1
|
Monich AG, Bissler JJ, Barreto FC. Tuberous Sclerosis Complex and the kidneys: what nephrologists need to know. J Bras Nefrol 2024; 46:e20240013. [PMID: 38991206 PMCID: PMC11239183 DOI: 10.1590/2175-8239-jbn-2024-0013en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/24/2024] [Indexed: 07/13/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterized by the development of hamartomas in the central nervous system, heart, skin, lungs, and kidneys and other manifestations including seizures, cortical tubers, radial migration lines, autism and cognitive disability. The disease is associated with pathogenic variants in the TSC1 or TSC2 genes, resulting in the hyperactivation of the mTOR pathway, a key regulator of cell growth and metabolism. Consequently, the hyperactivation of the mTOR pathway leads to abnormal tissue proliferation and the development of solid tumors. Kidney involvement in TSC is characterized by the development of cystic lesions, renal cell carcinoma and renal angiomyolipomas, which may progress and cause pain, bleeding, and loss of kidney function. Over the past years, there has been a notable shift in the therapeutic approach to TSC, particularly in addressing renal manifestations. mTOR inhibitors have emerged as the primary therapeutic option, whereas surgical interventions like nephrectomy and embolization being reserved primarily for complications unresponsive to clinical treatment, such as severe renal hemorrhage. This review focuses on the main clinical characteristics of TSC, the mechanisms underlying kidney involvement, the recent advances in therapy for kidney lesions, and the future perspectives.
Collapse
Affiliation(s)
- Aline Grosskopf Monich
- Universidade Federal do Paraná, Departamento de Clínica Médica, Programa de Pós-Graduação em Medicina Interna e Ciências da Saúde, Curitiba, PR, Brazil
- Hospital Universitário Evangélico Mackenzie, Serviço de Nefrologia, Curitiba, PR, Brazil
| | - John J. Bissler
- University of Tennessee, Health Science Center, Le Bonheur Children's Hospital, Department of Pediatrics, Memphis, TN, USA
- Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, USA
- St. Jude Children’s Research Hospital, Pediatric Medicine Department, Memphis, TN, USA
| | - Fellype Carvalho Barreto
- Universidade Federal do Paraná, Departamento de Clínica Médica, Programa de Pós-Graduação em Medicina Interna e Ciências da Saúde, Curitiba, PR, Brazil
- Universidade Federal do Paraná, Departamento de Clínica Médica, Serviço de Nefrologia, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Vitale G, Terrone G, Vitale S, Vitulli F, Aiello S, Bravaccio C, Pisano S, Bove I, Rizzo F, Seetahal-Maraj P, Wiese T. The Evolving Landscape of Therapeutics for Epilepsy in Tuberous Sclerosis Complex. Biomedicines 2023; 11:3241. [PMID: 38137462 PMCID: PMC10741146 DOI: 10.3390/biomedicines11123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem genetic disorder characterized by benign tumor growth in multiple organs, including the brain, kidneys, heart, eyes, lungs, and skin. Pathogenesis stems from mutations in either the TSC1 or TSC2 gene, which encode the proteins hamartin and tuberin, respectively. These proteins form a complex that inhibits the mTOR pathway, a critical regulator of cell growth and proliferation. Disruption of the tuberin-hamartin complex leads to overactivation of mTOR signaling and uncontrolled cell growth, resulting in hamartoma formation. Neurological manifestations are common in TSC, with epilepsy developing in up to 90% of patients. Seizures tend to be refractory to medical treatment with anti-seizure medications. Infantile spasms and focal seizures are the predominant seizure types, often arising in early childhood. Drug-resistant epilepsy contributes significantly to morbidity and mortality. This review provides a comprehensive overview of the current state of knowledge regarding the pathogenesis, clinical manifestations, and treatment approaches for epilepsy and other neurological features of TSC. While narrative reviews on TSC exist, this review uniquely synthesizes key advancements across the areas of TSC neuropathology, conventional and emerging pharmacological therapies, and targeted treatments. The review is narrative in nature, without any date restrictions, and summarizes the most relevant literature on the neurological aspects and management of TSC. By consolidating the current understanding of TSC neurobiology and evidence-based treatment strategies, this review provides an invaluable reference that highlights progress made while also emphasizing areas requiring further research to optimize care and outcomes for TSC patients.
