1
|
Chhabra R. Molecular and modular intricacies of precision oncology. Front Immunol 2024; 15:1476494. [PMID: 39507541 PMCID: PMC11537923 DOI: 10.3389/fimmu.2024.1476494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Precision medicine is revolutionizing the world in combating different disease modalities, including cancer. The concept of personalized treatments is not new, but modeling it into a reality has faced various limitations. The last decade has seen significant improvements in incorporating several novel tools, scientific innovations and governmental support in precision oncology. However, the socio-economic factors and risk-benefit analyses are important considerations. This mini review includes a summary of some commendable milestones, which are not just a series of successes, but also a cautious outlook to the challenges and practical implications of the advancing techno-medical era.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Business Department, Biocytogen Boston Corporation, Waltham, MA, United States
| |
Collapse
|
2
|
Wegmann R, Bankel L, Festl Y, Lau K, Lee S, Arnold F, Cappelletti V, Fehr A, Picotti P, Dedes KJ, Franzen D, Lenggenhager D, Bode PK, Zoche M, Moch H, Britschgi C, Snijder B. Molecular and functional landscape of malignant serous effusions for precision oncology. Nat Commun 2024; 15:8544. [PMID: 39358333 PMCID: PMC11447229 DOI: 10.1038/s41467-024-52694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Personalized treatment for patients with advanced solid tumors critically depends on the deep characterization of tumor cells from patient biopsies. Here, we comprehensively characterize a pan-cancer cohort of 150 malignant serous effusion (MSE) samples at the cellular, molecular, and functional level. We find that MSE-derived cancer cells retain the genomic and transcriptomic profiles of their corresponding primary tumors, validating their use as a patient-relevant model system for solid tumor biology. Integrative analyses reveal that baseline gene expression patterns relate to global ex vivo drug sensitivity, while high-throughput drug-induced transcriptional changes in MSE samples are indicative of drug mode of action and acquired treatment resistance. A case study exemplifies the added value of multi-modal MSE profiling for patients who lack genetically stratified treatment options. In summary, our study provides a functional multi-omics view on a pan-cancer solid tumor cohort and underlines the feasibility and utility of MSE-based precision oncology.
Collapse
Affiliation(s)
- Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lorenz Bankel
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Kate Lau
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Fabian Arnold
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Valentina Cappelletti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Aaron Fehr
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Konstantin J Dedes
- Department of Gynecology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Franzen
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter K Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Zoche
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Christian Britschgi
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
- Medical Oncology and Hematology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
3
|
Kim TY, Kim SY, Kim JH, Jung HA, Choi YJ, Hwang IG, Cha Y, Lee GW, Lee YG, Kim TM, Lee SH, Lee S, Yun H, Choi YL, Yoon S, Han SW, Kim TY, Kim TW, Zang DY, Kang JH. Nationwide precision oncology pilot study: KOrean Precision Medicine Networking Group Study of MOlecular profiling-guided therapy based on genomic alterations in advanced solid tumors (KOSMOS) KCSG AL-20-05. ESMO Open 2024; 9:103709. [PMID: 39305545 PMCID: PMC11440300 DOI: 10.1016/j.esmoop.2024.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) has become widely available but molecular profiling-guided therapy (MGT) had not been well established in the real world due to lack of available therapies and expertise to match treatment. Our study was designed to test the feasibility of a nationwide platform of NGS-guided MGT recommended by a central molecular tumor board (cMTB) for metastatic solid tumors. PATIENTS AND METHODS Patients with advanced or metastatic solid tumors with available NGS results and without standard treatment were enrolled. The cMTB interpreted the patients' NGS reports and recommended the following: (i) investigational medicinal products (IMPs) approved in other indications; (ii) alternative treatments; (iii) clinical trials. The primary variables were the proportion of patients with actionable genomic alterations and those receiving MGT as per cMTB recommendations. Others included treatment duration (TD), overall response rate (ORR), disease control rate (DCR), and safety. RESULTS From February 2021 to February 2022, 193 cases [99 (51.3%) men; median age 58 years (range 24-88 years); median line of previous treatment 3 (range 0-9)] from 29 sites were enrolled for 60 cMTB sessions. The median time from case submission to cMTB discussion was 7 days (range 2-20 days), and to IMP treatment initiation was 28 days (range 14-90 days). Actionable genetic alterations were found in 145 patients (75.1%). A total of 89 (46.1%) patients received actual dosing of IMPs, and 10 (5.2%) were enrolled in cMTB-recommended clinical trials, achieving an MGT rate of 51.3%. ORR and DCR of IMPs were 10.1% and 72.5%, respectively. The median TD was 3.5 months [95% confidence interval (CI) 2.8-5.5 months], and the 4-month TD rate was 44.9%. The median overall survival of patients who received IMPs was 6.9 months (95% CI 5.2-10.0 months). CONCLUSION KOSMOS confirmed the feasibility of MGT recommended by the cMTB, achieving a high MGT match rate and promising effectiveness in heavily pretreated advanced cancer patients.
Collapse
Affiliation(s)
- T-Y Kim
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Seoul National University Hospital, Seoul
| | - S Y Kim
- Department of Oncology, University of Ulsan College of Medicine, Aan Medical Center, Seoul
| | - J H Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam.
