1
|
Pica ML, Vitale E, Donadio R, Costanzo G, Munari M, Fabbrizzi E, Fraschetti S, Arena C. Functional ecological traits in young and adult thalli of canopy-forming brown macroalga Gongolaria barbata (Phaeophyta) from a transitional water system. PeerJ 2024; 12:e17959. [PMID: 39282112 PMCID: PMC11402337 DOI: 10.7717/peerj.17959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
Background Gongolaria barbata is a canopy-forming brown macroalga that thrives in the intertidal and subtidal habitats of the warm-temperate Mediterranean Sea, which is particularly exposed to environmental changes due to its peculiar geographical location and exposure to both global and local stressors. Testing whether this species is featured by specific functional, eco-physiological and biochemical traits allowing an efficient use of habitat resources and adaptation to environmental stress, and whether this potential might change with population growth, is essential for predicting the performance of the algae under different environmental abiotic variables (e.g., temperature, nutrient availability, light) and biotic interactions (such as grazing). Methods Young (juveniles) and adult thalli of G. barbata were sampled in the winter season from the Venice Lagoon, Italy, featured by high environmental changes (temperature, salinity) and analyzed for thallus dry matter content (TDMC), photosynthetic activity, photosynthetic pigment and protein content, and antioxidant capacity to assess if thallus age may be considered a significant driver in determining the ecological responses of this species to environmental changes. Results Our results showed that TDMC was higher in adults than juveniles. At the functional level, rapid light curves indicated an elevated photosynthetic efficiency in juveniles compared to adults highlighted by the higher quantum yield of PSII electron transport, electron transport rate, and Rubisco content observed in juveniles. On the contrary, adults exhibited a higher non-photochemical quenching and total pigment concentration. No difference in maximum PSII photochemical efficiency and D1 protein content between the two thalli groups was found. Along with better photosynthesis, juveniles also displayed a higher amount of total polyphenols, flavonoids, and tannins, and a stronger antioxidant capacity compared to adults. Conclusions Our findings revealed significant differences in the eco-physiological characteristics of G. barbata at different growth stages. It was observed that young thalli, allocate more energy to photosynthesis and chemical defenses by increasing the production of antioxidant compounds, such as polyphenols, flavonoids, and tannins. With growth, thalli likely adopt a more conservative strategy, reducing photosynthesis and promoting structural biomass accumulation to mitigate the potential risks associated with prolonged exposure to environmental stressors, such as the wavy way. Although our study focused on a single phase of G. barbata life cycle under winter settings, it offers preliminary insights into this species eco-physiological traits and auto-ecology. Future research could explore the potential implications of these findings, evaluating the species' resilience to environmental changes at the population level.
Collapse
Affiliation(s)
- Maria Luisa Pica
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ermenegilda Vitale
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Rosa Donadio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giulia Costanzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Department of Biology, Stazione Idrobiologica 'Umberto d'Ancona', University of Padova, Padova, Italy
| | - Erika Fabbrizzi
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Simonetta Fraschetti
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
2
|
Banchi E, Corre E, Del Negro P, Celussi M, Malfatti F. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:126-142. [PMID: 38433960 PMCID: PMC10902248 DOI: 10.1007/s42995-023-00192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024]
Abstract
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from 'omics' approaches. Here, we characterized metagenome-assembled-genomes (MAGs) from the surface sediment microbes of the Venice Lagoon (northern Adriatic Sea) in distinct sub-basins exposed to various natural and anthropogenic pressures. MAGs were explored for biodiversity, major marine metabolic processes, anthropogenic activity-related functions, adaptations at the microscale, and biosynthetic gene clusters. Starting from 126 MAGs, a non-redundant dataset of 58 was compiled, the majority of which (35) belonged to (Alpha- and Gamma-) Proteobacteria. Within the broad microbial metabolic repertoire (including C, N, and S metabolisms) the potential to live without oxygen emerged as one of the most important features. Mixotrophy was also found as a successful lifestyle. Cluster analysis showed that different MAGs encoded the same metabolic patterns (e.g., C fixation, sulfate oxidation) thus suggesting metabolic redundancy. Antibiotic and toxic compounds resistance genes were coupled, a condition that could promote the spreading of these genetic traits. MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification. Our results highlighted that bacteria living in an impacted environment, such as the surface sediments of the Venice Lagoon, may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites, promoting ecosystem resilience and stability toward environmental pressures. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00192-z.
