it may not account for the more recent use of RT in oligometastatic lung cancer patients. Thus, we can estimate that each year there will be approximately 21,890 new lung cancer patients in the USA requiring RT. These numbers are expected to continue to rise, as lung cancer radiation techniques continue to improve. There is growing interest in determining the best treatment options for early-stage NSCLC patients. There is well-established data showing the benefit of RT for inoperable patients, and more recent encouraging data even in operable patients.
Collapse
Affiliation(s)
- Lilian Faroni
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rua Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil.
| | - Laura Collie
- Division of Radiation Oncology, Department of Oncology, Queen's University, Kingston, Canada
| | - Flavia Gabrielli
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rua Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
| | - Clarissa Baldotto
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rua Diniz Cordeiro, 30, Botafogo, Rio de Janeiro, RJ, 22281-100, Brazil
| | - Fabio Moraes
- Division of Radiation Oncology, Department of Oncology, Queen's University, Kingston, Canada
| |
Collapse
|
14
|
Rationale for Combing Stereotactic Body Radiation Therapy with Immune Checkpoint Inhibitors in Medically Inoperable Early-Stage Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14133144. [PMID: 35804917 PMCID: PMC9264861 DOI: 10.3390/cancers14133144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The rate of recurrence remains high for lymph node negative early-stage non-small cell lung cancer that are over 2–3 cm in size following stereotactic body radiation therapy (SBRT). This is due to the increased incidence of out-of-field failures, which warrants the addition of systemic therapy. Immune checkpoint inhibitors (ICIs), a class of immunotherapy, may induce a strong distant therapeutic effect known as the “abscopal” effect. This makes them a very suitable class of drugs to be combined with SBRT when treating early lung cancer with high-risk features, such as larger tumor size. In this review, we discuss the rationale and evidence for doing so. Abstract Stereotactic body radiation therapy (SBRT) has been widely adopted as an alternative to lobar resection in medically inoperable patients with lymph-node negative (N0) early-stage (ES) non-small cell lung cancer (NSCLC). Excellent in-field local control has been consistently achieved with SBRT in ES NSCLC ≤ 3 cm in size. However, the out-of-field control following SBRT remains suboptimal. The rate of recurrence, especially distant recurrence remains high for larger tumors. Additional systemic therapy is warranted in N0 ES NSCLC that is larger in size. Radiation has been shown to have immunomodulatory effects on cancer, which is most prominent with higher fractional doses. Strong synergistic effects are observed when immune checkpoint inhibitors (ICIs) are combined with radiation doses in SBRT’s dose range. Unlike chemotherapy, ICIs can potentiate a strong systemic response outside of the irradiated field when combined with SBRT. Together with their less toxic nature, ICIs represent a very suitable class of systemic agents to be combined with SBRT when treating ES NSCLC with high-risk features, such as larger tumor size. In this review, we describe the rationale and emerging evidence, as well as ongoing investigations in this area.
Collapse
|
15
|
Stinchcombe TE, Bradley JD. Thoracic Oncology: Current Standard Therapy and Future Developments. J Clin Oncol 2022; 40:527-529. [PMID: 34985922 DOI: 10.1200/jco.21.02396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|