| | - H A Jung
- Division of Hematology-Oncology, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul
| | - Y J Choi
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul
| | - I G Hwang
- Department of Internal Medicine, Chung-Ang University College of Medicine, Chung-Ang University Hospital, Seoul
| | - Y Cha
- Division of Medical Oncology, Center for Colorectal Cancer, National Cancer Center, Goyang
| | - G-W Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, Jinju
| | - Y-G Lee
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul
| | - T M Kim
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Seoul National University Hospital, Seoul
| | - S-H Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul
| | - S Lee
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul
| | - H Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul
| | - Y L Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - S Yoon
- Department of Oncology, University of Ulsan College of Medicine, Aan Medical Center, Seoul
| | - S W Han
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Seoul National University Hospital, Seoul
| | - T-Y Kim
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Seoul National University Hospital, Seoul
| | - T W Kim
- Department of Oncology, University of Ulsan College of Medicine, Aan Medical Center, Seoul
| | - D Y Zang
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University Medical Center, Anyang
| | - J H Kang
- Department of Medical Oncology, Seoul St. Mary's Hospital, The Catholic University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Ha H, Lee HY, Kim JH, Kim DY, An HJ, Bae S, Park HS, Kang JH. Precision Oncology Clinical Trials: A Systematic Review of Phase II Clinical Trials with Biomarker-Driven, Adaptive Design. Cancer Res Treat 2024; 56:991-1013. [PMID: 38726510 PMCID: PMC11491240 DOI: 10.4143/crt.2024.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 08/30/2024] Open
Abstract
Novel clinical trial designs are conducted in the precision medicine era. This study aimed to evaluate biomarker-driven, adaptive phase II trials in precision oncology, focusing on infrastructure, efficacy, and safety. We systematically reviewed and analyzed the target studies. EMBASE and PubMed searches from 2015 to 2023 generated 29 eligible trials. Data extraction included infrastructure, biomarker screening methodologies, efficacy, and safety profiles. Government agencies, cancer hospitals, and academic societies with accumulated experiences led investigator-initiated precision oncology clinical trials (IIPOCTs), which later guided sponsor-initiated precision oncology clinical trials (SIPOCTs). Most SIPOCTs were international studies with basket design. IIPOCTs primarily used the central laboratory for biomarker screening, but SIPOCTs used both central and local laboratories. Most of the studies adapted next-generation sequencing and/or immunohistochemistry for biomarker screening. Fifteen studies included an independent central review committee for outcome investigation. Efficacy assessments predominantly featured objective response rate as the primary endpoint, with varying results. Nine eligible studies contributed to the United States Food and Drug Administration's marketing authorization. Safety monitoring was rigorous, but reporting formats lacked uniformity. Health-related quality of life and patient-reported outcomes were described in some protocols but rarely reported. Our results reveal that precision oncology trials with adaptive design rapidly and efficiently evaluate anticancer drugs' efficacy and safety, particularly in specified biomarker-driven cohorts. The evolution from IIPOCT to SIPOCT has facilitated fast regulatory approval, providing valuable insights into the precision oncology landscape.
Collapse
Affiliation(s)
- Hyerim Ha
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Hee Yeon Lee
- Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Do Yeun Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Ho Jung An
- Division of Oncology, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - SeungJin Bae
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hye-sung Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Hyoung Kang
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Aleksakhina SN, Ivantsov AO, Imyanitov EN. Agnostic Administration of Targeted Anticancer Drugs: Looking for a Balance between Hype and Caution. Int J Mol Sci 2024; 25:4094. [PMID: 38612902 PMCID: PMC11012409 DOI: 10.3390/ijms25074094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Many tumors have well-defined vulnerabilities, thus potentially allowing highly specific and effective treatment. There is a spectrum of actionable genetic alterations which are shared across various tumor types and, therefore, can be targeted by a given drug irrespective of tumor histology. Several agnostic drug-target matches have already been approved for clinical use, e.g., immune therapy for tumors with microsatellite instability (MSI) and/or high tumor mutation burden (TMB), NTRK1-3 and RET inhibitors for cancers carrying rearrangements in these kinases, and dabrafenib plus trametinib for BRAF V600E mutated malignancies. Multiple lines of evidence suggest that this histology-independent approach is also reasonable for tumors carrying ALK and ROS1 translocations, biallelic BRCA1/2 inactivation and/or homologous recombination deficiency (HRD), strong HER2 amplification/overexpression coupled with the absence of other MAPK pathway-activating mutations, etc. On the other hand, some well-known targets are not agnostic: for example, PD-L1 expression is predictive for the efficacy of PD-L1/PD1 inhibitors only in some but not all cancer types. Unfortunately, the individual probability of finding a druggable target in a given tumor is relatively low, even with the use of comprehensive next-generation sequencing (NGS) assays. Nevertheless, the rapidly growing utilization of NGS will significantly increase the number of patients with highly unusual or exceptionally rare tumor-target combinations. Clinical trials may provide only a framework for treatment attitudes, while the decisions for individual patients usually require case-by-case consideration of the probability of deriving benefit from agnostic versus standard therapy, drug availability, associated costs, and other circumstances. The existing format of data dissemination may not be optimal for agnostic cancer medicine, as conventional scientific journals are understandably biased towards the publication of positive findings and usually discourage the submission of case reports. Despite all the limitations and concerns, histology-independent drug-target matching is certainly feasible and, therefore, will be increasingly utilized in the future.
Collapse
Affiliation(s)
- Svetlana N. Aleksakhina
- Department of Tumor Growth Biology, N. N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
| | - Alexander O. Ivantsov
- Department of Tumor Growth Biology, N. N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N. N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| |
Collapse
|
6
|
Bhatia K, Sandhu V, Wong MH, Iyer P, Bhatt S. Therapeutic biomarkers in acute myeloid leukemia: functional and genomic approaches. Front Oncol 2024; 14:1275251. [PMID: 38410111 PMCID: PMC10894932 DOI: 10.3389/fonc.2024.1275251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is clinically and genetically a heterogeneous disease characterized by clonal expansion of abnormal hematopoietic progenitors. Genomic approaches to precision medicine have been implemented to direct targeted therapy for subgroups of AML patients, for instance, IDH inhibitors for IDH1/2 mutated patients, and FLT3 inhibitors with FLT3 mutated patients. While next generation sequencing for genetic mutations has improved treatment outcomes, only a fraction of AML patients benefit due to the low prevalence of actionable targets. In recent years, the adoption of newer functional technologies for quantitative phenotypic analysis and patient-derived avatar models has strengthened the potential for generalized functional precision medicine approach. However, functional approach requires robust standardization for multiple variables such as functional parameters, time of drug exposure and drug concentration for making in vitro predictions. In this review, we first summarize genomic and functional therapeutic biomarkers adopted for AML therapy, followed by challenges associated with these approaches, and finally, the future strategies to enhance the implementation of precision medicine.