Collapse
Affiliation(s)
- Elisa Banchi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Erwan Corre
- FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), Sorbonne Université CNRS, 29680 Roscoff, France
| | - Paola Del Negro
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Francesca Malfatti
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
3
|
Loschi M, D'Alelio D, Camatti E, Bernardi Aubry F, Beran A, Libralato S. Planktonic ecological networks support quantification of changes in ecosystem health and functioning. Sci Rep 2023; 13:16683. [PMID: 37794097 PMCID: PMC10550973 DOI: 10.1038/s41598-023-43738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Plankton communities are the foundation of marine food webs and have a large effect on the dynamics of entire ecosystems. Changes in physicochemical factors strongly influence planktonic organisms and their turnover rates, making their communities useful for monitoring ecosystem health. We studied and compared the planktonic food webs of Palude della Rosa (Venice Lagoon, Italy) in 2005 and 2007. The food webs were developed using a novel approach based on the Monte Carlo random sampling of parameters within specific and realistic ranges to derive 1000 food webs for July of each year. The consumption flows involving Strombididae, Evadne spp. and Podon spp. were identified as the most important in splitting food webs of the July of the two years. Although functional nodes (FNs) differed both in presence and abundance in July of the two years, the whole system indicators showed very similar results. Sediment resuspension acted as a source of stress for the Venice Lagoon, being the most used resource by consumers while inhibiting primary producers by increasing water turbidity. Primary production in the water column was mainly generated by benthic FNs. Although the system was near an equilibrium point, it tended to increase its resilience at the expense of efficiency due to stress. This study highlights the role of plankton communities, which can serve to assess ecosystem health.
Collapse
Affiliation(s)
- Matteo Loschi
- Department of Life Sciences, University of Trieste, via Weiss 2, 34128, Trieste, Italy
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - Domenico D'Alelio
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Elisa Camatti
- Institute of Marine Science (CNR ISMAR), National Research Council, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy
| | - Fabrizio Bernardi Aubry
- Institute of Marine Science (CNR ISMAR), National Research Council, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy
| | - Alfred Beran
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - Simone Libralato
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy.
| |
Collapse
|
4
|
Fogarin S, Zanetti M, Dal Barco MK, Zennaro F, Furlan E, Torresan S, Pham HV, Critto A. Combining remote sensing analysis with machine learning to evaluate short-term coastal evolution trend in the shoreline of Venice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160293. [PMID: 36403828 DOI: 10.1016/j.scitotenv.2022.160293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
With increasing storminess and incessant sea-level rise, coastal erosion is becoming a primary issue along many littorals in the world. To cope with present and future climate change scenarios, it is important to map the shoreline position over years and assess the coastal erosion trends to select the best risk management solutions and guarantee a sustainable management of communities, structures, and ecosystems. However, this objective is particularly challenging on gentle-sloping sandy coasts, where also small sea-level changes trigger significant morphological evolutions. This study presents a multidisciplinary study combining satellite images with Machine Learning and GIS-based spatial tools to analyze short-term shoreline evolution trends and detect erosion hot-spots on the Venice coast over the period 2015-2019. Firstly, advanced image preprocessing, which is not frequently adopted in coastal erosion studies, was performed on satellite images downloaded within the same tidal range. Secondly, different Machine Learning classification methods were tested to accurately define shoreline position by recognizing the land-sea interface in each image. Finally, the application of the Digital Shoreline Analysis System tool was performed to evaluate and visualize coastal changes over the years. Overall, the case study littoral reveals to be stable or mainly subjected to accretion. This is probably due to the high presence of coastal protection structures that stabilize the beaches, enhancing deposition processes. In detail, with respect to the total length of the considered shoreline (about 83 km), 5 % of the coast is eroding, 36 % is stable, 52 % is accreting and 7 % is not evaluable. Despite a significant coastal erosion risk was not recognized within this region, well-delimited erosion hot-spots were mapped in correspondence of Caorle, Jesolo and Cavallino-Treporti municipalities. These areas deserve higher attention for territorial planning and prioritization of adaptation measures, facing climate change scenarios and sea-level rise emergencies in the context of Integrated Coastal Zone Management.
Collapse
Affiliation(s)
- S Fogarin
- Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici, I-73100 Lecce, Italy; Department of Environmental Sciences, Informatics and Statistic, University Ca' Foscari Venice, I-30170 Venice, Italy
| | - M Zanetti
- Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici, I-73100 Lecce, Italy; Department of Environmental Sciences, Informatics and Statistic, University Ca' Foscari Venice, I-30170 Venice, Italy
| | - M K Dal Barco
- Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici, I-73100 Lecce, Italy; Department of Environmental Sciences, Informatics and Statistic, University Ca' Foscari Venice, I-30170 Venice, Italy
| | - F Zennaro
- Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici, I-73100 Lecce, Italy; Department of Environmental Sciences, Informatics and Statistic, University Ca' Foscari Venice, I-30170 Venice, Italy
| | - E Furlan
- Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici, I-73100 Lecce, Italy; Department of Environmental Sciences, Informatics and Statistic, University Ca' Foscari Venice, I-30170 Venice, Italy
| | - S Torresan
- Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici, I-73100 Lecce, Italy; Department of Environmental Sciences, Informatics and Statistic, University Ca' Foscari Venice, I-30170 Venice, Italy
| | - H V Pham
- Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici, I-73100 Lecce, Italy; Department of Environmental Sciences, Informatics and Statistic, University Ca' Foscari Venice, I-30170 Venice, Italy
| | - A Critto
- Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici, I-73100 Lecce, Italy; Department of Environmental Sciences, Informatics and Statistic, University Ca' Foscari Venice, I-30170 Venice, Italy.
