1
|
Wang C, Hwang M, Paulson B, Mhandire D, Ozair S, O'Connor TL, Gandhi S, Attwood KM, Hertz DL, Goey AKL. Potential association of SULT2A1 and ABCG2 variant alleles with increased risk for palbociclib toxicity. Pharmacogenomics 2024; 25:367-375. [PMID: 39092502 PMCID: PMC11418216 DOI: 10.1080/14622416.2024.2380240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Aim: This study evaluated associations between CYP3A4*22 and variants in other pharmacogenes (CYP3A5, SULT2A1, ABCB1, ABCG2, ERCC1) and the risk for palbociclib-associated toxicities.Materials & methods: Two hundred cancer patients who received standard-of-care palbociclib were genotyped and associations with toxicity were evaluated retrospectively.Results: No significant associations were found for CYP3A4*22, CYP3A5*3, ABCB1_rs1045642, ABCG2_rs2231142, ERCC1_rs3212986 and ERCC1_rs11615. Homozygous variant carriers of SULT2A1_rs182420 had higher incidence of dose modifications due to palbociclib toxicity (odds ratio [OR]: 4.334, 95% CI: 1.057-17.767, p = 0.042). ABCG2_rs2231137 variant carriers had borderline higher incidence of grade 3-4 neutropenia (OR: 4.14, 95% CI: 0.99-17.37, p = 0.052).Conclusion: Once validated, SULT2A1 and ABCG2 variants may be useful to individualize palbociclib dosing to minimize toxicities and improve treatment outcomes.
Collapse
Affiliation(s)
- Chong Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Mary Hwang
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI48109, USA
| | - Brandon Paulson
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI48109, USA
| | - Doreen Mhandire
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Sadat Ozair
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Tracey L O'Connor
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Kristopher M Attwood
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI48109, USA
| | - Andrew KL Goey
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| |
Collapse
|
2
|
Liang Y, Gersch CL, Lehman J, Henry NL, Smith KL, Rae JM, Stearns V, Hertz DL. Attempted replication of pharmacogenetic association of variants in PPP1R14C and CCDC148 with aromatase inhibitor-induced musculoskeletal symptoms. Pharmacogenet Genomics 2024; 34:126-129. [PMID: 38359166 DOI: 10.1097/fpc.0000000000000522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Third-generation aromatase inhibitors (AI) are the standard treatment for patients with hormone receptor positive (HR+) breast cancer. While effective, AI can lead to severe adverse events, including AI-induced musculoskeletal syndrome (AIMSS). Genetic predictors of AIMSS have the potential to personalize AI treatment and improve outcomes. We attempted to replicate results from a previous genome-wide association study that found a lower risk of AIMSS in patients carrying PPP1R14C rs912571 and a higher risk in patients carrying CCDC148 rs79048288. AIMSS data were collected prospectively from patients with HR+ breast cancer prior to starting and after 3 and 6 months of adjuvant AI via the Patient-Reported Outcome Measurement Information System and Functional Assessment of Cancer Therapy-Endocrine Symptom. Germline genotypes for PPP1R14C rs912571 and CCDC148 rs79048288 were tested for a similar association with AIMSS as previously reported via $2 tests. Of the 143 patients with AIMSS and genetics data were included in the analysis. There was no association identified between PPP1R14C rs912571 and AIMSS risk ( P > 0.05). Patients carrying CCDC148 rs79048288 variant alleles had lower AIMSS incidence in a secondary analysis ( P = 0.04); however, this was in the opposite direction of the previous finding. The study did not replicate previously reported associations with AIMSS risk for genetic variants in PPP1R14C and CCDC148 and AIMSS risk. Further research is needed to discover and validate genetic predictors of AIMSS that can be used to personalize treatment in patients with HR+ breast cancer.