Collapse
Affiliation(s)
- Giovanni Vitale
- Neuroscience and Rare Diseases, Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), F. Hoffmann–La Roche, 4070 Basel, Switzerland
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Samuel Vitale
- School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy;
| | - Francesca Vitulli
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples Federico II, 80138 Naples, Italy (I.B.)
| | - Salvatore Aiello
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Carmela Bravaccio
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Simone Pisano
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Ilaria Bove
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples Federico II, 80138 Naples, Italy (I.B.)
| | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy;
| | | | - Thomas Wiese
- Neuroscience and Rare Diseases, Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), F. Hoffmann–La Roche, 4070 Basel, Switzerland
| |
Collapse
|
3
|
Granak S, Tuckova K, Kutna V, Vojtechova I, Bajkova L, Petrasek T, Ovsepian SV. Developmental effects of constitutive mTORC1 hyperactivity and environmental enrichment on structural synaptic plasticity and behaviour in a rat model of autism spectrum disorder. Eur J Neurosci 2023; 57:17-31. [PMID: 36380588 DOI: 10.1111/ejn.15864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition causing a range of social and communication impairments. Although the role of multiple genes and environmental factors has been reported, the effects of the interplay between genes and environment on the onset and progression of the disease remains elusive. We housed wild-type (Tsc2+/+) and tuberous sclerosis 2 deficient (Tsc2+/-) Eker rats (ASD model) in individually ventilated cages or enriched conditions and conducted a series of behavioural tests followed by the histochemical analysis of dendritic spines and plasticity in three age groups (days 45, 90 and 365). The elevated plus-maze test revealed a reduction of anxiety by enrichment, whereas the mobility of young and adult Eker rats in the open field was lower compared to the wild type. In the social interaction test, an enriched environment reduced social contact in the youngest group and increased anogenital exploration in 90- and 365-day-old rats. Self-grooming was increased by environmental enrichment in young and adult rats and decreased in aged Eker rats. Dendritic spine counts revealed an increased spine density in the cingulate gyrus in adult Ekers irrespective of housing conditions, whereas spine density in hippocampal pyramidal neurons was comparable across all genotypes and groups. Morphometric analysis of dendritic spines revealed age-related changes in spine morphology and density, which were responsive to animal genotype and environment. Taken together, our findings suggest that under TSC2 haploinsufficiency and mTORC1 hyperactivity, the expression of behavioural signs and neuroplasticity in Eker rats can be differentially influenced by the developmental stage and environment.
Collapse
Affiliation(s)
- Simon Granak
- National Institute of Mental Health, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klara Tuckova
- National Institute of Mental Health, Klecany, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Viera Kutna
- National Institute of Mental Health, Klecany, Czech Republic
| | - Iveta Vojtechova
- National Institute of Mental Health, Klecany, Czech Republic.,Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Laura Bajkova
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Klecany, Czech Republic.,Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Saak V Ovsepian
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, UK
| |
Collapse
|
4
|
Agarwal S, Decavel-Bueff E, Wang YH, Qin H, Santos RD, Evans MJ, Sriram R. Defining the Magnetic Resonance Features of Renal Lesions and Their Response to Everolimus in a Transgenic Mouse Model of Tuberous Sclerosis Complex. Front Oncol 2022; 12:851192. [PMID: 35814396 PMCID: PMC9260108 DOI: 10.3389/fonc.2022.851192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an inherited genetic disorder characterized by mutations in TSC1 or TSC2 class of tumor suppressers which impact several organs including the kidney. The renal manifestations are usually in the form of angiomyolipoma (AML, in 80% of the cases) and cystadenomas. mTOR inhibitors such as rapamycin and everolimus have shown efficacy in reducing the renal tumor burden. Early treatment prevents the progression of AML; however, the tumors regrow upon cessation of therapy implying a lifelong need for monitoring and management of this morbid disease. There is a critical need for development of imaging strategies to monitor response to therapy and progression of disease which will also facilitate development of newer targeted therapy. In this study we evaluated the potential of multiparametric 1H magnetic resonance imaging (mpMRI) to monitor tumor response to therapy in a preclinical model of TSC, the transgenic mouse A/J Tsc2+/-. We found 2-dimensional T2-weighted sequence with 0.5 mm slice thickness to be optimal for detecting renal lesions as small as 0.016 mm3. Baseline characterization of lesions with MRI to assess physiological parameters such as cellularity and perfusion is critical for distinguishing between cystic and solid lesions. Everolimus treatment for three weeks maintained tumor growth at 36% from baseline, while control tumors displayed steady growth and were 70% larger than baseline at the end of therapy. Apparent diffusion coefficient, T1 values and normalized T2 intensity changes were also indictive of response to treatment. Our results indicate that standardization and implementation of improved MR imaging protocols will significantly enhance the utility of mpMRI in determining the severity and composition of renal lesions for better treatment planning.
