1
|
Ciceri S, Bertolotti A, Serra A, Gattuso G, Boschetti L, Capasso M, Cecchi C, Sorrentino S, Quarello P, Ciniselli CM, Verderio P, De Cecco L, Manenti G, Diomedi Camassei F, Collini P, Spreafico F, Perotti D. Widening the spectrum of players affected by genetic changes in Wilms tumor relapse. iScience 2024; 27:110684. [PMID: 39262773 PMCID: PMC11387809 DOI: 10.1016/j.isci.2024.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Few studies investigated the genetics of relapsed Wilms tumor (WT), suggesting the SIX1 gene, the microRNA processing genes, and the MYCN network as possibly involved in a relevant percentage of relapses. We investigated 28 relapsing WT patients (10 new cases and 18 cases in which the involvement of SIX and miRNAPG had been excluded) with a panel of ∼5000 genes. We identified variants affecting genes involved in DNA damage prevention and repair in 12/28 relapsing patients (42.9%), and affecting genes involved in chromatin modification and regulation in 6/28 relapsing patients (21.4%), widening the spectrum of anomalies detected in relapsed tumors. The disclosure of molecular pathways possibly underlying tumor progression might allow to use molecularly targeted therapies at relapse. Surprisingly, germline anomalies, mostly affecting DNA damage prevention and repair genes, were identified in 13/28 patients (46.4%), raising the issue of performing a genetic testing to all children presenting with a WT.
Collapse
Affiliation(s)
- Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alessia Bertolotti
- Diagnostic and Molecular Research Lab, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Annalisa Serra
- Department of Pediatric Hematology and Oncology, Gene and Cellular Therapy, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giovanna Gattuso
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Luna Boschetti
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maria Capasso
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Cecilia Cecchi
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | | | - Paola Quarello
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Chiara Maura Ciniselli
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paolo Verderio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giacomo Manenti
- Unit of Animal Health and Welfare, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Paola Collini
- Soft Tissue Tumor Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
2
|
Spreafico F, Biasoni D, Montini G. Most appropriate surgical approach in children with Wilms tumour, risk of kidney disease, and related considerations. Pediatr Nephrol 2024; 39:1019-1022. [PMID: 37934272 DOI: 10.1007/s00467-023-06213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Affiliation(s)
- Filippo Spreafico
- Department of Medical Oncology and Hematology, Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy.
| | - Davide Biasoni
- Surgical Department, Pediatric Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| |
Collapse
|
3
|
Quarello P, Carli D, Biasoni D, Gerocarni Nappo S, Morosi C, Cotti R, Garelli E, Zucchetti G, Spadea M, Tirtei E, Spreafico F, Fagioli F. Implications of an Underlying Beckwith-Wiedemann Syndrome for Wilms Tumor Treatment Strategies. Cancers (Basel) 2023; 15:1292. [PMID: 36831633 PMCID: PMC9954715 DOI: 10.3390/cancers15041292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Beckwith-Wiedemann Syndrome (BWS) is a pediatric overgrowth disorder involving a predisposition to embryonal tumors. Most of the tumors associated with BWS occur in the first 8-10 years of life, and the most common is Wilms tumor (WT). BWS clinical heterogeneity includes subtle overgrowth features or even silent phenotypes, and WT may be the presenting symptom of BWS. WT in BWS individuals exhibit distinct characteristics from those of sporadic WT, and the management of these patients needs a peculiar approach. The most important feature is a higher risk of developing bilateral disease at some time in the course of the illness (synchronous bilateral disease at diagnosis or metachronous recurrence after initial presentation with unilateral disease). Accordingly, neoadjuvant chemotherapy is the recommended approach also for BWS patients with unilateral WT to facilitate nephron-sparing surgical approaches. This review emphasizes the importance of early BWS recognition, particularly if a WT has already occurred, as this will result in an urgent consideration of first-line cancer therapy.