Collapse
Affiliation(s)
- Karanpreet Bhatia
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Vedant Sandhu
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Mei Hsuan Wong
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Prasad Iyer
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Watanabe K, Seki N. Biology and Development of DNA-Targeted Drugs, Focusing on Synthetic Lethality, DNA Repair, and Epigenetic Modifications for Cancer: A Review. Int J Mol Sci 2024; 25:752. [PMID: 38255825 PMCID: PMC10815806 DOI: 10.3390/ijms25020752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-targeted drugs constitute a specialized category of pharmaceuticals developed for cancer treatment, directly influencing various cellular processes involving DNA. These drugs aim to enhance treatment efficacy and minimize side effects by specifically targeting molecules or pathways crucial to cancer growth. Unlike conventional chemotherapeutic drugs, recent discoveries have yielded DNA-targeted agents with improved effectiveness, and a new generation is anticipated to be even more specific and potent. The sequencing of the human genome in 2001 marked a transformative milestone, contributing significantly to the advancement of targeted therapy and precision medicine. Anticipated progress in precision medicine is closely tied to the continuous development in the exploration of synthetic lethality, DNA repair, and expression regulatory mechanisms, including epigenetic modifications. The integration of technologies like circulating tumor DNA (ctDNA) analysis further enhances our ability to elucidate crucial regulatory factors, promising a more effective era of precision medicine. The combination of genomic knowledge and technological progress has led to a surge in clinical trials focusing on precision medicine. These trials utilize biomarkers for identifying genetic alterations, molecular profiling for potential therapeutic targets, and tailored cancer treatments addressing multiple genetic changes. The evolving landscape of genomics has prompted a paradigm shift from tumor-centric to individualized, genome-directed treatments based on biomarker analysis for each patient. The current treatment strategy involves identifying target genes or pathways, exploring drugs affecting these targets, and predicting adverse events. This review highlights strategies incorporating DNA-targeted drugs, such as PARP inhibitors, SLFN11, methylguanine methyltransferase (MGMT), and ATR kinase.
Collapse
Affiliation(s)
- Kiyotaka Watanabe
- Department of Medicine, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | | |
Collapse
|
8
|
Chan SPY, Low CE, Yau CE, Lin TP, Wang W, Xiu SX, Tang PY, Luo B, Noor NFBM, Lee KA, Chiang J, Toh TB, Chow EKH, Yang VS. Pazopanib elicits remarkable response in metastatic porocarcinoma: a functional precision medicine approach. Cold Spring Harb Mol Case Stud 2023; 9:a006308. [PMID: 37945347 PMCID: PMC10815280 DOI: 10.1101/mcs.a006308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Metastatic porocarcinomas (PCs) are vanishingly rare, highly aggressive skin adnexal tumors with mortality rates exceeding 70%. Their rarity has precluded the understanding of their disease pathogenesis, let alone the conduct of clinical trials to evaluate treatment strategies. There are no effective agents for unresectable PCs. Here, we successfully demonstrate how functional precision medicine was implemented in the clinic for a metastatic PC with no known systemic treatment options. Comprehensive genomic profiling of the tumor specimen did not yield any actionable genomic aberrations. However, ex vivo drug testing predicted pazopanib efficacy, and indeed, administration of pazopanib elicited remarkable clinicoradiological response. Pazopanib and its class of drugs should be evaluated for efficacy in other cases of PC, and the rationale for efficacy should be determined when PC tumor models become available. A functional precision medicine approach could be useful to derive effective treatment options for rare cancers.
Collapse
Affiliation(s)
- Sharon Pei Yi Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Chen Ee Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chun En Yau
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tzu Ping Lin
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Weining Wang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Sam Xin Xiu
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Po Yin Tang
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Baiwen Luo
- The N1 Institute for Health, National University of Singapore, Singapore
| | | | - Kristen Alexa Lee
- Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore
| | - Jianbang Chiang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Tan Boon Toh
- The N1 Institute for Health, National University of Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- The N1 Institute for Health, National University of Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Valerie Shiwen Yang
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore;
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
9
|
Daei Sorkhabi A, Fazlollahi A, Sarkesh A, Aletaha R, Feizi H, Mousavi SE, Nejadghaderi SA, Sullman MJM, Kolahi AA, Safiri S. Efficacy and safety of veliparib plus chemotherapy for the treatment of lung cancer: A systematic review of clinical trials. PLoS One 2023; 18:e0291044. [PMID: 37682974 PMCID: PMC10490931 DOI: 10.1371/journal.pone.0291044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND As a poly-ADP ribose polymerase (PARP) inhibitor, veliparib has been identified as a potential therapeutic agent for lung cancer. The present study aimed to conduct a systematic review of clinical trials investigating the efficacy and safety of veliparib for treating lung cancer. METHODS PubMed, Scopus, the Web of Science, and Google Scholar were systematically searched up to October 30, 2022. Only randomized controlled trials (RCTs) evaluating the efficacy or safety of veliparib in the treatment of lung cancer patients were included. Studies were excluded if they were not RCTs, enrolled healthy participants or patients with conditions other than lung cancer, or investigated therapeutic approaches other than veliparib. The Cochrane risk-of-bias tool was used for quality assessment. RESULTS The seven RCTs (n = 2188) showed that patients treated with a combination of veliparib and chemotherapy had a significantly higher risk of adverse events, when compared to the control arm. There was no statistically significant difference in overall survival (OS) between those treated with veliparib plus chemotherapy and those receiving the standard therapies. Only two trials demonstrated an improvement in progression-free survival (PFS), and only one study found an increase in objective response rate (ORR). Furthermore, adding veliparib to standard chemotherapy showed no benefit in extending the duration of response (DoR) in any of the studies. CONCLUSIONS Only a small number of studies have found veliparib to be effective, in terms of improved OS, PFS, and ORR, while the majority of studies found no benefit for veliparib over standard treatment.