Collapse
Affiliation(s)
- Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Emilie Decavel-Bueff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Michael J. Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Renuka Sriram,
| |
Collapse
|
5
|
Landh E, Wang R, Moir LM, Traini D, Young PM, Ong HX. Prospective nanoparticle treatments for lymphangioleiomyomatosis. Expert Opin Drug Deliv 2022; 19:75-86. [DOI: 10.1080/17425247.2022.2029401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Emelie Landh
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Roger Wang
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Lyn M. Moir
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Paul M. Young
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
6
|
Chevalier B, Dupuis H, Jannin A, Lemaitre M, Do Cao C, Cardot-Bauters C, Espiard S, Vantyghem MC. Phakomatoses and Endocrine Gland Tumors: Noteworthy and (Not so) Rare Associations. Front Endocrinol (Lausanne) 2021; 12:678869. [PMID: 34025587 PMCID: PMC8134657 DOI: 10.3389/fendo.2021.678869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
Phakomatoses encompass a group of rare genetic diseases, such as von Hippel-Lindau syndrome (VHL), neurofibromatosis type 1 (NF1), tuberous sclerosis complex (TSC) and Cowden syndrome (CS). These disorders are due to molecular abnormalities on the RAS-PI3K-Akt-mTOR pathway for NF1, TSC and CS, and to hypoxia sensing for VHL. Phakomatoses share some phenotypic traits such as neurological, ophthalmological and cutaneous features. Patients with these diseases are also predisposed to developing multiple endocrine tissue tumors, e.g., pheochromocytomas/paragangliomas are frequent in VHL and NF1. All forms of phakomatoses except CS may be associated with digestive neuroendocrine tumors. More rarely, thyroid cancer and pituitary or parathyroid adenomas have been reported. These susceptibilities are noteworthy, because their occurrence rate, prognosis and management differ slightly from the sporadic forms. The aim of this review is to summarize current knowledge on endocrine glands tumors associated with VHL, NF1, TSC, and CS, especially neuroendocrine tumors and pheochromocytomas/paragangliomas. We particularly detail recent advances concerning prognosis and management, especially parenchyma-sparing surgery and medical targeted therapies such as mTOR, MEK and HIF-2 α inhibitors, which have shown truly encouraging results.