| |
Collapse
|
5
|
Boscolo Brusà R, Feola A, Cacciatore F, Ponis E, Sfriso A, Franzoi P, Lizier M, Peretti P, Matticchio B, Baccetti N, Volpe V, Maniero L, Bonometto A. Conservation actions for restoring the coastal lagoon habitats: Strategy and multidisciplinary approach of LIFE Lagoon Refresh. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.979415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Habitat Directive of European Union lists Costal Lagoons (habitat code 1150*) among priority habitats because they are in danger of disappearance. Natural ecosystems may recover from anthropogenic perturbations; however, the recovery can follow natural restoration or it can be redirected through ecological restoration by anthropogenic intervention. Accordingly, by collecting the available theoretical indications for restoration of estuarine and coastal areas, a methodological approach was detailed andit can be summarised into five issues: (i) Environmental context from which it began; (ii) Desired state to be achieved; (iii) Policies and socio-economic context; (iv) Typology of recovery and/or improvement of habitats and ecosystems; and (v) Methods for monitoring the impact of the project. The project strategy, management and measures of LIFE Lagoon Refresh were also presented and discussed, as a case study for the implementation of the multidisciplinary approach for restoration ecology in transitional waters. The project takes place in the northern Venice Lagoon (Italy), started in 2017 and it lasts 5 years. In the Venice Lagoon, since the 20th century, strong reductions of the typical salinity gradient of buffer areas between lagoon and mainland, and of reedbed extensions have occurred due to historic human interventions, with negative consequences on coastal lagoon habitats. To improve the conservation status of habitats and biodiversity of the area, the LIFE Lagoon Refresh project included several conservative actions, which are (i) the diversion of a freshwater flow from the Sile River into the lagoon; (ii) the restoration of intertidal morphology, through biodegradable structures; (iii) the reed and aquatic angiosperm transplantations with the involvement of local fishermen and hunters, and (iv) the reduction of hunting and fishing pressures in the intervention area. To achieve the restoration of the lagoon environment, the strategy of the project covered a combination of different aspects and tools, such as planning activities, through the involvement of local Institutions and communities; stakeholder’s involvement to increase awareness of environment conservation and socioeconomic value improvement; an ecological engineering approach; numerical models as supporting tool for planning and managing of conservation actions; environmental monitoring performed before and after the conservation actions.
Collapse
|
6
|
Béjaoui B, Basti L, Canu DM, Feki-Sahnoun W, Salem H, Dahmani S, Sahbani S, Benabdallah S, Blake R, Norouzi H, Solidoro C. Hydrology, biogeochemistry and metabolism in a semi-arid mediterranean coastal wetland ecosystem. Sci Rep 2022; 12:9367. [PMID: 35672427 PMCID: PMC9174276 DOI: 10.1038/s41598-022-12936-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
A LOICZ Budget Model is applied to the Ichkeul Lake, a wetland ecosystem of the South Mediterranean-North African region, to evaluate its functioning in order to boost water management. The Ichkeul Lake water and nutrient budget, net ecosystem metabolism (NEM), nutrient availability, and their seasonal changes are estimated using field data. A considerable anthropogenic-driven amount of nitrogen is transferred into N2/N2O to the atmosphere during the dry season with predominance of denitrification-anammox processes. The primary production is impacted by forcing the ecosystem respiration to reduce the NEM so that the system is functioning as heterotrophic. Climate change and anthropogenic pressures are expected to exacerbate the current trends of water quality degradation, with possible negative impacts on Palearctic birds' population. Mitigation actions are possible, through the implementation of National Wetland Management Strategies that include nutrient load and water resources management.