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asra Fazlollahi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Feizi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Rajan RG, Fernandez-Vega V, Sperry J, Nakashima J, Do LH, Andrews W, Boca S, Islam R, Chowdhary SA, Seldin J, Souza GR, Scampavia L, Hanafy KA, Vrionis FD, Spicer TP. In Vitro and In Vivo Drug-Response Profiling Using Patient-Derived High-Grade Glioma. Cancers (Basel) 2023; 15:3289. [PMID: 37444398 PMCID: PMC10339991 DOI: 10.3390/cancers15133289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Genomic profiling cannot solely predict the complexity of how tumor cells behave in their in vivo microenvironment and their susceptibility to therapies. The aim of the study was to establish a functional drug prediction model utilizing patient-derived GBM tumor samples for in vitro testing of drug efficacy followed by in vivo validation to overcome the disadvantages of a strict pharmacogenomics approach. METHODS High-throughput in vitro pharmacologic testing of patient-derived GBM tumors cultured as 3D organoids offered a cost-effective, clinically and phenotypically relevant model, inclusive of tumor plasticity and stroma. RNAseq analysis supplemented this 128-compound screening to predict more efficacious and patient-specific drug combinations with additional tumor stemness evaluated using flow cytometry. In vivo PDX mouse models rapidly validated (50 days) and determined mutational influence alongside of drug efficacy. We present a representative GBM case of three tumors resected at initial presentation, at first recurrence without any treatment, and at a second recurrence following radiation and chemotherapy, all from the same patient. RESULTS Molecular and in vitro screening helped identify effective drug targets against several pathways as well as synergistic drug combinations of cobimetinib and vemurafenib for this patient, supported in part by in vivo tumor growth assessment. Each tumor iteration showed significantly varying stemness and drug resistance. CONCLUSIONS Our integrative model utilizing molecular, in vitro, and in vivo approaches provides direct evidence of a patient's tumor response drifting with treatment and time, as demonstrated by dynamic changes in their tumor profile, which may affect how one would address that drift pharmacologically.
Collapse
Affiliation(s)
- Robin G. Rajan
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
| | - Virneliz Fernandez-Vega
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; (V.F.-V.); (L.S.)
| | - Jantzen Sperry
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Jonathan Nakashima
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Long H. Do
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Warren Andrews
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Simina Boca
- Innovation Center for Biomedical Informatics (ICBI), Departments of Oncology and Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite G100, Washington, DC 20007, USA;
| | - Rezwanul Islam
- Florida Atlantic University College of Medicine, 777 Glades Road, Boca Raton, FL 33431, USA;
| | - Sajeel A. Chowdhary
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
| | - Jan Seldin
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA; (J.S.); (G.R.S.)
| | - Glauco R. Souza
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA; (J.S.); (G.R.S.)
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; (V.F.-V.); (L.S.)
| | - Khalid A. Hanafy
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
- Florida Atlantic University College of Medicine, 777 Glades Road, Boca Raton, FL 33431, USA;
| | - Frank D. Vrionis
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
- Florida Atlantic University College of Medicine, 777 Glades Road, Boca Raton, FL 33431, USA;
| | - Timothy P. Spicer
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; (V.F.-V.); (L.S.)
| |
Collapse
|
11
|
Wu KZ, Adine C, Mitriashkin A, Aw BJJ, Iyer NG, Fong ELS. Making In Vitro Tumor Models Whole Again. Adv Healthc Mater 2023; 12:e2202279. [PMID: 36718949 PMCID: PMC11469124 DOI: 10.1002/adhm.202202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Indexed: 02/01/2023]
Abstract
As a reductionist approach, patient-derived in vitro tumor models are inherently still too simplistic for personalized drug testing as they do not capture many characteristics of the tumor microenvironment (TME), such as tumor architecture and stromal heterogeneity. This is especially problematic for assessing stromal-targeting drugs such as immunotherapies in which the density and distribution of immune and other stromal cells determine drug efficacy. On the other end, in vivo models are typically costly, low-throughput, and time-consuming to establish. Ex vivo patient-derived tumor explant (PDE) cultures involve the culture of resected tumor fragments that potentially retain the intact TME of the original tumor. Although developed decades ago, PDE cultures have not been widely adopted likely because of their low-throughput and poor long-term viability. However, with growing recognition of the importance of patient-specific TME in mediating drug response, especially in the field of immune-oncology, there is an urgent need to resurrect these holistic cultures. In this Review, the key limitations of patient-derived tumor explant cultures are outlined and technologies that have been developed or could be employed to address these limitations are discussed. Engineered holistic tumor explant cultures may truly realize the concept of personalized medicine for cancer patients.
Collapse
Affiliation(s)
- Kenny Zhuoran Wu
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Christabella Adine
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Aleksandr Mitriashkin
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Benjamin Jun Jie Aw
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery, Division of Surgery and Surgical OncologyDuke‐NUS Medical SchoolSingapore169857Singapore
- Department of Head and Neck SurgeryNational Cancer Centre SingaporeSingapore169610Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- Cancer Science Institute (CSI)National University of SingaporeSingapore117599Singapore
| |
Collapse
|
12
|
Wang Z, Li Y, Zhao W, Jiang S, Huang Y, Hou J, Zhang X, Zhai Z, Yang C, Wang J, Zhu J, Pan J, Jiang W, Li Z, Ye M, Tan M, Jiang H, Dang Y. Integrative multi-omics and drug-response characterization of patient-derived prostate cancer primary cells. Signal Transduct Target Ther 2023; 8:175. [PMID: 37121942 PMCID: PMC10149505 DOI: 10.1038/s41392-023-01393-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/02/2023] Open
Abstract
Prostate cancer (PCa) is the second most prevalent malignancy in males across the world. A greater knowledge of the relationship between protein abundance and drug responses would benefit precision treatment for PCa. Herein, we establish 35 Chinese PCa primary cell models to capture specific characteristics among PCa patients, including gene mutations, mRNA/protein/surface protein distributions, and pharmaceutical responses. The multi-omics analyses identify Anterior Gradient 2 (AGR2) as a pre-operative prognostic biomarker in PCa. Through the drug library screening, we describe crizotinib as a selective compound for malignant PCa primary cells. We further perform the pharmacoproteome analysis and identify 14,372 significant protein-drug correlations. Surprisingly, the diminished AGR2 enhances the inhibition activity of crizotinib via ALK/c-MET-AKT axis activation which is validated by PC3 and xenograft model. Our integrated multi-omics approach yields a comprehensive understanding of PCa biomarkers and pharmacological responses, allowing for more precise diagnosis and therapies.