Collapse
Affiliation(s)
- Paola Quarello
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Diana Carli
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Davide Biasoni
- Pediatric Surgical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | | | - Carlo Morosi
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Roberta Cotti
- Pediatric Radiology, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Emanuela Garelli
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Giulia Zucchetti
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Manuela Spadea
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Elisa Tirtei
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Franca Fagioli
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Childhood cancer is rare, but it remains the leading cause of disease-related mortality among children 1-14 years of age. As exposure to environmental factors is lower in children, inherited genetic factors become an important player in the cause of childhood cancer. This review highlights the current knowledge and approach for cancer predisposition syndromes in children. RECENT FINDINGS Current literature suggests that 10-18% of paediatric cancer patients have an underlying genetic susceptibility to their disease. With better knowledge and technology, more genes and syndromes are being discovered, allowing tailored treatment and surveillance for the probands and their families.Studies have demonstrated that focused surveillance can detect early malignancies and increase overall survival in several cancer predisposition syndromes. Various approaches have been proposed to refine early tumour detection strategies while minimizing the burden on patients and families. Newer therapeutic strategies are being investigated to treat, or even prevent, tumours in children with cancer predisposition. SUMMARY This review summarizes the current knowledge about different cancer predisposition syndromes, focusing on the diagnosis, genetic counselling, surveillance and future directions.
Collapse
Affiliation(s)
- Yoshiko Nakano
- Division of Haematology/Oncology, The Hospital for Sick Children
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ron Rabinowicz
- Division of Haematology/Oncology, The Hospital for Sick Children
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Concurrent Hepatoblastoma and Wilms Tumor Leading to Diagnosis of Beckwith-Wiedemann Syndrome. J Pediatr Hematol Oncol 2022; 45:e525-e529. [PMID: 36730589 DOI: 10.1097/mph.0000000000002593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023]
Abstract
Beckwith-Wiedemann syndrome (BWS) is an epigenetic overgrowth disorder and cancer predisposition syndrome caused by imprinting defects of chromosome 11p15.5-11p15.4. BWS should be considered in children with atypical presentations of embryonal tumors regardless of clinical phenotype. Risk of malignancy correlates with specific molecular subgroups of BWS making molecular subclassification important for appropriate cancer screening. We report the first case of concurrent embryonal tumors in a phenotypically normal child, leading to the diagnosis of BWS with paternal uniparental disomy and describe the molecular classification of BWS as it relates to malignancy risk, along with approach to management.
Collapse
|
6
|
Welter N, Brzezinski J, Treece A, Chintagumpala M, Young MD, Perotti D, Kieran K, Jongmans MCJ, Murphy AJ. The pathophysiology of bilateral and multifocal Wilms tumors: What we can learn from the study of predisposition syndromes. Pediatr Blood Cancer 2022; 70 Suppl 2:e29984. [PMID: 36094328 DOI: 10.1002/pbc.29984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
Abstract
Approximately 5% of patients with Wilms tumor present with synchronous bilateral disease. The development of synchronous bilateral Wilms tumor (BWT) is highly suggestive of a genetic or epigenetic predisposition. Patients with known germline predisposition to Wilms tumor (WT1 variants, Beckwith Wiedemann spectrum, TRIM28 variants) have a higher incidence of BWT. This Children's Oncology Group (COG)-International Society for Pediatric Oncology (SIOP-) HARMONICA initiative review for pediatric renal tumors details germline genetic and epigenetic predisposition to BWT development, with an emphasis on alterations in 11p15.5 (ICR1 gain of methylation, paternal uniparental disomy, and postzygotic somatic mosaicism), WT1, TRIM28, and REST. Molecular mechanisms that result in BWT are often also present in multifocal Wilms tumor (multiple separate tumors in one or both kidneys). We identify priority areas for international collaborative research to better understand how predisposing genetic or epigenetic factors associate with response to neoadjuvant chemotherapy, oncologic outcomes, and long-term renal function outcomes.
Collapse
Affiliation(s)
- Nils Welter
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany
| | - Jack Brzezinski
- Department of Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amy Treece
- Department of Pathology, Children's Hospital Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Daniela Perotti
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Kathleen Kieran
- Division of Urology, Seattle Children's Hospital, Seattle, Washington, USA.,Department of Urology, University of Washington, Seattle, Washington, USA
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|