1
|
Biojone ER, Guido BC, Cavalcante LLM, dos Santos Júnior ADCM, de Pontes RM, Furtado FM, Córdoba JC, Magalhães IMQ, de Oliveira DM, Camargo R. Prevalence of FLT3 gene mutation and its expression in Brazilian pediatric B-ALL patients: clinical implications. Front Pediatr 2024; 12:1505060. [PMID: 39711880 PMCID: PMC11658997 DOI: 10.3389/fped.2024.1505060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction There is consistent evidence that FLT3 may be a driver gene in B-ALL and that selected cases may benefit from the use of FLT3 inhibitors. Our study was conducted to evaluate the frequency and types of FLT3 mutations in pediatric patients with B-ALL, the relative expression of this gene, and their influence on clinical evolution. Methods We evaluated 156 children with B-ALL treated between July 2018 and September 2023. Screening for FLT3 mutations was performed using RFLP and fragment analysis, while FLT3 expression was assessed by qPCR. Results FLT3-TKD and/or FLT3-JM-INDEL mutations were found in 8 patients (5.1%). We did not identify any ITD-type mutations. None of the patients with identified FLT3 mutations presented recurrent rearrangements in B-ALL or alterations in the IKZF1, PAX5, or ERG genes, suggesting that FLT3 mutation may serve as the driving mechanism for leukemia in these cases. Two (2/8) patients with FLT3 mutations experienced disease relapse. Although we did not observe FLT3 overexpression among patients with FLT3 mutations, FLT3 expression levels were higher in these patients compared to WT patients. Four FLT3-WT patients presented FLT3 overexpression, defined as RQ > 10. FLT3 mutations or overexpression were not associated with relapses or survival rates. Discussion Our findings do not support the inclusion of FLT3 as a routine marker in the risk stratification of B-ALL patients; nevertheless, FLT3 alterations may be relevant for guiding personalized treatment approaches in specific clinical contexts.
Collapse
Affiliation(s)
| | - Bruna Cândido Guido
- Laboratory of Translational Research, Children’s Hospital of Brasília, Brasília, Brazil
| | | | | | | | - Felipe Magalhães Furtado
- Oncology and Hematology Division, Children’s Hospital of Brasília, Brasília, Brazil
- Laboratory of Translational Research, Children’s Hospital of Brasília, Brasília, Brazil
- Department of Hematology, Sabin Diagnóstico e Saúde, Brasília, Brazil
| | - José Carlos Córdoba
- Oncology and Hematology Division, Children’s Hospital of Brasília, Brasília, Brazil
- Laboratory of Translational Research, Children’s Hospital of Brasília, Brasília, Brazil
| | - Isis Maria Quezado Magalhães
- Oncology and Hematology Division, Children’s Hospital of Brasília, Brasília, Brazil
- Laboratory of Translational Research, Children’s Hospital of Brasília, Brasília, Brazil
| | - Diêgo Madureira de Oliveira
- Multidisciplinary Health Laboratory, Faculty of Health Sciences and Technology, University of Brasília, Brasília, Brazil
| | - Ricardo Camargo
- Laboratory of Translational Research, Children’s Hospital of Brasília, Brasília, Brazil
| |
Collapse
|
2
|
Østergaard A, Boer JM, van Leeuwen FN, Pieters R, Den Boer ML. IKZF1 in acute lymphoblastic leukemia: the rise before the fall? Leuk Lymphoma 2024; 65:2077-2087. [PMID: 39210599 DOI: 10.1080/10428194.2024.2396046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and adolescents and in recent decades, the survival rates have risen to >90% in children largely due the introduction of risk adapted therapy. Therefore, knowledge of factors influencing risk of relapse is important. The transcription factor IKAROS is a regulator of lymphocyte development and alterations of its coding gene, IKZF1, are frequent in ALL and are associated with higher relapse risk. This concise review will discuss the normal function of IKAROS together with the effect of gene alterations in ALL such as relieved energy restriction and altered response to anti-leukemic drugs. Besides the biology, the clinical impact of gene alterations in the different subtypes of ALL will be discussed. Finally, possibilities for treating ALL with IKZF1 alterations will be considered including novel therapies like cell signaling inhibitors and immunotherapy.