Collapse
Affiliation(s)
- Béchir Béjaoui
- National Institute of Marine Sciences and Technology, University of Carthage, 28 rue du 2 Mars 1934 Carthage Salammbô, Tunis, Tunisia.
| | - Leila Basti
- Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Tokyo, Minato, 108-8477, Japan
| | - Donata Melaku Canu
- National Institute of Oceanography and Applied Geophysics, OGS, Borgo Grotta Gigante, 42/c, 34010 Sgonico, Trieste, Italy
| | - Wafa Feki-Sahnoun
- National Institute of Marine Sciences and Technology, University of Carthage, 28 rue du 2 Mars 1934 Carthage Salammbô, Tunis, Tunisia
| | - Hatem Salem
- National Institute of Marine Sciences and Technology, University of Carthage, 28 rue du 2 Mars 1934 Carthage Salammbô, Tunis, Tunisia
- Laboratory of Hydraulics and Environment, National Engineering School of Tunis, University of Tunis, BP 37, 1002, Tunis, Tunisia
| | - Sana Dahmani
- University of Applied Sciences for Engineering and Economics, Treskowallee 8, 10318, Berlin, Germany
| | - Sabrine Sahbani
- National Institute of Marine Sciences and Technology, University of Carthage, 28 rue du 2 Mars 1934 Carthage Salammbô, Tunis, Tunisia
- National Institute of Agronomy of Tunisia, 43 Av. Charles Nicolle, 1082, Tunis, Tunisia
| | - Sihem Benabdallah
- Centre for Water Research and Technologies, Technople Borj Cedria, BP 273-8020, Tunis, Tunisia
| | - Reginald Blake
- The City University of New York, New York City College of Technology, 300 Jay St, Brooklyn, NY, 11201, USA
| | - Hamidreza Norouzi
- The City University of New York, New York City College of Technology, 300 Jay St, Brooklyn, NY, 11201, USA
| | - Cosimo Solidoro
- National Institute of Oceanography and Applied Geophysics, OGS, Borgo Grotta Gigante, 42/c, 34010 Sgonico, Trieste, Italy
- International Centre for Theoretical Physics, ICTP, Strada Costiera, Trieste, Italy
| |
Collapse
|
7
|
Changes in Macrozoobenthos Community after Aquatic Plant Restoration in the Northern Venice Lagoon (IT). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084838. [PMID: 35457703 PMCID: PMC9029909 DOI: 10.3390/ijerph19084838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Responses of the macrozoobenthic community to an ecological restoration activity in the northern Venice lagoon were studied, within the scope of the project LIFE SEagrass RESTOration aimed at recreating aquatic phanerogam meadows largely reduced in recent decades. Transplants were successful in almost all project areas. Macrozoobenthos was sampled in eight stations before (2014) and after (2015, 2016, 2017) transplanting activities. An increase in abundance and fluctuations in richness and univariate ecological indices (Shannon’s, Margalef’s, Pielou’s indices) resulted during the years. Comparing non-vegetated and vegetated samples in 2017, every index except Pielou’s increased in the latter. Multivariate analysis (hierarchical cluster analysis, MDS, PERMDISP, SIMPER) grouped samples by localization rather than years, with differences between stations due to the abundance of common species. In 2017, results were also grouped by the presence or absence of aquatic plants, with differences in the abundance of grazer and filter-feeding species. Results of ecological index M-AMBI depicted conditions from moderate to good ecological status (sensu Dir.2000/60/EC) with similar fluctuations, as presented by univariate indices from 2014 to 2017. Responses of the macrozoobenthic community were more evident when comparing vegetated and non-vegetated samples, with the vegetated areas sustaining communities with greater abundance and diversity than non-vegetated samples, thus demonstrating the supporting function of aquatic plants to benthic communities.
Collapse
|
8
|
Mastrototaro F, Gasparini F, Montesanto F. The clubbed tunicate Styela clava has arrived in the Lagoon of Venice. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2052989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- F. Mastrototaro
- Department of Biology, University of Bari, Bari, Italy
- CoNISMa, Roma, Italy
| | - F. Gasparini
- Department of Biology, University of Padova, Padova, Italy
| | - F. Montesanto
- Department of Biology, University of Bari, Bari, Italy
- CoNISMa, Roma, Italy
| |
Collapse
|
9
|
Pansera M, Camatti E, Schroeder A, Zagami G, Bergamasco A. The non-indigenous Oithona davisae in a Mediterranean transitional environment: coexistence patterns with competing species. Sci Rep 2021; 11:8341. [PMID: 33863946 PMCID: PMC8052375 DOI: 10.1038/s41598-021-87662-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/11/2021] [Indexed: 11/09/2022] Open
Abstract
The Venice lagoon (VL) has been recognized as a hot spot of introduction of non-indigenous species (NIS), due to several anthropogenic factors and environmental stressors that combined may facilitate NIS invasions. In the last decades an increasing number of zooplankton NIS have been observed in the VL. This work aims to provide a picture of the annual cycle and distribution of the recently recorded non-indigenous copepod Oithona davisae, considering the coexistence patterns with the congeneric resident Oithona nana. Therefore, zooplankton samplings were carried out monthly from August 2016 to July 2017 at five Long-Term Ecological Research LTER stations in the VL. Oithona davisae showed a persistent occurrence throughout the year with the highest abundances in the warm season and in the inner areas, while the congeneric O. nana, showing a different distribution pattern, resulted more abundant near the inlets of the Lagoon, where O. davisae reached the minimum density. Oithona davisae seems to find local conditions that promote its settlement and distribution, especially in the inner and more trophic lagoon sites. In other European coastal embayments or transitional waters, O. davisae occupied the niche left by the indigenous O. nana or can replace this congeneric species through competitive exclusion mechanisms. Our data indicate that, for now, such species replacement has not occurred in the VL. One of the causes is the extreme variety of habitats and niches offered by this environment allowing a balanced coexistence with O. nana and in general with the resident copepod community.
