1
|
Janssen FW, Lak NSM, Janda CY, Kester LA, Meister MT, Merks JHM, van den Heuvel-Eibrink MM, van Noesel MM, Zsiros J, Tytgat GAM, Looijenga LHJ. A comprehensive overview of liquid biopsy applications in pediatric solid tumors. NPJ Precis Oncol 2024; 8:172. [PMID: 39097671 PMCID: PMC11297996 DOI: 10.1038/s41698-024-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Liquid biopsies are emerging as an alternative source for pediatric cancer biomarkers with potential applications during all stages of patient care, from diagnosis to long-term follow-up. While developments within this field are reported, these mainly focus on dedicated items such as a specific liquid biopsy matrix, analyte, and/or single tumor type. To the best of our knowledge, a comprehensive overview is lacking. Here, we review the current state of liquid biopsy research for the most common non-central nervous system pediatric solid tumors. These include neuroblastoma, renal tumors, germ cell tumors, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcomas, and liver tumors. Within this selection, we discuss the most important or recent studies involving liquid biopsy-based biomarkers, anticipated clinical applications, and the current challenges for success. Furthermore, we provide an overview of liquid biopsy-based biomarker publication output for each tumor type based on a comprehensive literature search between 1989 and 2023. Per study identified, we list the relevant liquid biopsy-based biomarkers, matrices (e.g., peripheral blood, bone marrow, or cerebrospinal fluid), analytes (e.g., circulating cell-free and tumor DNA, microRNAs, and circulating tumor cells), methods (e.g., digital droplet PCR and next-generation sequencing), the involved pediatric patient cohort, and proposed applications. As such, we identified 344 unique publications. Taken together, while the liquid biopsy field in pediatric oncology is still behind adult oncology, potentially relevant publications have increased over the last decade. Importantly, steps towards clinical implementation are rapidly gaining ground, notably through validation of liquid biopsy-based biomarkers in pediatric clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Michael T Meister
- Princess Máxima Center, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johannes H M Merks
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center, Utrecht, the Netherlands
- Wilhelmina Children's Hospital-Division of CHILDHEALTH, University Medical Center Utrech, University of Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center, Utrecht, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Mangum R, Lin FY, Parsons DW. Recent Advancements and Innovations in Pediatric Precision Oncology. J Pediatr Hematol Oncol 2024; 46:262-271. [PMID: 38857189 DOI: 10.1097/mph.0000000000002871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/29/2024] [Indexed: 06/12/2024]
Abstract
Precision oncology incorporates comprehensive genomic profiling into the individualized clinical care of pediatric cancer patients. In recent years, comprehensive pan-cancer analyses have led to the successful implementation of genomics-based pediatric trials and accelerated approval of novel targeted agents. In addition, disease-specific studies have resulted in molecular subclassification of myriad cancer types with subsequent tailoring of treatment intensity based on the patient's prognostic factors. This review discusses the progress of the field and highlights developments that are leading to more personalized cancer care and improved patient outcomes. Increased understanding of the evolution of precision oncology over recent decades emphasizes the tremendous impact of improved genomic applications. New technologies and improved diagnostic modalities offer further promise for future advancements within the field.