Collapse
Affiliation(s)
- Ziruoyu Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yanan Li
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Wensi Zhao
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Department of Urology, Zhongshan Hospital Wusong Branch, Fudan University, 200032, Shanghai, China
| | - Yuqi Huang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Hou
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Xuelu Zhang
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Zhaoyu Zhai
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Jiaqi Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Jiying Zhu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Jianbo Pan
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Zengxia Li
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Mingliang Ye
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
13
|
Cabeza-Segura M, Garcia-Micò B, La Noce M, Nicoletti GF, Conti V, Filippelli A, Fleitas T, Cervantes A, Castillo J, Papaccio F. How organoids can improve personalized treatment in patients with gastro-esophageal tumors. Curr Opin Pharmacol 2023; 69:102348. [PMID: 36842387 DOI: 10.1016/j.coph.2023.102348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 02/26/2023]
Abstract
Gastro-esophageal tumors constitute a big health problem. Treatment options still mainly rely on chemotherapy, and apart from human epidermal growth factor receptor 2 positive and microsatellite instable/Epstein-Barr Virus disease, there are no molecularly guided options. Therefore, despite the large number of identified molecular alterations, precision medicine is still far from the clinic. In this context, the recently developed technology of patient-derived organoids (PDOs) could offer the chance to accelerate drug development and biomarker discovery. Indeed, PDOs are 3D primary cultures that were shown to reproduce patient's tumor characteristics. Moreover, several reports indicated that PDOs can replicate patient's response to a given drug; therefore, they are one of the most promising tools for functional precision medicine.
Collapse
Affiliation(s)
- Manuel Cabeza-Segura
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, Valencia, Spain
| | - Blanca Garcia-Micò
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, Valencia, Spain
| | - Marcella La Noce
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania "L. Vanvitelli", Via L. de Crecchio 7, 80138, Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "L. Vanvitelli", Via L. de Crecchio 6, 80138, Naples, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi (SA), Italy; Pharmacology Unit, San Giovanni di Dio e Ruggi D'Aragona University Hospital, Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi (SA), Italy; Pharmacology Unit, San Giovanni di Dio e Ruggi D'Aragona University Hospital, Salerno, Italy
| | - Tania Fleitas
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, Valencia, Spain; Centro de Investigacion Biomedica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Andrés Cervantes
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, Valencia, Spain; Centro de Investigacion Biomedica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Josefa Castillo
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, Valencia, Spain; Centro de Investigacion Biomedica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Federica Papaccio
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, Valencia, Spain; Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi (SA), Italy.
| |
Collapse
|
14
|
Song IW, Vo HH, Chen YS, Baysal MA, Kahle M, Johnson A, Tsimberidou AM. Precision Oncology: Evolving Clinical Trials across Tumor Types. Cancers (Basel) 2023; 15:1967. [PMID: 37046628 PMCID: PMC10093499 DOI: 10.3390/cancers15071967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Advances in molecular technologies and targeted therapeutics have accelerated the implementation of precision oncology, resulting in improved clinical outcomes in selected patients. The use of next-generation sequencing and assessments of immune and other biomarkers helps optimize patient treatment selection. In this review, selected precision oncology trials including the IMPACT, SHIVA, IMPACT2, NCI-MPACT, TAPUR, DRUP, and NCI-MATCH studies are summarized, and their challenges and opportunities are discussed. Brief summaries of the new ComboMATCH, MyeloMATCH, and iMATCH studies, which follow the example of NCI-MATCH, are also included. Despite the progress made, precision oncology is inaccessible to many patients with cancer. Some patients' tumors may not respond to these treatments, owing to the complexity of carcinogenesis, the use of ineffective therapies, or unknown mechanisms of tumor resistance to treatment. The implementation of artificial intelligence, machine learning, and bioinformatic analyses of complex multi-omic data may improve the accuracy of tumor characterization, and if used strategically with caution, may accelerate the implementation of precision medicine. Clinical trials in precision oncology continue to evolve, improving outcomes and expediting the identification of curative strategies for patients with cancer. Despite the existing challenges, significant progress has been made in the past twenty years, demonstrating the benefit of precision oncology in many patients with advanced cancer.