Collapse
Affiliation(s)
- Marco Pansera
- Institute of Marine Sciences, National Research Council, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy
| | - Elisa Camatti
- Institute of Marine Sciences, National Research Council, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy.
| | - Anna Schroeder
- Institute of Marine Sciences, National Research Council, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy.,Faculty of Environmental Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Giacomo Zagami
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, S. Agata, 98166, Messina, Italy
| | - Alessandro Bergamasco
- Institute of Marine Sciences, National Research Council, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy
| |
Collapse
|
10
|
Tagliapietra D, Guarneri I, Keppel E, Sigovini M. After a century in the Mediterranean, the warm-water shipworm Teredo bartschi invades the Lagoon of Venice (Italy), overwintering a few degrees above zero. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02461-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Diversity and Dynamics of Seaweed Associated Microbial Communities Inhabiting the Lagoon of Venice. Microorganisms 2020; 8:microorganisms8111657. [PMID: 33114532 PMCID: PMC7693704 DOI: 10.3390/microorganisms8111657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/03/2023] Open
Abstract
Seaweeds are a group of essential photosynthetic organisms that harbor a rich diversity of associated microbial communities with substantial functions related to host health and defense. Environmental and anthropogenic stressors may disrupt the microbial communities and their metabolic activity, leading to host physiological alterations that negatively affect seaweeds’ performance and survival. Here, the bacterial communities associated with one of the most common seaweed, Ulva laetevirens Areshough, were sampled over a year at three sites of the lagoon of Venice affected by different environmental and anthropogenic stressors. Bacterial communities were characterized through Illumina sequencing of the V4 hypervariable region of 16S rRNA genes. The study demonstrated that the seaweed associated bacterial communities at sites impacted by environmental stressors were host-specific and differed significantly from the less affected site. Furthermore, these communities were significantly distinct from those of the surrounding seawater. The bacterial communities’ composition was significantly correlated with environmental parameters (nutrient concentrations, dissolved oxygen saturation, and pH) across sites. This study showed that several more abundant bacteria on U. laetevirens at stressed sites belonged to taxa related to the host response to the stressors. Overall, environmental parameters and anthropogenic stressors were shown to substantially affect seaweed associated bacterial communities, which reflect the host response to environmental variations.
Collapse
|
12
|
Newton A, Icely J, Cristina S, Perillo GME, Turner RE, Ashan D, Cragg S, Luo Y, Tu C, Li Y, Zhang H, Ramesh R, Forbes DL, Solidoro C, Béjaoui B, Gao S, Pastres R, Kelsey H, Taillie D, Nhan N, Brito AC, de Lima R, Kuenzer C. Anthropogenic, Direct Pressures on Coastal Wetlands. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00144] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Sfriso A, Mistri M, Munari C, Buosi A, Sfriso AA. Management and Exploitation of Macroalgal Biomass as a Tool for the Recovery of Transitional Water Systems. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Armeli Minicante S, Piredda R, Quero GM, Finotto S, Bernardi Aubry F, Bastianini M, Pugnetti A, Zingone A. Habitat Heterogeneity and Connectivity: Effects on the Planktonic Protist Community Structure at Two Adjacent Coastal Sites (the Lagoon and the Gulf of Venice, Northern Adriatic Sea, Italy) Revealed by Metabarcoding. Front Microbiol 2019; 10:2736. [PMID: 32038505 PMCID: PMC6988810 DOI: 10.3389/fmicb.2019.02736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/11/2019] [Indexed: 11/28/2022] Open
Abstract
The Lagoon of Venice (LoV) and the Gulf of Venice (GoV), two adjacent coastal Long Term Ecological Research (LTER) sites in the northern Adriatic Sea, represent a transitional/marine coupled ecosystem under the influence of regional and local factors. In this study, these sites were sampled on four dates from April 2016 to February 2017 for environmental DNA and relevant abiotic variables, aiming to assess the relative importance of habitat heterogeneity and connectivity in structuring the protist community. High Throughput Sequencing of V4-18S rRNA gene from 56 samples collected at seven stations produced ca 6 million reads, grouped into 7,336 Operational Taxonomic Units (OTUs) at 97% similarity, which were affiliated to protists belonging to 34 taxonomic groups. The whole community was dominated by Bacillariophyta, especially in spring-summer in the LoV, and by Dinophyta, mainly in the GoV. Ciliophora, Syndiniales, and Cryptophyceae were the next more abundant groups. The community structure varied across the seasons and was different in the two ecosystems, which shared 96% of the reads but showed a high proportion of OTUs distributed preferentially in one of the two sites (specialists) and a different partitioning of trophic categories. GoV specialists were mainly Dinophyceae (>56%), followed by Syndiniales and Bacillariophyta, while the LoV specialists were distributed among several groups, including Bacillariophyta, Syndiniales, Ciliophora, Cryptophyceae, and Trebouxiophyceae. The main abiotic drivers of the differences between protist communities were salinity and temperature, which however explained a minor part of the variance (17%), pointing at a higher relevance of biotic factors and inter-taxa relationships. This was more evident in the LoV, where the network analysis highlighted a higher number of OTUs' connections than in the GoV. Overall, the metabarcoding approach allowed to depict the composition of the whole protist community in the lagoon and adjacent coastal waters with high resolution, revealing many taxa so far not reported in the area. In addition, despite no clear barrier to dispersal processes, differences in the relative abundance and temporal variability of local protist communities indicate that environmental heterogeneity, in these adjacent and connected ecosystems, can be strong enough to allow for ecological segregation.