Collapse
Affiliation(s)
- Ross Mangum
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Frank Y Lin
- Department of Pediatrics, Texas Children's Cancer Center
- The Dan L. Duncan Cancer Center
| | - D Williams Parsons
- Department of Pediatrics, Texas Children's Cancer Center
- The Dan L. Duncan Cancer Center
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Martynov I, Dhaka L, Wilke B, Hoyer P, Vahdad MR, Seitz G. Contemporary preclinical mouse models for pediatric rhabdomyosarcoma: from bedside to bench to bedside. Front Oncol 2024; 14:1333129. [PMID: 38371622 PMCID: PMC10869630 DOI: 10.3389/fonc.2024.1333129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
Background Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue malignancy, characterized by high clinicalopathological and molecular heterogeneity. Preclinical in vivo models are essential for advancing our understanding of RMS oncobiology and developing novel treatment strategies. However, the diversity of scholarly data on preclinical RMS studies may challenge scientists and clinicians. Hence, we performed a systematic literature survey of contemporary RMS mouse models to characterize their phenotypes and assess their translational relevance. Methods We identified papers published between 01/07/2018 and 01/07/2023 by searching PubMed and Web of Science databases. Results Out of 713 records screened, 118 studies (26.9%) were included in the qualitative synthesis. Cell line-derived xenografts (CDX) were the most commonly utilized (n = 75, 63.6%), followed by patient-derived xenografts (PDX) and syngeneic models, each accounting for 11.9% (n = 14), and genetically engineered mouse models (GEMM) (n = 7, 5.9%). Combinations of different model categories were reported in 5.9% (n = 7) of studies. One study employed a virus-induced RMS model. Overall, 40.0% (n = 30) of the studies utilizing CDX models established alveolar RMS (aRMS), while 38.7% (n = 29) were embryonal phenotypes (eRMS). There were 20.0% (n = 15) of studies that involved a combination of both aRMS and eRMS subtypes. In one study (1.3%), the RMS phenotype was spindle cell/sclerosing. Subcutaneous xenografts (n = 66, 55.9%) were more frequently used compared to orthotopic models (n = 29, 24.6%). Notably, none of the employed cell lines were derived from primary untreated tumors. Only a minority of studies investigated disseminated RMS phenotypes (n = 16, 13.6%). The utilization areas of RMS models included testing drugs (n = 64, 54.2%), studying tumorigenesis (n = 56, 47.5%), tumor modeling (n = 19, 16.1%), imaging (n = 9, 7.6%), radiotherapy (n = 6, 5.1%), long-term effects related to radiotherapy (n = 3, 2.5%), and investigating biomarkers (n = 1, 0.8%). Notably, no preclinical studies focused on surgery. Conclusions This up-to-date review highlights the need for mouse models with dissemination phenotypes and cell lines from primary untreated tumors. Furthermore, efforts should be directed towards underexplored areas such as surgery, radiotherapy, and biomarkers.
Collapse
Affiliation(s)
- Illya Martynov
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Lajwanti Dhaka
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - Benedikt Wilke
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - Paul Hoyer
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - M. Reza Vahdad
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| |
Collapse
|
4
|
陈 颖. [Research progress on circulating tumor DNA as a biomarker for minimal residual disease in solid tumors]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1072-1077. [PMID: 37905766 PMCID: PMC10621050 DOI: 10.7499/j.issn.1008-8830.2304040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/02/2023] [Indexed: 11/02/2023]
Abstract
Circulating tumor DNA (ctDNA) is emerging as a novel biomarker for tumor evaluation, offering advantages such as high sensitivity and specificity, minimal invasiveness, and absence of radiation. Currently, various techniques including gene sequencing and PCR are employed for ctDNA detection. The utilization of ctDNA for monitoring minimal residual disease (MRD) enables comprehensive assessment of tumor status and early identification of tumor recurrence, achieving a remarkable detection sensitivity of 0.01%. Therefore, ctDNA holds promise as a biomarker for early diagnosis, treatment response monitoring, and prognosis prediction in solid tumors. This article reviews the commonly used methods for detecting ctDNA and their advantages in evaluating tumor MRD and guiding clinical diagnosis and treatment.