Collapse
Affiliation(s)
- Yuqing Liang
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy
| | - Christina L Gersch
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jennifer Lehman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - N Lynn Henry
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Karen Lisa Smith
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - James M Rae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy
| |
Collapse
|
3
|
Di Meglio A, Vaz-Luis I. Systemic inflammation and cancer-related frailty: shifting the paradigm toward precision survivorship medicine. ESMO Open 2024; 9:102205. [PMID: 38194879 PMCID: PMC10820355 DOI: 10.1016/j.esmoop.2023.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- A Di Meglio
- Cancer Survivorship Group, INSERM U981, Gustave Roussy, Villejuif.
| | - I Vaz-Luis
- Cancer Survivorship Group, INSERM U981, Gustave Roussy, Villejuif; Interdisciplinary Department for the Organization of Patient Pathways (DIOPP), Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Fragoulakis V, Roncato R, Bignucolo A, Patrinos GP, Toffoli G, Cecchin E, Mitropoulou C. Cost-utility analysis and cross-country comparison of pharmacogenomics-guided treatment in colorectal cancer patients participating in the U-PGx PREPARE study. Pharmacol Res 2023; 197:106949. [PMID: 37802427 DOI: 10.1016/j.phrs.2023.106949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES A cost-utility analysis was conducted to evaluate pharmacogenomic (PGx)-guided treatment compared to the standard-of-care intervention among patients diagnosed with colorectal cancer (CRC) in Italy. METHODS Data derived from a prospective, open-label, block randomized clinical trial, as a part of the largest PGx study worldwide (355 patients in both arms) were used. Mortality was used as the primary health outcome to estimate life years (LYs) gained in treatment arms within a survival analysis context. PGx-guided treatment was based on established drug-gene interactions between capecitabine, 5-fluorouracil and irinotecan with DPYD and/or UGT1A1 genomic variants. Utility values for the calculation of Quality Adjusted Life Year (QALY) was based on Visual Analog Scale (VAS) score. Missing data were imputed via the Multiple Imputation method and linear interpolation, when possible, while censored cost data were corrected via the Replace-From-The-Right algorithm. The Incremental Cost-Effectiveness Ratio (ICER) was calculated for QALYs. Raw data were bootstrapped 5000 times in order to produce 95% Confidence Intervals based on non-parametric percentile method and to construct a cost-effectiveness acceptability curve. Cost differences for study groups were investigated via a generalized linear regression model analysis. Total therapy cost per patient reflected all resources expended in the management of any adverse events, including medications, diagnostics tests, devices, surgeries, the utilization of intensive care units, and wards. RESULTS The total cost of the study arm was estimated at €380 (∼ US$416; 95%CI: 195-596) compared to €565 (∼ US$655; 95%CI: 340-724) of control arm while the mean survival in study arm was estimated at 1.58 (+0.25) LYs vs 1.50 (+0.26) (Log Rank test, X2 = 4.219, df=1, p-value=0.04). No statistically significant difference was found in QALYs. ICER was estimated at €13418 (∼ US$14695) per QALY, while the acceptability curve indicated that when the willingness-to-pay was under €5000 (∼ US$5476), the probability of PGx being cost-effective overcame 70%. The most frequent adverse drug event in both groups was neutropenia of severity grade 3 and 4, accounting for 82.6% of total events in the study arm and 65.0% in the control arm. Apart from study arm, smoking status, Body-Mass-Index and Cumulative Actionability were also significant predictors of total cost. Subgroup analysis conducted in actionable patients (7.9% of total patients) indicated that PGx-guided treatment was a dominant option over its comparator with a probability greater than 92%. In addition, a critical literature review was conducted, and these findings are in line with those reported in other European countries. CONCLUSION PGx-guided treatment strategy may represent a cost-saving option compared to the existing conventional therapeutic approach for colorectal cancer patient management in the National Health Service of Italy.
Collapse
Affiliation(s)
| | | | | | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece; Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, United Arab Emirates
| | | | - Erika Cecchin
- Centro di Riferimento Oncologico (CRO), Aviano, Italy
| | - Christina Mitropoulou
- The Golden Helix Foundation, London, UK; Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Brest P, Mograbi B, Pagès G, Hofman P, Milano G. Checkpoint inhibitors and anti-angiogenic agents: a winning combination. Br J Cancer 2023; 129:1367-1372. [PMID: 37735244 PMCID: PMC10628191 DOI: 10.1038/s41416-023-02437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The combination of immune checkpoint inhibitors and anti-angiogenic agents is a promising new approach in cancer treatment. Immune checkpoint inhibitors block the signals that help cancer cells evade the immune system, while anti-angiogenic agents target the blood vessels that supply the tumour with nutrients and oxygen, limiting its growth. Importantly, this combination triggers synergistic effects based on molecular and cellular mechanisms, leading to better response rates and longer progression-free survival than treatment alone. However, these combinations can also lead to increased side effects and require close monitoring.