Collapse
Affiliation(s)
| | - Roberta Piredda
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Grazia Marina Quero
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Stefania Finotto
- Institute of Marine Sciences, National Research Council, Venice, Italy
| | | | - Mauro Bastianini
- Institute of Marine Sciences, National Research Council, Venice, Italy
| | | | - Adriana Zingone
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
15
|
Sfriso A, Buosi A, Mistri M, Munari C, Franzoi P, Sfriso AA. Long-term changes of the trophic status in transitional ecosystems of the northern Adriatic Sea, key parameters and future expectations: The lagoon of Venice as a study case. NATURE CONSERVATION 2019. [DOI: 10.3897/natureconservation.34.30473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The determination of the trophic status of transitional ecosystems from the physico-chemical and biological point of view is one of the requirements of the European Water Framework Directive (WFD 2000/60/EC). In Italy, its determination is implemented by the Regional Agencies for Environmental Protection (ARPAs) that have activated multi-annual monitoring programs. However, as the availability of funds is increasingly scarce, the number of environmental parameters to detect environmental changes should be conveniently managed.
The high number of environmental parameters, nutrient and macrophyte datasets available for the LTER-Italia site “Venice lagoon” can be an useful tool to analyze the trophic changes over recent years and to foresee environmental evolutions. Nutrient data on a spatial basis have been available since 1948, whereas macroalgal maps date back to 1980. The aim of this paper is to highlight the changes of the trophic status of the lagoon since the middle of the 20th century by considering the concentrations of nutrients in the surface sediments and in the water column, the variation of some physico-chemical parameters and the biomass of macroalgae and also to foresee the way it will possibly evolve. In fact, after many anthropogenic impacts that in the second half of the 20th century affected the lagoon, starting from the year 2010, the ecological status is progressively improving. Nutrients show a significant reduction both in the water column and in surface sediments, and the macrophytes are represented by species of higher ecological value while the opportunistic species such as the Ulvaceae are in strong regression.
Collapse
|
16
|
Soccio G, Lava R, Ostoich M, Zanon F, Marchiori M, Rado N, Coraluppi E, Marcomini A. Trace elements: critical insights from 15 years of monitoring in the Venice Lagoon catchment basin (Italy). ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:639. [PMID: 30338405 DOI: 10.1007/s10661-018-7032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
The study focused on selected trace elements (As, Cd, Cr, Hg, Ni, Pb) monitored in surface waters of the Venice Lagoon catchment basin (North East Italy) over the period 2000-2015. The monitoring was undertaken to verify the achievement of the quality objectives set by the European and national legislations. The available results have been analyzed to evaluate the chemical status of water bodies. The limit of quantification (LOQ) of the applied analytic techniques appears critical for the adequate water monitoring; for some parameters, the percentage of not visible values due to non-satisfactory LOQ was higher in the beginning of the period; the subsequent improvement of LOQ allowed assessing the respect of environmental quality standards (EQSs). The study analyzes time trends in single stations and the differences between detected concentrations in the considered stations. Moreover, maximum concentrations and water flows have been considered to understand the potential correlation. Cumulated frequency curves for the most critical parameters have been built to identify situation of potential overtaking of the EQSs in force. The most polluted sampling stations of the drainage basin for the six trace elements were found in Cuori and Fiumazzo rivers. Although LOQs changed over time, the recorded trends show a quality improvement and a good compliance with respect to EQSs set by European legislation, while considering EQSs set by local special legislation, the objectives are not yet satisfied. Arsenic is ubiquitous; thus, it can be supposed to be originated as a background environmental concentration, while nickel appears of industrial origin according to its point and local presence.