Collapse
Affiliation(s)
- 颖 陈
- 汕头大学医学院深圳儿科临床学院,广东深圳518034
| |
Collapse
|
5
|
de Traux de Wardin H, Dermawan JK, Merlin MS, Wexler LH, Orbach D, Vanoli F, Schleiermacher G, Geoerger B, Ballet S, Guillemot D, Frouin E, Cyrille S, Delattre O, Pierron G, Antonescu CR. Sequential genomic analysis using a multisample/multiplatform approach to better define rhabdomyosarcoma progression and relapse. NPJ Precis Oncol 2023; 7:96. [PMID: 37730754 PMCID: PMC10511463 DOI: 10.1038/s41698-023-00445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023] Open
Abstract
The genomic spectrum of rhabdomyosarcoma (RMS) progression from primary to relapse is not fully understood. In this pilot study, we explore the sensitivity of various targeted and whole-genome NGS platforms in order to assess the best genomic approach of using liquid biopsy in future prospective clinical trials. Moreover, we investigate 35 paired primary/relapsed RMS from two contributing institutions, 18 fusion-positive (FP-RMS) and 17 fusion-negative RMS (FN-RMS) by either targeted DNA or whole exome sequencing (WES). In 10 cases, circulating tumor DNA (ctDNA) from multiple timepoints through clinical care and progression was analyzed for feasibility of liquid biopsy in monitoring treatment response/relapse. ctDNA alterations were evaluated using a targeted 36-gene custom RMS panel at high coverage for single-nucleotide variation and fusion detection, and a shallow whole-genome sequencing for copy number variation. FP-RMS have a stable genome with relapse, with common secondary alterations CDKN2A/B, MYCN, and CDK4 present at diagnosis and impacting survival. FP-RMS lacking major secondary events at baseline acquire recurrent MYCN and AKT1 alterations. FN-RMS acquire a higher number of new alterations, most commonly SMARCA2 missense mutations. ctDNA analyses detect pathognomonic variants in all RMS patients within our collection at diagnosis, regardless of type of alterations, and confirmed at relapse in 86% of FP-RMS and 100% FN-RMS. Moreover, a higher number of fusion reads is detected with increased disease burden and at relapse in patients following a fatal outcome. These results underscore patterns of tumor progression and provide rationale for using liquid biopsy to monitor treatment response.
Collapse
Affiliation(s)
- Henry de Traux de Wardin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Unit of Somatic Genetics, Institut Curie, Paris, France
| | - Josephine K Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marie-Sophie Merlin
- University of Lorraine, Centre Hospitalier Régional Universitaire (CHRU), Childrens' Hospital, Department of Pediatric Oncology, Vandoeuvre-lès-Nancy, France
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), PSL University, Institut Curie, Paris, France
| | - Fabio Vanoli
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gudrun Schleiermacher
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), PSL University, Institut Curie, Paris, France
- U830 INSERM, Paris, France
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Université Paris-Saclay, Villejuif, 94805, France
| | - Stelly Ballet
- Unit of Somatic Genetics, Institut Curie, Paris, France
| | | | | | - Stacy Cyrille
- Department of Biometrics, Institut Curie, Paris, France
| | - Olivier Delattre
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), PSL University, Institut Curie, Paris, France
- U830 INSERM, Paris, France
| | - Gaelle Pierron
- Unit of Somatic Genetics, Institut Curie, Paris, France.
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Schoot RA, van Ewijk R, von Witzleben AA, Kao SC, Merks JHMH, Morosi C, Pace E, Shulkin BL, Ferrari A, von Kalle T, van Rijn RR, Weiss AR, Sparber-Sauer M, Ter Horst SAJ, McCarville MB. INternational Soft Tissue saRcoma ConsorTium (INSTRuCT) consensus statement: Imaging recommendations for the management of rhabdomyosarcoma. Eur J Radiol 2023; 166:111012. [PMID: 37541182 DOI: 10.1016/j.ejrad.2023.111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023]
Abstract
Rhabdomyosarcoma is the most common soft-tissue neoplasm in the pediatric population. The survival of children with rhabdomyosarcoma has only marginally improved over the past 25 years and remains poor for those with metastatic disease. A significant challenge to advances in treatment of rhabdomyosarcoma is the relative rarity of this disease, necessitating years to complete clinical trials. Progress can be accelerated by international cooperation and sharing national experiences. This necessitates agreement on a common language to describe patient cohorts and consensus standards to guide diagnosis, treatment, and response assessment. These goals formed the premise for creating the INternational Soft Tissue saRcoma ConsorTium (INSTRuCT) in 2017. Multidisciplinary members of this consortium have since developed international consensus statements on the diagnosis, treatment, and management of pediatric soft-tissue sarcomas. Herein, members of the INSTRuCT Diagnostic Imaging Working Group present international consensus recommendations for imaging of patients with rhabdomyosarcoma at diagnosis, at staging, and during and after completion of therapy. The intent is to promote a standardized imaging approach to pediatric patients with this malignancy to create more-reliable comparisons of results of clinical trials internationally, thereby accelerating progress in managing rhabdomyosarcoma and improving survival.