Collapse
Affiliation(s)
- Anna Østergaard
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Dovat S, Schramm J. New precision medicine weapons for targeted treatment of high-risk B-cell precursor acute lymphoblastic leukemia. Haematologica 2024; 109:3835-3837. [PMID: 38988268 PMCID: PMC11609809 DOI: 10.3324/haematol.2024.285784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Sinisa Dovat
- Penn State University College of Medicine, Hershey, PA.
| | | |
Collapse
|
4
|
Jabbour EJ, Kantarjian HM, Goekbuget N, Shah BD, Chiaretti S, Park JH, Rijneveld AW, Gore L, Fleming S, Logan AC, Ribera JM, Menne TF, Mezzi K, Zaman F, Velasco K, Boissel N. Frontline Ph-negative B-cell precursor acute lymphoblastic leukemia treatment and the emerging role of blinatumomab. Blood Cancer J 2024; 14:203. [PMID: 39562780 PMCID: PMC11577064 DOI: 10.1038/s41408-024-01179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
This narrative review seeks to summarize chemotherapeutic regimens commonly used for patients with newly diagnosed Philadelphia (Ph) chromosome-negative B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in the frontline setting and to describe the latest clinical research using the bispecific T-cell-engaging immunotherapy blinatumomab in the first-line treatment setting. Current standard-of-care chemotherapeutic backbones for newly diagnosed Ph-negative BCP-ALL are based on the same overarching treatment principle: to reduce disease burden to undetectable levels and maintain lasting remission. The adult treatment landscape has progressively evolved following the adoption of pediatric-inspired regimens. However, these intense regimens are not tolerated by all, and high-risk patients still have inferior outcomes. Therefore, designing more effective and less toxic strategies remains key to further improving efficacy and safety outcomes. Overall, the treatment landscape is evolving in the frontline, and integration of blinatumomab into different standard frontline regimens may improve overall outcomes with a favorable safety profile.
Collapse
Affiliation(s)
- Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Goekbuget
- Department of Medicine II, Goethe University, University Hospital, Frankfurt, Germany
| | - Bijal D Shah
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Jae H Park
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Lia Gore
- Children's Hospital Colorado and the University of Colorado School of Medicine, University of Colorado Cancer Center, Aurora, CO, USA
| | - Shaun Fleming
- Department of Clinical Haematology, Alfred Hospital, Melbourne, VIC, Australia, and Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Aaron C Logan
- Hematology, Blood and Marrow Transplant, and Cellular Therapy Program, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Josep M Ribera
- ICO-Hospital Germans Trias I Pujol. Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tobias F Menne
- The Newcastle upon Tyne Hospitals and Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | - Nicolas Boissel
- Division of Hematology, EA3518 Saint-Louis Institute for Research, Saint-Louis Hospital, Paris, France
| |
Collapse
|
5
|
Kato M, Okamoto Y, Imamura T, Kada A, Saito AM, Iijima-Yamashita Y, Deguchi T, Ohki K, Fukushima T, Anami K, Sanada M, Taki T, Hashii Y, Inukai T, Kiyokawa N, Kosaka Y, Yoshida N, Yuza Y, Yanagimachi M, Watanabe K, Sato A, Imai C, Taga T, Adachi S, Horibe K, Manabe A, Koh K. JCCG ALL-B12: Evaluation of Intensified Therapies With Vincristine/Dexamethasone Pulses and Asparaginase and Augmented High-Dose Methotrexate for Pediatric B-ALL. J Clin Oncol 2024:JCO2400811. [PMID: 39531610 DOI: 10.1200/jco.24.00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE The JCCG ALL-B12 clinical trial aimed to evaluate the effectiveness of unvalidated treatment phases for pediatric ALL and develop a safety-focused treatment framework. PATIENTS AND METHODS Patients age 1-19 years with newly diagnosed B-ALL were enrolled in this study. These patients were stratified into standard-risk (SR), intermediate-risk (IR), and high-risk (HR) groups. Randomized comparisons assessed the effectiveness of vincristine (VCR)/dexamethasone pulses in the SR group, evaluated the effects of L-asparaginase (ASP) intensification in the IR