Collapse
Affiliation(s)
- I-Wen Song
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Ying-Shiuan Chen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Mehmet A. Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Michael Kahle
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Amber Johnson
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
15
|
Schutte T, Embaby A, Steeghs N, van der Mierden S, van Driel W, Rijlaarsdam M, Huitema A, Opdam F. Clinical development of WEE1 inhibitors in gynecological cancers: A systematic review. Cancer Treat Rev 2023; 115:102531. [PMID: 36893690 DOI: 10.1016/j.ctrv.2023.102531] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
INTRODUCTION The anti-tumor activity of WEE1 inhibitors (WEE1i) in gynecological malignancies has recently been demonstrated in clinical trials and its rationale is based on biological/molecular features of gynecological cancers. With this systematic review, we aim to outline the clinical development and current evidence regarding the efficacy and safety of these targeted agents in in this patient group. METHODS Systematic literature review of trials including patients with gynecological cancers treated with a WEE1i. The primary objective was to summarize the efficacy of WEE1i in gynecological malignancies regarding objective response rate (ORR), clinical benefit rate (CBR), overall survival (OS) and progression-free survival (PFS). Secondary objectives included toxicity profile, Maximum Tolerated Dose (MTD), pharmacokinetics, drug-drug interactions and exploratory objectives such as biomarkers for response. RESULTS 26 records were included for data extraction. Almost all trials used the first-in-class WEE1i adavosertib; one conference abstract reported about Zn-c3. The majority of the trials included diverse solid tumors (n = 16). Six records reported efficacy results of WEE1i in gynecological malignancies (n = 6). Objective response rates of adavosertib monotherapy or in combination with chemotherapy ranged between 23% and 43% in these trials. Median PFS ranged from 3.0 to 9.9 months. The most common adverse events were bone marrow suppression, gastrointestinal toxicities and fatigue. Mainly alterations in cell cycle regulator genes TP53 and CCNE1 were potential predictors of response. CONCLUSION This report summarizes encouraging clinical development of WEE1i in gynecological cancers and considers its application in future studies. Biomarker-driven patient selection might be essential to increase the response rates.
Collapse
Affiliation(s)
- Tim Schutte
- Department of Internal Medicine and Department of Medical Oncology, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands.
| | - Alaa Embaby
- Department of Clinical Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Stevie van der Mierden
- Scientific Information Service, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Willemien van Driel
- Department of Gynecological Oncology, The Netherlands Cancer Insitute - Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Martin Rijlaarsdam
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Alwin Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Frans Opdam
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands
| |
Collapse
|
16
|
Papaccio F, Cabeza-Segura M, Garcia-Micò B, Tarazona N, Roda D, Castillo J, Cervantes A. Will Organoids Fill the Gap towards Functional Precision Medicine? J Pers Med 2022; 12:1939. [PMID: 36422115 PMCID: PMC9695811 DOI: 10.3390/jpm12111939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 08/13/2023] Open
Abstract
Precision medicine approaches for solid tumors are mainly based on genomics. Its employment in clinical trials has led to somewhat underwhelming results, except for single responses. Moreover, several factors can influence the response, such as gene and protein expression, the coexistence of different genomic alterations or post-transcriptional/translational modifications, the impact of tumor microenvironment, etc., therefore making it insufficient to employ a genomics-only approach to predict response. Recently, the implementation of patient-derived organoids has shed light on the possibility to use them to predict patient response to drug treatment. This could offer for the first time the possibility to move precision medicine to a functional environment.
Collapse
Affiliation(s)
- Federica Papaccio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Manuel Cabeza-Segura
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
| | - Blanca Garcia-Micò
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
| | - Noelia Tarazona
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
- Centro de Investigacion Biomedica en Red (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Desamparados Roda
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
- Centro de Investigacion Biomedica en Red (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josefa Castillo
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
- Centro de Investigacion Biomedica en Red (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
| | - Andres Cervantes
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
17
|
Challenges and opportunities associated with the MD Anderson IMPACT2 randomized study in precision oncology. NPJ Precis Oncol 2022; 6:78. [PMID: 36302890 PMCID: PMC9612600 DOI: 10.1038/s41698-022-00317-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
We investigated the challenges of conducting IMPACT2, an ongoing randomized study that evaluates molecular testing and targeted therapy (ClinicalTrials.gov: NCT02152254). Patients with metastatic cancer underwent tumor profiling and were randomized between the two arms when eligibility criteria were met (Part A). In Part B, patients who declined randomization could choose the study arm. In Part A, 69 (21.8%) of 317 patients were randomized; 78.2% were not randomized because of non-targetable alterations (39.8%), unavailability of clinical trial (21.8%), other reasons (12.6%), or availability of US Food and Drug Administration (FDA)-approved drugs for the indication (4.1%). In Part B, 32 (20.4%) of 157 patients were offered randomization; 16 accepted and 16 selected their treatment arm; 79.0% were not randomized (patient’s/physician’s choice, 29.3%; treatment selection prior to genomic reports, 16.6%; worsening performance status/death, 12.7%; unavailability of clinical trials, 6.4%; other, 6.4%; non-targetable alterations, 5.7%; or availability of FDA-approved drugs for the indication, 1.9%). In conclusion, although randomized controlled trials have been considered the gold standard for drug development, the execution of randomized trials in precision oncology in the advanced metastatic setting is complicated. We encountered various challenges conducting the IMPACT2 study, a large precision oncology trial in patients with diverse solid tumor types. The adaptive design of IMPACT2 enables patient randomization despite the continual FDA approval of targeted therapies, the evolving tumor biomarker landscape, and the plethora of investigational drugs. Outcomes for randomized patients are awaited.