Collapse
Affiliation(s)
- Reineke A Schoot
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Roelof van Ewijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Anna-Anais von Witzleben
- Institute of Radiology Olgahospital, Zentrum für Kinder-, Jugend- und Frauenmedizin, Klinikum Stuttgart, Stuttgart, Germany.
| | - Simon C Kao
- Department of Radiology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - J H M Hans Merks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Carlo Morosi
- Department of Radiology, Istituto Nazionale Tumori, Milan, Italy.
| | - Erika Pace
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, England, United Kingdom.
| | - Barry L Shulkin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Andrea Ferrari
- Pediatric Oncology Unit, Medical Oncology and Hematology Department, Istituto Nazionale Tumori, Milan, Italy.
| | - Thekla von Kalle
- Institute of Radiology Olgahospital, Zentrum für Kinder-, Jugend- und Frauenmedizin, Klinikum Stuttgart, Stuttgart, Germany.
| | - Rick R van Rijn
- Department of Radiology and Nuclear Medicine, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Aaron R Weiss
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Maine Medical Center, Portland, ME, USA.
| | - Monika Sparber-Sauer
- Klinikum der Landeshauptstadt Stuttgart gKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany; University of Medicine Tübingen, Tübingen, Germany.
| | - Simone A J Ter Horst
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, the Netherlands.
| | - M Beth McCarville
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Oberoi S, Crane JN, Haduong JH, Rudzinski ER, Wolden SL, Dasgupta R, Linardic CM, Weiss AR, Venkatramani R. Children's Oncology Group's 2023 blueprint for research: Soft tissue sarcomas. Pediatr Blood Cancer 2023; 70 Suppl 6:e30556. [PMID: 37430436 PMCID: PMC10519430 DOI: 10.1002/pbc.30556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
In the United States, approximately 850-900 children and adolescents each year are diagnosed with soft tissue sarcomas (STS). STS are divided into rhabdomyosarcoma (RMS) and non-rhabdomyosarcoma STS (NRSTS). RMS and NRSTS are risk stratified into low-, intermediate-, and high-risk categories, with 5-year survival rates of approximately 90%, 50%-70%, and 20%, respectively. Recent key achievements from the Children's Oncology Group (COG) STS Committee include the identification of new molecular prognostic factors for RMS, development and validation of a novel risk stratification system for NRSTS, successful completion of a collaborative NRSTS clinical trial with adult oncology consortia, and collaborative development of the INternational Soft Tissue SaRcoma ConsorTium (INSTRuCT). Current COG trials for RMS are prospectively evaluating a new risk stratification system that incorporates molecular findings, de-intensification of therapy for a very low-risk subgroup, and augmented therapy approaches for intermediate- and high-risk RMS. Trials for NRSTS exploring novel targets and local control modalities are in development.