group, and compared standard consolidation including block-type treatment with experimental consolidation with high-dose methotrexate (HD-MTX) intensified with VCR and ASP in the HR group. RESULTS Of 1,936 patients enrolled, 1,804 were eligible for the experimental treatment. The overall 5-year event-free survival and overall survival rates were 85.2% (95% CI, 83.5 to 86.8) and 94.3% (95% CI, 93.1 to 95.3), respectively. The cumulative incidence of relapse and postremission nonrelapse mortality was 13.2% (95% CI, 11.6 to 14.8) and 0.6% (95% CI, 0.3 to 1.0), respectively. Random assignment in the SR group showed no significant benefit from pulse therapy. In the IR group, ASP intensification had limited effects. In the HR group, standard block therapy and HD-MTX yielded equivalent outcomes. CONCLUSION The ALL-B12 trial achieved favorable outcomes in a nationwide cohort by stratifying treatment on the basis of risk and balancing treatment intensity. This study not only demonstrated that existing standard of care can be further refined but also indicated that improvement in outcomes with intensified chemotherapy has reached a plateau.
Collapse
Affiliation(s)
- Motohiro Kato
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Kada
- Clinical Research Center, NHO Nagoya Medical Center, Nagoya, Japan
| | - Akiko M Saito
- Clinical Research Center, NHO Nagoya Medical Center, Nagoya, Japan
| | | | - Takao Deguchi
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takashi Fukushima
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Pediatric Oncology and Hematology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Kenichi Anami
- Department of Medical Oncology, Hematology, and Infectious Diseases, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Masashi Sanada
- Clinical Research Center, NHO Nagoya Medical Center, Nagoya, Japan
| | - Tomohiko Taki
- Department of Medical Technology, Kyorin University Faculty of Health Sciences, Mitaka, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University, Suita, Japan
| | - Takeshi Inukai
- Department of Pediatrics, University of Yamanashi, Chuo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Nao Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Yuki Yuza
- Department of Hematology-Oncology, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Masakatsu Yanagimachi
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Chihaya Imai
- Department of Pediatrics, University of Toyama, Toyama, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keizo Horibe
- Clinical Research Center, NHO Nagoya Medical Center, Nagoya, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| |
Collapse
|
6
|
van der Ham CG, Suurenbroek LC, Kleisman MM, Antić Ž, Lelieveld SH, Yeong M, Westera L, Sonneveld E, Hoogerbrugge PM, van der Velden VHJ, van Leeuwen FN, Kuiper RP. Mutational mechanisms in multiply relapsed pediatric acute lymphoblastic leukemia. Leukemia 2024; 38:2366-2375. [PMID: 39232206 PMCID: PMC11518985 DOI: 10.1038/s41375-024-02403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Pediatric acute lymphoblastic leukemia (ALL) is marked by low mutational load at initial diagnosis, which increases at relapse. To determine which processes are active in (relapsed) ALL and how they behave during disease progression before and after therapy, we performed whole genome sequencing on 97 tumor samples of 29 multiply relapsed ALL patients. Mutational load increased upon relapse in 28 patients and upon every subsequent relapse in 22 patients. In addition to two clock-like mutational processes, we identified UV-like damage, APOBEC activity, reactive oxygen species, thiopurine-associated damage and an unknown therapy component as drivers of mutagenesis. Mutational processes often affected patients over longer time periods, but could also occur in isolated events, suggesting the requirement of additional triggers. Thiopurine exposure was the most prominent source of new mutations in relapse, affecting over half of the studied patients in first and/or later relapse and causing potential relapse-driving mutations in multiple patients. Our data demonstrate that multiple mutational processes frequently act in parallel as prominent secondary drivers with dynamic activity during ALL development and progression.