Collapse
Affiliation(s)
- Grazia Soccio
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino n. 155, 30172, Mestre-Venice, Italy
| | - Roberto Lava
- Laboratory Department, Veneto Regional Environmental Prevention and Protection Agency (ARPAV), Via Lissa 6, 30174, Mestre-Venice, Italy
| | - Marco Ostoich
- Provincial Department of Venice, Veneto Regional Environmental Prevention and Protection Agency (ARPAV), Via Lissa 6, 30174, Mestre-Venice, Italy.
| | - Francesca Zanon
- Laboratory Department, Veneto Regional Environmental Prevention and Protection Agency (ARPAV), Via Lissa 6, 30174, Mestre-Venice, Italy
| | - Maurizio Marchiori
- Laboratory Department, Veneto Regional Environmental Prevention and Protection Agency (ARPAV), Via Lissa 6, 30174, Mestre-Venice, Italy
| | - Nadia Rado
- Laboratory Department, Veneto Regional Environmental Prevention and Protection Agency (ARPAV), Via Lissa 6, 30174, Mestre-Venice, Italy
| | - Emiliano Coraluppi
- Laboratory Department, Veneto Regional Environmental Prevention and Protection Agency (ARPAV), Via Lissa 6, 30174, Mestre-Venice, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino n. 155, 30172, Mestre-Venice, Italy
| |
Collapse
|
17
|
Quero GM, Perini L, Pesole G, Manzari C, Lionetti C, Bastianini M, Marini M, Luna GM. Seasonal rather than spatial variability drives planktonic and benthic bacterial diversity in a microtidal lagoon and the adjacent open sea. Mol Ecol 2017; 26:5961-5973. [PMID: 28926207 DOI: 10.1111/mec.14363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/08/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
Coastal lagoons are highly productive ecosystems, which are experiencing a variety of human disturbances at increasing frequency. Bacteria are key ecological players within lagoons, yet little is known about the magnitude, patterns and drivers of diversity in these transitional environments. We carried out a seasonal study in the Venice Lagoon (Italy) and the adjacent sea, to simultaneously explore diversity patterns in different domains (pelagic, benthic) and their spatio-temporal variability, and test the role of environmental gradients in structuring assemblages. Community composition differed between lagoon and open sea, and between domains. The dominant phyla varied temporally, with varying trends for the two domains, suggesting different environmental constraints on the assemblages. The percentage of freshwater taxa within the lagoon increased during higher river run-off, pointing at the lagoon as a dynamic mosaic of microbial taxa that generate the metacommunity across the whole hydrological continuum. Seasonality was more important than spatial variability in shaping assemblages. Network analyses indicated more interactions between several genera and environmental variables in the open sea than the lagoon. Our study provides evidences for a temporally dynamic nature of bacterial assemblages in lagoons and suggests that an interplay of seasonally influenced environmental drivers shape assemblages in these vulnerable ecosystems.
Collapse
Affiliation(s)
| | - Laura Perini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Venezia, Italy
| | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Consorzio Interuniversitario Biotecnologie (CIB) and Istituto Nazionale Biostrutture e Biosistemi (INBB), Bari, Italy
| | - Caterina Manzari
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - Claudia Lionetti
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - Mauro Bastianini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Venezia, Italy
| | - Mauro Marini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Ancona, Italy
| | - Gian Marco Luna
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Ancona, Italy
| |
Collapse
|
18
|
Quero GM, Fasolato L, Vignaroli C, Luna GM. Understanding the association of Escherichia coli with diverse macroalgae in the lagoon of Venice. Sci Rep 2015; 5:10969. [PMID: 26043415 PMCID: PMC4455311 DOI: 10.1038/srep10969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022] Open
Abstract
Recent studies provided evidence that the macroalga Cladopohora in lakes hosts associated Escherichia coli, with consequences on the environmental and human health. We expanded these investigations to other macroalgae (Ulva spp., Sargassum muticum and Undaria pinnatifida) widespread in the lagoon of Venice (Italy). Attached E. coli were abundant, accounting up to 3,250 CFU gram−1 of alga. Macroalgal-associated isolates belonged to all E. coli phylogroups, including pathogenic ones, and to Escherichia cryptic clades. Attached E. coli showed potential to grow even at in situ temperature on macroalgal extracts as only source of carbon and nutrients, and ability to produce biofilm in vitro. The genotypic diversity of the attached isolates was high, with significant differences between algae and the overlying water. Our evidences suggest that attached populations consist of both resident and transient strains, likely resulting from the heterogeneous input of fecal bacteria from the city. We report that cosmopolitan and invasive macroalgae may serve as source of E. coli, including pathogenic genotypes, and that this habitat can potentially support their growth. Considering the global diffusion of the macroalgae here studied, this phenomenon is likely occurring in other coastal cities worldwide and deserves further investigations from either the sanitary and ecological perspectives.