Collapse
Affiliation(s)
- Sapna Oberoi
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatric Hematology-Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Jacquelyn N Crane
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Josephine H Haduong
- Division of Oncology, Hyundai Cancer Institute, Children’s Hospital Orange County, Orange, California, USA
| | - Erin R. Rudzinski
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, USA
- Department of Laboratories, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Suzanne L Wolden
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Roshni Dasgupta
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Corinne M Linardic
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Aaron R Weiss
- Department of Pediatrics, Maine Medical Center, Portland, Main, USA
| | - Rajkumar Venkatramani
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Rulten SL, Grose RP, Gatz SA, Jones JL, Cameron AJM. The Future of Precision Oncology. Int J Mol Sci 2023; 24:12613. [PMID: 37628794 PMCID: PMC10454858 DOI: 10.3390/ijms241612613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Our understanding of the molecular mechanisms underlying cancer development and evolution have evolved rapidly over recent years, and the variation from one patient to another is now widely recognized. Consequently, one-size-fits-all approaches to the treatment of cancer have been superseded by precision medicines that target specific disease characteristics, promising maximum clinical efficacy, minimal safety concerns, and reduced economic burden. While precision oncology has been very successful in the treatment of some tumors with specific characteristics, a large number of patients do not yet have access to precision medicines for their disease. The success of next-generation precision oncology depends on the discovery of new actionable disease characteristics, rapid, accurate, and comprehensive diagnosis of complex phenotypes within each patient, novel clinical trial designs with improved response rates, and worldwide access to novel targeted anticancer therapies for all patients. This review outlines some of the current technological trends, and highlights some of the complex multidisciplinary efforts that are underway to ensure that many more patients with cancer will be able to benefit from precision oncology in the near future.
Collapse
Affiliation(s)
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (R.P.G.); (J.L.J.)
| | - Susanne A. Gatz
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - J. Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (R.P.G.); (J.L.J.)
| | - Angus J. M. Cameron
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (R.P.G.); (J.L.J.)
| |
Collapse
|
9
|
Bisogno G, Minard-Colin V, Jenney M, Ferrari A, Chisholm J, Di Carlo D, Hjalgrim LL, Orbach D, Merks JHM, Casanova M. Maintenance Chemotherapy for Patients with Rhabdomyosarcoma. Cancers (Basel) 2023; 15:4012. [PMID: 37568826 PMCID: PMC10417571 DOI: 10.3390/cancers15154012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Maintenance chemotherapy (MC) defines the administration of prolonged relatively low-intensity chemotherapy with the aim of "maintaining" tumor complete remission. This paper aims to report an update of the RMS2005 trial, which demonstrated better survival for patients with high-risk localized rhabdomyosarcoma (RMS) when MC with vinorelbine and low-dose cyclophosphamide was added to standard chemotherapy, and to discuss the published experience on MC in RMS. In the RMS2005 study, the outcome for patients receiving MC vs. those who stopped the treatment remains superior, with a 5-year disease-free survival of 78.1% vs. 70.1% (p = 0.056) and overall survival of 85.0% vs. 72.4% (p = 0.008), respectively. We found seven papers describing MC in RMS, but only one randomized trial that did not demonstrate any advantage when MC with eight courses of trofosfamide/idarubicine alternating with trofosfamide/etoposide has been employed in high-risk RMS. The use of MC showed better results in comparison to high-dose chemotherapy in non-randomized studies, including metastatic patients, and demonstrated feasibility and tolerability in relapsed RMS. Many aspects of MC in RMS need to be investigated, including the best drug combination and the optimal duration. The ongoing EpSSG trial will try to answer some of these questions.
Collapse
Affiliation(s)
- Gianni Bisogno
- Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy;
- Pediatric Hematology Oncology Division, University Hospital of Padua, 35128 Padua, Italy
| | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, Institut Gustave-Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Meriel. Jenney
- Department of Paediatric Oncology, Children’s Hospital for Wales, Heath Park, Cardiff CF14 4XW, UK;
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (A.F.); (M.C.)
| | - Julia Chisholm
- Children and Young People’s Unit, Royal Marsden Hospital and Institute of Cancer Research, Sutton SM2 5PT, UK;
| | - Daniela Di Carlo
- Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy;
| | - Lisa Lyngsie Hjalgrim
- Department of Paediatric and Adolescent Medicine, University Hospital Copenhagen, 2100 Copenhagen, Denmark;
| | - Daniel Orbach
- SIREDO Oncology Centre (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, Paris Sciences et Lettres L University, 75005 Paris, France;
| | - Johannes Hendrikus Maria Merks
- Princess Máxima Centre for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Division of Imaging and Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (A.F.); (M.C.)