Collapse
Affiliation(s)
| | | | | | - Željko Antić
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Marley Yeong
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Liset Westera
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Peter M Hoogerbrugge
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | | | | | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Genetics, Utrecht University Medical Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Cardona CI, Rodriguez A, Torres VC, Sanchez A, Torres A, Vazquez AE, Wagler AE, Brissette MA, Bill CA, Vines CM. C-C Chemokine Receptor 7 Promotes T-Cell Acute Lymphoblastic Leukemia Invasion of the Central Nervous System via β2-Integrins. Int J Mol Sci 2024; 25:9649. [PMID: 39273598 PMCID: PMC11395280 DOI: 10.3390/ijms25179649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
C-C Chemokine Receptor 7 (CCR7) mediates T-cell acute lymphoblastic leukemia (T-ALL) invasion of the central nervous system (CNS) mediated by chemotactic migration to C-C chemokine ligand 19 (CCL19). To determine if a CCL19 antagonist, CCL198-83, could inhibit CCR7-induced chemotaxis and signaling via CCL19 but not CCL21, we used transwell migration and Ca2+ mobilization signaling assays. We found that in response to CCL19, human T-ALL cells employ β2 integrins to invade human brain microvascular endothelial cell monolayers. In vivo, using an inducible mouse model of T-ALL, we found that we were able to increase the survival of the mice treated with CCL198-83 when compared to non-treated controls. Overall, our results describe a targetable cell surface receptor, CCR7, which can be inhibited to prevent β2-integrin-mediated T-ALL invasion of the CNS and potentially provides a platform for the pharmacological inhibition of T-ALL cell entry into the CNS.
Collapse
Affiliation(s)
- Cesar I. Cardona
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Alondra Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Vivian C. Torres
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Anahi Sanchez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Angel Torres
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Aaron E. Vazquez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Amy E. Wagler
- Public Health Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Michael A. Brissette
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Colin A. Bill
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| | - Charlotte M. Vines
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79936, USA (C.A.B.)
| |
Collapse
|
8
|
Westerveld ASR, Roesthuis P, van der Pal HJH, Bresters D, Bierings M, Loonen J, de Vries ACH, Louwerens M, Koopman MMW, van den Heuvel-Eibrink MM, van der Heiden-van der Loo M, Hoogerbrugge P, Janssens GO, de Krijger RR, Ronckers CM, Pieters R, Kremer LCM, Teepen JC. Increased risk of subsequent neoplasm after hematopoietic stem cell transplantation in 5-year survivors of childhood acute lymphoblastic leukemia. Blood Cancer J 2024; 14:150. [PMID: 39198413 PMCID: PMC11358316 DOI: 10.1038/s41408-024-01122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) survivors are at risk for developing subsequent neoplasms, but there is limited information on long-term risks and risk factors for both subsequent malignant neoplasms (SMNs) and subsequent non-malignant neoplasms (SNMNs). We analyzed long-term risk and risk factors for SMNs and SNMNs among 3291 5-year ALL survivors from the Dutch Childhood Cancer Survivor Study-LATER cohort (1963-2014). We calculated standardized incidence ratios (SIRs) and cumulative incidences and used multivariable Cox proportional hazard regression analyses for analyzing risk factors. A total of 97 survivors developed SMNs and 266 SNMNs. The 30-year cumulative incidence was 4.1% (95%CI: 3.5-5.3) for SMNs and 10.4%(95%CI: 8.9-12.1) for SNMNs. Risk of SMNs was elevated compared to the general population (SIR: 2.6, 95%CI: 2.1-3.1). Survivors treated with hematopoietic stem cell transplantation (HSCT) with total body irradiation (TBI) (HR:4.2, 95%CI: 2.3-7.9), and without TBI (HR:4.0,95%CI: 1.2-13.7) showed increased SMN risk versus non-transplanted survivors. Cranial radiotherapy (CRT) was also a risk factor for SMNs (HR:2.1, 95%CI: 1.4-4.0). In conclusion, childhood ALL survivors have an increased SMN risk, especially after HSCT and CRT. A key finding is that even HSCT-treated survivors without TBI treatment showed an increased SMN risk, possibly due to accompanied chemotherapy treatment. This emphasizes the need for careful follow-up of HSCT and/or CRT-treated survivors.
