1
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Tang X, Peng H, Xu P, Zhang L, Fu R, Tu H, Guo X, Huang K, Lu J, Chen H, Dong Z, Dai L, Luo J, Chen Q. Synthetic mRNA-based gene therapy for glioblastoma: TRAIL-mRNA synergistically enhances PTEN-mRNA-based therapy. Mol Ther Oncolytics 2022; 24:707-718. [PMID: 35317516 PMCID: PMC8913249 DOI: 10.1016/j.omto.2022.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is characterized as having high molecular heterogeneity and complexity, which can be well revealed by genomic study. A truly effective treatment for GBM should flexibly address its heterogeneities, complexity, and strong drug resistance. This study was performed to explore the effectiveness of an mRNA-based therapeutic strategy using in vitro synthesized PTEN-mRNA and TRAIL-mRNA in tumor cells derived from PTEN-deletion patients. The PTEN gene alterations were revealed by whole-exome sequencing of three paired clinical GBMs and selected as the therapy target. Patient-derived primary glioblastoma stem cells (GBM2) and a DBTRG-cell-derived xenograft were used to detect mRNA's cytotoxicity in vitro and tumor suppression in vivo. Following the successful in vitro synthesis of PTEN-mRNA and TRAIL-mRNA, the combinational treatment of PTEN-mRNA and TRAIL-mRNA significantly suppressed tumor growth compared with treatment with PBS (96.4%), PTEN-mRNA (89.7%), and TRAIL-mRNA (84.5%). The combinational application of PTEN-mRNA and TRAIL-mRNA showed synergistic inhibition of tumor growth, and the JNK pathway might be the major mechanism involved. This study provided a basis for an mRNA-based therapeutic strategy to be developed into an effective patient-tailored treatment for GBM.
Collapse
Affiliation(s)
- Xiangjun Tang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hao Peng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Pengfei Xu
- The 7th affiliated hospital of Sun Yat-Sen University, ShenZhen, Guandong 510275, China
| | - Li Zhang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Rui Fu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hanjun Tu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xingrong Guo
- Hubei KeyLaboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Kuanming Huang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Junti Lu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hu Chen
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Zhiqiang Dong
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
3
|
Nwagwu CD, Adamson DC. Can we rely on synthetic pharmacotherapy for the treatment of glioblastoma? Expert Opin Pharmacother 2021; 22:1983-1994. [PMID: 34219576 DOI: 10.1080/14656566.2021.1950139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Despite decades of clinical trials utilizing conventional and novel therapeutics, the effective treatment of glioblastoma remains one of the most formidable challenges in oncology. Current standard of care includes surgery and chemoradiation. Synthetic pharmacotherapies continue to be explored as potential therapeutic options for glioblastoma patients.Areas covered: This study reviews synthetic pharmacotherapies that are currently under investigation in phase I-III clinical trials. The authors of this study highlight the mechanisms of action of the synthetic pharmacotherapy agents under investigation, outline the available evidence for their utility based on the literature, and summarize the current landscape.Expert opinion: Although warranting further investigation, the studies generally highlighted here have not shown remarkable changes in clinical benefits beyond what has already been established with radiochemotherapy. As we develop more synthetics, we will likely need to combine them with other synthetics to target multiple separate molecular pathways. There is considerable potential when this treatment strategy is guided by molecular profiling approaches which seek to stratify patients based on treatments that would be most efficacious for them.
Collapse
Affiliation(s)
- Chibueze D Nwagwu
- Department of Neurosurgery, Emory University, Atlanta, 30322-1007, United States
| | - David C Adamson
- Department of Neurosurgery, Emory University, Atlanta, 30322-1007, United States
| |
Collapse
|