| |
Collapse
|
10
|
van Zogchel LMJ, Lak NSM, Gelineau NU, Sergeeva I, Stelloo E, Swennenhuis J, Feitsma H, van Min M, Splinter E, Bleijs M, Groot Koerkamp M, Breunis W, Meister MT, Kholossy WH, Holstege FCP, Molenaar JJ, de Leng WWJ, Stutterheim J, van der Schoot CE, Tytgat GAM. Targeted locus amplification to develop robust patient-specific assays for liquid biopsies in pediatric solid tumors. Front Oncol 2023; 13:1124737. [PMID: 37152023 PMCID: PMC10157037 DOI: 10.3389/fonc.2023.1124737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background Liquid biopsies combine minimally invasive sample collection with sensitive detection of residual disease. Pediatric malignancies harbor tumor-driving copy number alterations or fusion genes, rather than recurrent point mutations. These regions contain tumor-specific DNA breakpoint sequences. We investigated the feasibility to use these breakpoints to design patient-specific markers to detect tumor-derived cell-free DNA (cfDNA) in plasma from patients with pediatric solid tumors. Materials and methods Regions of interest (ROI) were identified through standard clinical diagnostic pipelines, using SNP array for CNAs, and FISH or RT-qPCR for fusion genes. Using targeted locus amplification (TLA) on tumor organoids grown from tumor material or targeted locus capture (TLC) on FFPE material, ROI-specific primers and probes were designed, which were used to design droplet digital PCR (ddPCR) assays. cfDNA from patient plasma at diagnosis and during therapy was analyzed. Results TLA was performed on material from 2 rhabdomyosarcoma, 1 Ewing sarcoma and 3 neuroblastoma. FFPE-TLC was performed on 8 neuroblastoma tumors. For all patients, at least one patient-specific ddPCR was successfully designed and in all diagnostic plasma samples the patient-specific markers were detected. In the rhabdomyosarcoma and Ewing sarcoma patients, all samples after start of therapy were negative. In neuroblastoma patients, presence of patient-specific markers in cfDNA tracked tumor burden, decreasing during induction therapy, disappearing at complete remission and re-appearing at relapse. Conclusion We demonstrate the feasibility to determine tumor-specific breakpoints using TLA/TLC in different pediatric solid tumors and use these for analysis of cfDNA from plasma. Considering the high prevalence of CNAs and fusion genes in pediatric solid tumors, this approach holds great promise and deserves further study in a larger cohort with standardized plasma sampling protocols.
Collapse
Affiliation(s)
- Lieke M. J. van Zogchel
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Sanquin Research and Landsteiner Laboratory of the AMC‐ University of Amsterdam, Department of Experimental Immunohematology, Amsterdam, Netherlands
| | - Nathalie S. M. Lak
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Sanquin Research and Landsteiner Laboratory of the AMC‐ University of Amsterdam, Department of Experimental Immunohematology, Amsterdam, Netherlands
| | - Nina U. Gelineau
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Sanquin Research and Landsteiner Laboratory of the AMC‐ University of Amsterdam, Department of Experimental Immunohematology, Amsterdam, Netherlands
| | | | | | | | | | | | | | - Margit Bleijs
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Willemijn Breunis
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- University Children’s Hospital Zürich, Zürich, Switzerland
| | - Michael Torsten Meister
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Frank C. P. Holstege
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center (UMC) Utrecht and Utrecht University, Utrecht, Netherlands
| | - Jan J. Molenaar
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Wendy W. J. de Leng
- Department of Pathology, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Janine Stutterheim
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory of the AMC‐ University of Amsterdam, Department of Experimental Immunohematology, Amsterdam, Netherlands
| | - Godelieve A. M. Tytgat
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- *Correspondence: Godelieve A. M. Tytgat,
| |
Collapse
|