Collapse
Affiliation(s)
| | - Pien Roesthuis
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Dorine Bresters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marc Bierings
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Andrica C H de Vries
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Maria M W Koopman
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | | | - Geert O Janssens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cecile M Ronckers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Division of Childhood Cancer Epidemiology (EpiKiK), Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Leontien C M Kremer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Jop C Teepen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
9
|
Brivio E, Bautista F, Zwaan CM. Naked antibodies and antibody-drug conjugates: targeted therapy for childhood acute lymphoblastic leukemia. Haematologica 2024; 109:1700-1712. [PMID: 38832425 PMCID: PMC11141655 DOI: 10.3324/haematol.2023.283815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 03/15/2024] [Indexed: 06/05/2024] Open
Abstract
The treatment of childhood acute lymphoblastic leukemia (ALL) has reached overall survival rates exceeding 90%. The present and future challenges are to cure the remainder of patients still dying from disease, and to reduce morbidity and mortality in those who can be cured with standard-of-care chemotherapy by replacing toxic chemotherapy elements while retaining cure rates. With the novel therapeutic options introduced in the last years, including immunotherapies and targeted antibodies, the treatment of ALL is undergoing major changes. For B-cell precursor ALL, blinatumomab, an anti-CD19 bispecific antibody, has established its role in the consolidation treatment for both high- and standard-risk first relapse of ALL, in the presence of bone marrow involvement, and may also have an impact on the outcome of high-risk subsets such as infant ALL and Philadelphia chromosome-positive ALL. Inotuzumab ozogamicin, an anti-CD22 drug conjugated antibody, has demonstrated high efficacy in inducing complete remission in relapsed ALL, even in the presence of high tumor burden, but randomized phase III trials are still ongoing. For T-ALL the role of CD38-directed treatment, such as daratumumab, is gaining interest, but randomized data are needed to assess its specific benefit. These antibodies are currently being tested in patients with newly diagnosed ALL and may lead to major changes in the present paradigm of treatment of pediatric ALL. Unlike the past, lessons may be learned from innovations in adult ALL, in which more drastic changes are piloted that may need to be translated to pediatrics.
Collapse
Affiliation(s)
- Erica Brivio
- Princess Máxima Center for Pediatric Oncology, Utrecht
| | | | - C. Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht
- Pediatric Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
| |
Collapse
|
10
|
Locatelli F. Introduction. Immunotherapy for childhood malignancies: the future is now. Haematologica 2024; 109:1653-1655. [PMID: 38832420 PMCID: PMC11141673 DOI: 10.3324/haematol.2023.284553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/22/2024] [Indexed: 06/05/2024] Open
Affiliation(s)
- Franco Locatelli
- IRCCS, Ospedale Pediatrico Bambino Gesù Rome, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
11
|
Adriaanse FRS, Schneider P, Arentsen-Peters STCJM, da Fonseca AMN, Stutterheim J, Pieters R, Zwaan CM, Stam RW. Distinct Responses to Menin Inhibition and Synergy with DOT1L Inhibition in KMT2A-Rearranged Acute Lymphoblastic and Myeloid Leukemia. Int J Mol Sci 2024; 25:6020. [PMID: 38892207 PMCID: PMC11173273 DOI: 10.3390/ijms25116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) exhibit favorable survival rates. However, for AML and ALL patients carrying KMT2A gene translocations clinical outcome remains unsatisfactory. Key players in KMT2A-fusion-driven leukemogenesis include menin and DOT1L. Recently, menin inhibitors like revumenib have garnered attention for their potential therapeutic efficacy in treating KMT2A-rearranged acute leukemias. However, resistance to menin inhibition poses challenges, and identifying which patients would benefit from revumenib treatment is crucial. Here, we investigated the in vitro response to revumenib in KMT2A-rearranged ALL and AML. While ALL samples show rapid, dose-dependent induction of leukemic cell death, AML responses are much slower and promote myeloid differentiation. Furthermore, we reveal that acquired resistance to revumenib in KMT2A-rearranged ALL cells can occur either through the acquisition of MEN1 mutations or independently of mutations in MEN1. Finally, we demonstrate significant synergy between revumenib and the DOT1L inhibitor pinometostat in KMT2A-rearranged ALL, suggesting that such drug combinations represent a potent therapeutic strategy for these patients. Collectively, our findings underscore the complexity of resistance mechanisms and advocate for precise patient stratification to optimize the use of menin inhibitors in KMT2A-rearranged acute leukemia.