Collapse
Affiliation(s)
- Grazia M Quero
- Institute of Marine Sciences (CNR - ISMAR), National Research Council, Venezia, Italy
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Gian Marco Luna
- Institute of Marine Sciences (CNR - ISMAR), National Research Council, Venezia, Italy
| |
Collapse
|
19
|
Bandelj V, Solidoro C, Curiel D, Cossarini G, Melaku Canu D, Rismondo A. Fuzziness and heterogeneity of benthic metacommunities in a complex transitional system. PLoS One 2012; 7:e52395. [PMID: 23285023 PMCID: PMC3528783 DOI: 10.1371/journal.pone.0052395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/13/2012] [Indexed: 11/18/2022] Open
Abstract
We propose an extension to the metacommunity (MC) concept and a novel operational methodology that has the potential to refine the analysis of MC structure at different hierarchical levels. We show that assemblages of species can also be seen as assemblages of abstract subregional habitat-related metacommunities (habMCs). This intrinsically fuzzy concept recognizes the existence of habMCs that are typically associated with given habitats, while allowing for the mixing and superposition of different habMCs in all sites and for boundaries among subregions that are neither spatially sharp nor temporally constant. The combination of fuzzy clustering and direct gradient analysis permits us to 1) objectively identify the number of habMCs that are present in a region as well as their spatial distributions and relative weights at different sites; 2) associate different subregions with different biological communities; and 3) quantitatively assess the affinities between habMCs and physical, morphological, biogeochemical, and environmental properties, thereby enabling an analysis of the roles and relative importance of various environmental parameters in shaping the spatial structure of a metacommunity. This concept and methodology offer the possibility of integrating the continuum and community unit concepts and of developing the concept of a habMC ecological niche. This approach also facilitates the practical application of the MC concept, which are not currently in common use. Applying these methods to macrophytobenthic and macrozoobenthic hard-substrate assemblages in the Venetian Lagoon, we identified a hierarchical organization of macrobenthic communities that associated different habMCs with different habitats. Our results demonstrate that different reference terms should be applied to different subregions to assess the ecological status of a waterbody and show that a combination of several environmental parameters describes the spatial heterogeneity of benthic communities much better than any single property can. Our results also emphasize the importance of considering heterogeneity and fuzziness when working in natural systems.
Collapse
Affiliation(s)
- Vinko Bandelj
- OGS, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Sgonico, Italy
| | - Cosimo Solidoro
- OGS, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Sgonico, Italy
| | | | - Gianpiero Cossarini
- OGS, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Sgonico, Italy
| | - Donata Melaku Canu
- OGS, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Sgonico, Italy
| | | |
Collapse
|
20
|
Wolf MA, Sciuto K, Andreoli C, Moro I. Ulva (Chlorophyta, Ulvales) Biodiversity in the North Adriatic Sea (Mediterranean, Italy): Cryptic Species and New Introductions. JOURNAL OF PHYCOLOGY 2012; 48:1510-1521. [PMID: 27010000 DOI: 10.1111/jpy.12005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 05/03/2012] [Indexed: 06/05/2023]
Abstract
Ulva Linnaeus (Ulvophyceae, Ulvales) is a genus of green algae widespread in different aquatic environments. Members of this genus show a very simple morphology and a certain degree of phenotypic plasticity, heavily influenced by environmental conditions, making difficult the delineation of species by morphological features alone. Most studies dealing with Ulva biodiversity in Mediterranean waters have been based only on morphological characters and a modern taxonomic revision of this genus in the Mediterranean is not available. We report here the results of an investigation on the diversity of Ulva in the North Adriatic Sea based on molecular analyses. Collections from three areas, two of which subject to intense shipping traffic, were examined, as well as historical collections of Ulva stored in the Herbarium Patavinum of the University of Padova, Italy. Molecular analyses based on partial sequences of the rbcL and tufA genes revealed the presence of six different species, often with overlapping morphologies: U. californica Wille, U. flexuosa Wulfen, U. rigida C. Agardh, U. compressa Linnaeus, U. pertusa Kjellman, and one probable new taxon. U. californica is a new record for the Mediterranean and U. pertusa is a new record for the Adriatic. Partial sequences obtained from historical collections show that most of the old specimens are referable to U. rigida. No specimens referable to the two alien species were found among the old herbarium specimens. The results indicate that the number of introduced seaweed species and their impact on Mediterranean communities have been underestimated, due to the difficulties in species identification of morphologically simple taxa as Ulva.
Collapse
Affiliation(s)
- Marion A Wolf
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Katia Sciuto
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Carlo Andreoli
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Isabella Moro
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|