Collapse
Affiliation(s)
- Patrick Brest
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France.
| | - Baharia Mograbi
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France
| | - Gilles Pagès
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS, Inserm, Centre Antoine Lacassagne, FHU-OncoAge, 06107, Nice, France
- Université Côte d'Azur, CHU-Nice, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Nice, France
| | - Gerard Milano
- Centre Antoine Lacassagne, Scientific Valorisation Department, Nice, France
| |
Collapse
|
6
|
Seligson ND, Kolesar JM, Alam B, Baker L, Lamba JK, Fridley BL, Salahudeen AA, Hertz DL, Hicks JK. Integrating pharmacogenomic testing into paired germline and somatic genomic testing in patients with cancer. Pharmacogenomics 2023; 24:731-738. [PMID: 37702060 DOI: 10.2217/pgs-2023-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Precision medicine has revolutionized clinical care for patients with cancer through the development of targeted therapy, identification of inherited cancer predisposition syndromes and the use of pharmacogenetics to optimize pharmacotherapy for anticancer drugs and supportive care medications. While germline (patient) and somatic (tumor) genomic testing have evolved separately, recent interest in paired germline/somatic testing has led to an increase in integrated genomic testing workflows. However, paired germline/somatic testing has generally lacked the incorporation of germline pharmacogenomics. Integrating pharmacogenomics into paired germline/somatic genomic testing would be an efficient method for increasing access to pharmacogenomic testing. In this perspective, the authors argue for the benefits of implementing a comprehensive approach integrating somatic and germline testing that is inclusive of pharmacogenomics in clinical practice.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy & Translational Research, The University of Florida, Jacksonville, FL 32209, USA
- Center for Pharmacogenomics & Translational Research, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Jill M Kolesar
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY 40536, USA
| | - Benish Alam
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Laura Baker
- Nemours Center for Cancer & Blood Disorders, Nemours Children's Health, Wilmington, DE 19803, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy & Translational Research, The University of Florida, Gainesville, FL 32611, USA
| | - Brooke L Fridley
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ameen A Salahudeen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Tempus Labs Inc., Chicago, IL 60654, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - J Kevin Hicks
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Ferrero JM, Mahammedi H, Gravis G, Roubaud G, Beuzeboc P, Largillier R, Borchiellini D, Linassier C, Ebran N, Pace-Loscos T, Etienne-Grimaldi MC, Schiappa R, Gal J, Milano G. Abigene, a Prospective, Multicentric Study of Abiraterone Acetate Pharmacogenetics in Metastatic Castration-Resistant Prostate Cancer. Pharmaceutics 2023; 15:651. [PMID: 36839973 PMCID: PMC9959353 DOI: 10.3390/pharmaceutics15020651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Abiraterone acetate (AA) is the first-in-class of drugs belonging to the second-generation of agents inhibiting androgen neosynthesis in advanced prostate cancer. A cumulative experience attests that germinal gene polymorphisms may play a role in the prediction of anticancer agent pharmacodynamics variability. In the present prospective, multicentric study, gene polymorphisms of CYP17A1 (AA direct target) and the androgen transporter genes SLCO2B1 and SLCO1B3 (potential modulators of AA activity) were confronted with AA pharmacodynamics (treatment response and toxicity) in a group of 137 advanced prostate cancer patients treated in the first line by AA. The median follow-up was 56.3 months (95% CI [52.5-61]). From multivariate analysis, rs2486758 C/C (CYP17A1) and PSA (≥10 ng/mL) were associated with a shorter 3-year biological PFS (HR = 4.05, IC95% [1.46-11.22]; p = 0.007 and HR = 2.08, IC95% [1.31-3.30]; p = 0.002, respectively). From a multivariate analysis, the rs743572 (CYP17A1) and performance status were independently associated with significant toxicity (OR = 3.78 (IC95% [1.42-9.75]; p = 0.006 and OR = 4.54; IC95% [1.46-13.61]; p = 0.007, respectively). Host genome characteristics may help to predict AA treatment efficacy and identify patients at risk for toxicity.