Collapse
Affiliation(s)
- Fabienne R. S. Adriaanse
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia’s Children’s Hospital, 3015 CN Rotterdam, The Netherlands
| | - Pauline Schneider
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | | | - Janine Stutterheim
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Rob Pieters
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - C. Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia’s Children’s Hospital, 3015 CN Rotterdam, The Netherlands
| | - Ronald W. Stam
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
12
|
Al-Ansari S, Stolze J, Bresters D, Brook AH, Laheij AMGA, Brand HS, Dahllöf G, Rozema FR, Raber-Durlacher JE. Late Complications in Long-Term Childhood Cancer Survivors: What the Oral Health Professional Needs to Know. Dent J (Basel) 2024; 12:17. [PMID: 38275678 PMCID: PMC10813876 DOI: 10.3390/dj12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
With diagnostic and therapeutic advances, over 80% of children diagnosed with cancer become long-term survivors. As the number of childhood cancer survivors (CCS) continues to increase, dental practitioners become more likely to have CCS among their patients. CCS may develop late complications from damage caused by their cancer treatment to endocrine, cardiovascular, musculoskeletal, and other organ systems. These complications may surface decades after the completion of treatment. Adverse outcomes of childhood cancer treatment frequently involve oral and craniofacial structures including the dentition. Tooth development, salivary gland function, craniofacial growth, and temporomandibular joint function may be disturbed, increasing oral health risks in these individuals. Moreover, CCS are at risk of developing subsequent malignancies, which may manifest in or near the oral cavity. It is important that dental practitioners are aware of the childhood cancer history of their patients and have knowledge of potential late complications. Therefore, this narrative review aims to inform dental practitioners of late oral complications of cancer treatment modalities commonly used in pediatric oncology. Furthermore, selected common non-oral late sequelae of cancer therapy that could have an impact on oral health and on delivering dental care will be discussed.
Collapse
Affiliation(s)
- Sali Al-Ansari
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (S.A.-A.); (A.M.G.A.L.)
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department Maxillofacial Surgery, Fachklinik Horneide, 48157 Münster, Germany
| | - Juliette Stolze
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (J.S.); (H.S.B.)
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Dorine Bresters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| | - Alan Henry Brook
- Adelaide Dental School, University of Adelaide, Adelaide 5005, Australia;
- Institute of Dentistry, Queen Mary University of London, London E12AD, UK
| | - Alexa M. G. A. Laheij
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (S.A.-A.); (A.M.G.A.L.)
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Henk S. Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (J.S.); (H.S.B.)
| | - Göran Dahllöf
- Division of Orthodontics and Pediatric Dentistry, Karolinska Institutet, 14152 Huddinge, Sweden;
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), 100098 Trondheim, Norway
| | - Frederik R. Rozema
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (S.A.-A.); (A.M.G.A.L.)
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Judith E. Raber-Durlacher
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands; (S.A.-A.); (A.M.G.A.L.)
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|