Collapse
|
18
|
Fountzilas E, Tsimberidou AM, Vo HH, Kurzrock R. Clinical trial design in the era of precision medicine. Genome Med 2022; 14:101. [PMID: 36045401 PMCID: PMC9428375 DOI: 10.1186/s13073-022-01102-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Recent rapid biotechnological breakthroughs have led to the identification of complex and unique molecular features that drive malignancies. Precision medicine has exploited next-generation sequencing and matched targeted therapy/immunotherapy deployment to successfully transform the outlook for several fatal cancers. Tumor and liquid biopsy genomic profiling and transcriptomic, immunomic, and proteomic interrogation can now all be leveraged to optimize therapy. Multiple new trial designs, including basket and umbrella trials, master platform trials, and N-of-1 patient-centric studies, are beginning to supplant standard phase I, II, and III protocols, allowing for accelerated drug evaluation and approval and molecular-based individualized treatment. Furthermore, real-world data, as well as exploitation of digital apps and structured observational registries, and the utilization of machine learning and/or artificial intelligence, may further accelerate knowledge acquisition. Overall, clinical trials have evolved, shifting from tumor type-centered to gene-directed and histology-agnostic trials, with innovative adaptive designs and personalized combination treatment strategies tailored to individual biomarker profiles. Some, but not all, novel trials now demonstrate that matched therapy correlates with superior outcomes compared to non-matched therapy across tumor types and in specific cancers. To further improve the precision medicine paradigm, the strategy of matching drugs to patients based on molecular features should be implemented earlier in the disease course, and cancers should have comprehensive multi-omic (genomics, transcriptomics, proteomics, immunomic) tumor profiling. To overcome cancer complexity, moving from drug-centric to patient-centric individualized combination therapy is critical. This review focuses on the design, advantages, limitations, and challenges of a spectrum of clinical trial designs in the era of precision oncology.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Hospital, Thessaloniki, Greece
- European University Cyprus, Limassol, Cyprus
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
19
|
Eckstein OS, Allen CE, Williams PM, Roy-Chowdhuri S, Patton DR, Coffey B, Reid JM, Piao J, Saguilig L, Alonzo TA, Berg SL, Ramirez NC, Jaju A, Mhlanga J, Fox E, Hawkins DS, Mooney MM, Takebe N, Tricoli JV, Janeway KA, Seibel NL, Parsons DW. Phase II Study of Selumetinib in Children and Young Adults With Tumors Harboring Activating Mitogen-Activated Protein Kinase Pathway Genetic Alterations: Arm E of the NCI-COG Pediatric MATCH Trial. J Clin Oncol 2022; 40:2235-2245. [PMID: 35363510 PMCID: PMC9273373 DOI: 10.1200/jco.21.02840] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The NCI-COG Pediatric MATCH trial assigns patients age 1-21 years with relapsed or refractory solid tumors, lymphomas, and histiocytic disorders to phase II studies of molecularly targeted therapies on the basis of detection of predefined genetic alterations. Patients with tumors harboring mutations or fusions driving activation of the mitogen-activated protein kinase (MAPK) pathway were treated with the MEK inhibitor selumetinib. METHODS Patients received selumetinib twice daily for 28-day cycles until disease progression or intolerable toxicity. The primary end point was objective response rate; secondary end points included progression-free survival and tolerability of selumetinib. RESULTS Twenty patients (median age: 14 years) were treated. All were evaluable for response and toxicities. The most frequent diagnoses were high-grade glioma (HGG; n = 7) and rhabdomyosarcoma (n = 7). Twenty-one actionable mutations were detected: hotspot mutations in KRAS (n = 8), NRAS (n = 3), and HRAS (n = 1), inactivating mutations in NF1 (n = 7), and BRAF V600E (n = 2). No objective responses were observed. Three patients had a best response of stable disease including two patients with HGG (NF1 mutation, six cycles; KRAS mutation, 12 cycles). Six-month progression-free survival was 15% (95% CI, 4 to 34). Five patients (25%) experienced a grade 3 or higher adverse event that was possibly or probably attributable to study drug. CONCLUSION A national histology-agnostic molecular screening strategy was effective at identifying children and young adults eligible for treatment with selumetinib in the first Pediatric MATCH treatment arm to be completed. MEK inhibitors have demonstrated promising responses in some pediatric tumors (eg, low-grade glioma and plexiform neurofibroma). However, selumetinib in this cohort with treatment-refractory tumors harboring MAPK alterations demonstrated limited efficacy, indicating that pathway mutation status alone is insufficient to predict response to selumetinib monotherapy for pediatric cancers.
Collapse
Affiliation(s)
- Olive S. Eckstein
- Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX
| | - Carl E. Allen
- Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX
| | | | | | - David R. Patton
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD
| | - Brent Coffey
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD
| | | | - Jin Piao
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Todd A. Alonzo
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stacey L. Berg
- Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX
| | - Nilsa C. Ramirez
- Biopathology Center, Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Alok Jaju
- Ann and Robert H. Lurie Children's Hospital, Chicago, IL
| | - Joyce Mhlanga
- Washington University School of Medicine, St Louis, MO
| | | | | | - Margaret M. Mooney
- Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - James V. Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Nita L. Seibel
- Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - D. Williams Parsons
- Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX
| |
Collapse
|
20
|
Integrating Precision Medicine into the Contemporary Management of Gynecologic Cancers. Curr Oncol Rep 2022; 24:889-904. [DOI: 10.1007/s11912-021-01163-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 12/24/2022]
|
21
|
Rack S, Feeney L, Hapuarachi B, Adderley H, Woodhouse L, Betts G, Burghel GJ, Harrington KJ, Metcalf R. Evaluation of the Clinical Utility of Genomic Profiling to Inform Selection of Clinical Trial Therapy in Salivary Gland Cancer. Cancers (Basel) 2022; 14:1133. [PMID: 35267442 PMCID: PMC8909363 DOI: 10.3390/cancers14051133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022] Open
Abstract
For most patients with salivary gland cancer, there are no effective standard systemic therapies. Although clinical trials of biomarker-led drug therapies have delivered significant recent advances, there remains a need to understand the clinical utility of genomic profiling of cancer as a means to match patients with recurrent or metastatic salivary gland cancer to clinical trial therapies. In total, 209 patients with salivary gland cancers were profiled with 24 gene (n = 209)) and >325 gene (n = 32) DNA-based next-generation sequencing panels. A retrospective systematic evaluation was performed to identify the frequency of available matched drug therapies within clinical trials based on the results. The matches were then stratified based upon the level of evidence supporting the drug−biomarker combination being investigated using the ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT) to determine the strength of the clinical rationale for each gene−drug match identified. DNA-based next generation sequencing (NGS) analysis was successful in 175/209 (84%) patients with salivary gland cancer. Using the 24-gene NGS panel, actionable alterations were identified in 27% (48/175) patients. Alterations were most frequent in salivary duct carcinoma (88%) characterized by TP53 and/or PIK3CA mutations, with matched trials available for 63% (10/16). In ACC, biomarker-matched trials were available for 7% (8/115), and no genomic alterations were found in 96/115 (83%) of ACC patients. TP53 was the most frequently altered gene across all subtypes; however, there were no trials recruiting based on TP53 status. In 32 ACC patients with no genomic alterations using the 24-gene panel, a broader (>325 gene) panel identified alterations in 87% (27/32) of cases with biomarker-matched trials available in 40% (13/32) cases. This study identified that genomic profiling using focused (24-gene) NGS panels has potential utility in matching to trial therapies for most patients with non-ACC salivary gland cancer. For patients with ACC, broader genomic profiling has demonstrated added clinical utility. We describe the application of an approach to classification of levels of evidence which may be helpful to inform the clinician and patient decision making around the selection of clinical trial therapies.
