Monteiro J, Videira A, Pereira F. Quantification of Neurospora crassa mitochondrial DNA using quantitative real-time PCR.
Lett Appl Microbiol 2020;
71:171-178. [PMID:
32270506 DOI:
10.1111/lam.13294]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/26/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
The filamentous fungus Neurospora crassa is a popular model organism used in a wide range of biochemical and genetic studies and vastly used in mitochondrial research. Despite the relevance of mitochondria in N. crassa biology, no method for quantification of mitochondrial DNA (mtDNA) is currently available. Quantitative real-time PCR (qPCR) is a powerful tool, with a wide range of applications, and has been used for the quantification of nucleic acids in humans and a few other species. Here we present a new qPCR assay for relative quantification of N. crassa mtDNA. Three sets of qPCR primers targeting different regions of the mitochondrial genome were tested for mtDNA quantification. The qPCR was successfully validated in N. crassa strains from different geographical locations, representing the vast genetic diversity of this species, and knockout mutant strains. Moreover the assay proved to be efficient in templates with varied amounts of mitochondria, obtained through different DNA extraction methods. The qPCR performed well in all tested samples revealing a higher amount of mtDNA than nuclear DNA in all cases. This technique will facilitate the characterization of mtDNA of N. crassa in future studies and can be used as a tool to validate methods of mitochondria isolation. SIGNIFICANCE AND IMPACT OF THE STUDY: The standardization of quantitative real-time PCR (qPCR) techniques is essential to enable and facilitate future comparisons. Neurospora crassa is a model organism with a lot of potential in different fields of study. Here we use N. crassa to develop and establish an assay to quantify mitochondrial DNA using qPCR. We tested strains with different geographical background and our data demonstrated the usefulness of this assay to quantify mitochondrial DNA in N. crassa. This technique can be useful in a wide variety of applications and in different types of studies.
Collapse