Collapse
Affiliation(s)
- Jean-Marc Ferrero
- Medical Oncology Department, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| | - Hakim Mahammedi
- Medical Oncology Department, Centre Jean Perrin, 63011 Clermond Ferrand, France
| | - Gwenaelle Gravis
- Medical Oncology Department, Institut Paoli Calmette, 13009 Marseille, France
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, 33076 Bordeaux, France
| | | | - Remi Largillier
- Medical Oncology Department, Centre Azuréen de Cancérologie, 06250 Mougins, France
| | - Delphine Borchiellini
- Medical Oncology Department, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| | - Claude Linassier
- Medical Oncology Department, Centre Hospitalier Régional Universitaire, 37044 Tours, France
| | - Nathalie Ebran
- Oncopharmacology Unit, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| | - Tanguy Pace-Loscos
- Epidemiology and Biostatistics Department, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| | | | - Renaud Schiappa
- Epidemiology and Biostatistics Department, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| | - Jocelyn Gal
- Epidemiology and Biostatistics Department, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| | - Gérard Milano
- Oncopharmacology Unit, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| |
Collapse
|
8
|
Hertz DL. Assessment of the Clinical Utility of Pretreatment DPYD Testing for Patients Receiving Fluoropyrimidine Chemotherapy. J Clin Oncol 2022; 40:3882-3892. [PMID: 36108264 DOI: 10.1200/jco.22.00037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Patients who carry pathogenic variants in DPYD have higher systemic fluoropyrimidine (FP) concentrations and greater risk of severe and fatal FP toxicity. Pretreatment DPYD testing and DPYD-guided FP dosing to reduce toxicity and health care costs is recommended by European clinical oncology guidelines and has been adopted across Europe, but has not been recommended or adopted in the United States. The cochairs of the National Comprehensive Cancer Network Guidelines for colon cancer treatment explained their concerns with recommending pretreatment DPYD testing, particularly the risk that reduced FP doses in DPYD carriers may reduce treatment efficacy. METHODS This special article uses previously published frameworks for assessing the clinical utility of cancer biomarker tests, including for germline indicators of toxicity risk, to assess the clinical utility of pretreatment DPYD testing, with a particular focus on the risk of reducing treatment efficacy. RESULTS There is no direct evidence of efficacy reduction, and the available indirect evidence demonstrates that DPYD-guided FP dosing results in similar systemic FP exposure and toxicity compared with standard dosing in noncarriers, and is well calibrated to the maximum tolerated dose, strongly suggesting there is minimal risk of efficacy reduction. CONCLUSION This article should serve as a call to action for clinicians and clinical guidelines committees in the United States to re-evaluate the clinical utility of pretreatment DPYD testing. If clinical utility has not been demonstrated, further dialogue is needed to clarify what additional evidence is needed and which of the available study designs, also described within this article, would be appropriate. Clinical guideline recommendations for pretreatment DPYD testing would increase clinical adoption and ensure that all patients receive maximally safe and effective FP treatment.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI
| |
Collapse
|
9
|
Wardill HR, Sonis ST, Blijlevens NMA. Using real world data to advance the provision of supportive cancer care: mucositis as a case study. Curr Opin Support Palliat Care 2022; 16:161-167. [PMID: 35929562 DOI: 10.1097/spc.0000000000000600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW For decades, clinical decision making and practice has been largely informed by data generated through randomized clinical trials (RCTs). By design, RCTs are highly restricted in both scope and scale, resulting in narrow indications and iterative advances in clinical practice. With the transition to electronic health records, there are now endless opportunities to utilize these 'real world' data (RWD) to make more substantive advances in our understanding that are, by nature, more applicable to reality. This review discusses the current paradigm of using big data to advance and inform the provision of supportive cancer care, using mucositis as a case study. RECENT FINDINGS Global efforts to synthesize RWD in cancer have almost exclusively focused on tumor classification and treatment efficacy, leveraging on routine tumor pathology and binary response outcomes. In contrast, clinical notes and billing codes are not as applicable to treatment side effects which require integration of both clinical and biological data, as well as patient-reported outcomes. SUMMARY Cancer treatment-induced toxicities are heterogeneous and complex, and as such, the use of RWD to better understand their etiology and interaction is challenging. Multidisciplinary cooperation and leadership are needed to improve data collection and governance to ensure the right data is accessible and reliable.
Collapse
Affiliation(s)
- Hannah R Wardill
- School of Biomedicine, The Faculty of health and Medical Sciences, The University of Adelaide
- Supportive Oncology Research Group, Precision Medicine (Cancer), The South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Steve T Sonis
- Division of Oral Medicine, Brigham and Women's Hospital and the Dana-Farber Cancer Institute; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston
- Primary Endpoint Solutions, Waltham, Massachusetts, USA
| | - Nicole M A Blijlevens
- Department of Hematology
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|