Collapse
Affiliation(s)
- Samuel Rack
- Department of Medical Oncology, The Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK; (S.R.); (H.A.); (L.W.)
| | - Laura Feeney
- The Northern Ireland Cancer Centre, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, UK;
| | - Brindley Hapuarachi
- Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Broomhall, Sheffield S10 2JF, UK;
| | - Helen Adderley
- Department of Medical Oncology, The Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK; (S.R.); (H.A.); (L.W.)
| | - Laura Woodhouse
- Department of Medical Oncology, The Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK; (S.R.); (H.A.); (L.W.)
| | - Guy Betts
- Department of Adult Histopathology, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK;
| | - George J. Burghel
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road Rd, Manchester M13 9WL, UK;
| | | | - Robert Metcalf
- Department of Medical Oncology, The Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK; (S.R.); (H.A.); (L.W.)
| |
Collapse
|
22
|
Choi W, Lee ES. Therapeutic Targeting of DNA Damage Response in Cancer. Int J Mol Sci 2022; 23:ijms23031701. [PMID: 35163621 PMCID: PMC8836062 DOI: 10.3390/ijms23031701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) is critical to ensure genome stability, and defects in this signaling pathway are highly associated with carcinogenesis and tumor progression. Nevertheless, this also provides therapeutic opportunities, as cells with defective DDR signaling are directed to rely on compensatory survival pathways, and these vulnerabilities have been exploited for anticancer treatments. Following the impressive success of PARP inhibitors in the treatment of BRCA-mutated breast and ovarian cancers, extensive research has been conducted toward the development of pharmacologic inhibitors of the key components of the DDR signaling pathway. In this review, we discuss the key elements of the DDR pathway and how these molecular components may serve as anticancer treatment targets. We also summarize the recent promising developments in the field of DDR pathway inhibitors, focusing on novel agents beyond PARP inhibitors. Furthermore, we discuss biomarker studies to identify target patients expected to derive maximal clinical benefits as well as combination strategies with other classes of anticancer agents to synergize and optimize the clinical benefits.
Collapse
Affiliation(s)
- Wonyoung Choi
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Clinical Trials, National Cancer Center, Goyang 10408, Korea
| | - Eun Sook Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Breast Cancer, National Cancer Center, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-1633
| |
Collapse
|
23
|
Langenberg KPS, Looze EJ, Molenaar JJ. The Landscape of Pediatric Precision Oncology: Program Design, Actionable Alterations, and Clinical Trial Development. Cancers (Basel) 2021; 13:4324. [PMID: 34503139 PMCID: PMC8431194 DOI: 10.3390/cancers13174324] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Over the last years, various precision medicine programs have been developed for pediatric patients with high-risk, relapsed, or refractory malignancies, selecting patients for targeted treatment through comprehensive molecular profiling. In this review, we describe characteristics of these initiatives, demonstrating the feasibility and potential of molecular-driven precision medicine. Actionable events are identified in a significant subset of patients, although comparing results is complicated due to the lack of a standardized definition of actionable alterations and the different molecular profiling strategies used. The first biomarker-driven trials for childhood cancer have been initiated, but until now the effect of precision medicine on clinical outcome has only been reported for a small number of patients, demonstrating clinical benefit in some. Future perspectives include the incorporation of novel approaches such as liquid biopsies and immune monitoring as well as innovative collaborative trial design including combination strategies, and the development of agents specifically targeting aberrations in childhood malignancies.
Collapse
Affiliation(s)
- Karin P. S. Langenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (E.J.L.); (J.J.M.)
| | - Eleonora J. Looze
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (E.J.L.); (J.J.M.)
| | - Jan J. Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (E.J.L.); (J.J.M.)
- Department of Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
24
|
du Rusquec P, Le Tourneau C. Drug Development in Tissue-Agnostic Indications. Cancers (Basel) 2021; 13:2758. [PMID: 34199382 PMCID: PMC8199632 DOI: 10.3390/cancers13112758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
A better understanding of cancer biology has led to the development of targeted therapies specifically designed to modulate an altered molecular pathway in the cancer cells or their microenvironment. Despite the identification of molecular targets across cancer types, most of targeted therapies were developed per cancer type. In this ancestral paradigm, randomization was the gold-standard approach for market access. Randomization of large patient populations was feasible for drugs developed in common cancer types but more challenging in rare cancer types. The traditional paradigm of drug development in oncology was further challenged by the ever-expanding molecular segmentation of cancer with ever-smaller subgroups of patients who might benefit from specific targeted therapies or immunotherapies and the identification of molecular alterations against which drugs may be effective across cancer types. In this novel drug development paradigm, novel ways of evaluating the efficacy of drugs are highly needed in these small patient populations. One approach is to use each patient as his/her own control by comparing the efficacy of a drug to the efficacy of prior treatments received. This approach allows to overcome patient heterogeneity, especially in a tissue-agnostic drug development paradigm.
Collapse
Affiliation(s)
- Pauline du Rusquec
- Department of Drug Development and Innovation (D3i), Institut Curie, 75005 Paris, France;
- INSERM U900, 92210 Saint-Cloud, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, 75005 Paris, France;
- INSERM U900, 92210 Saint-Cloud, France
- Faculty of Medicine, Paris-Saclay University, 78180 Montigny le Bretonneux, France
| |
Collapse
|