Collapse
Affiliation(s)
- Benjamin Chevalier
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, Lille, France
- University of Lille, Lille, France
| | - Hippolyte Dupuis
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, Lille, France
| | - Arnaud Jannin
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, Lille, France
- University of Lille, Lille, France
| | - Madleen Lemaitre
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, Lille, France
- University of Lille, Lille, France
| | - Christine Do Cao
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, Lille, France
| | - Catherine Cardot-Bauters
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, Lille, France
| | - Stéphanie Espiard
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, Lille, France
- University of Lille, Lille, France
- INSERM U1190, European Genomic Institute for Diabetes, Lille, France
| | - Marie Christine Vantyghem
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, Lille, France
- University of Lille, Lille, France
- INSERM U1190, European Genomic Institute for Diabetes, Lille, France
| |
Collapse
|
7
|
Reis LB, Filippi-Chiela EC, Ashton-Prolla P, Visioli F, Rosset C. The paradox of autophagy in Tuberous Sclerosis Complex. Genet Mol Biol 2021; 44:e20200014. [PMID: 33821877 PMCID: PMC8022228 DOI: 10.1590/1678-4685-gmb-2020-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/17/2021] [Indexed: 12/21/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder caused by germline mutations in TSC1 or TSC2 genes, which leads to the hyperactivation of the mTORC1 pathway, an important negative regulator of autophagy. This leads to the development of hamartomas in multiple organs. The variability in symptoms presents a challenge for the development of completely effective treatments for TSC. One option is the treatment with mTORC1 inhibitors, which are targeted to block cell growth and restore autophagy. However, the therapeutic effect of rapamycin seems to be more efficient in the early stages of hamartoma development, an effect that seems to be associated with the paradoxical role of autophagy in tumor establishment. Under normal conditions, autophagy is directly inhibited by mTORC1. In situations of bioenergetics stress, mTORC1 releases the Ulk1 complex and initiates the autophagy process. In this way, autophagy promotes the survival of established tumors by supplying metabolic precursors during nutrient deprivation; paradoxically, excessive autophagy has been associated with cell death in some situations. In spite of its paradoxical role, autophagy is an alternative therapeutic strategy that could be explored in TSC. This review compiles the findings related to autophagy and the new therapeutic strategies targeting this pathway in TSC.
Collapse
Affiliation(s)
- Larissa Brussa Reis
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Eduardo C Filippi-Chiela
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde, Departamento de Ciências Morfológicas, Porto Alegre, RS, Brazil
| | - Patricia Ashton-Prolla
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Porto Alegre, RS, Brazil
| | - Fernanda Visioli
- Universidade Federal do Rio Grande do Sul, Faculdade de Odontologia, Departamento de Patologia Oral, Porto Alegre, RS, Brazil
| | - Clévia Rosset
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Estienne A, Bongrani A, Ramé C, Kurowska P, Błaszczyk K, Rak A, Ducluzeau PH, Froment P, Dupont J. Energy sensors and reproductive hypothalamo-pituitary ovarian axis (HPO) in female mammals: Role of mTOR (mammalian target of rapamycin), AMPK (AMP-activated protein kinase) and SIRT1 (Sirtuin 1). Mol Cell Endocrinol 2021; 521:111113. [PMID: 33301839 DOI: 10.1016/j.mce.2020.111113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
In female, energy metabolism influences reproductive function by modulating the Hypothalamic Pituitary Ovarian axis including the hypothalamic GnRH neuronal network, the pituitary gonadotropin secretion and the ovarian follicle growth and steroidogenesis. Several hormones and neuropeptides or metabolites are important signals between energy balance and reproduction. These energy sensors mediate their action on reproductive cells through specific kinases or signaling pathways. This review focuses on the role of three main enzymes-specifically, mTOR, AMPK, and SIRT1 at the hypothalamic pituitary and ovarian axis in normal female fertility and then we discuss their possible involvement in some women reproductive disorders known to be associated with metabolic complications, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF).
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Alice Bongrani
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Klaudia Błaszczyk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Pierre-Henri Ducluzeau
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France.
| |
Collapse
|
9
|
Natarajan N, Thiruvenkatam V. An Insight of Scientific Developments in TSC for Better Therapeutic Strategy. Curr Top Med Chem 2020; 20:2080-2093. [PMID: 32842942 DOI: 10.2174/1568026620666200825170355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disease, which is characterized by noncancerous tumors in multi-organ systems in the body. Mutations in the TSC1 or TSC2 genes are known to cause the disease. The resultant mutant proteins TSC1 (hamartin) and TSC2 (tuberin) complex evade its normal tumor suppressor function, which leads to abnormal cell growth and proliferation. Both TSC1 and TSC2 are involved in several protein-protein interactions, which play a significant role in maintaining cellular homeostasis. The recent biochemical, genetic, structural biology, clinical and drug discovery advancements on TSC give a useful insight into the disease as well as the molecular aspects of TSC1 and TSC2. The complex nature of TSC disease, a wide range of manifestations, mosaicism and several other factors limits the treatment choices. This review is a compilation of the course of TSC, starting from its discovery to the current findings that would take us a step ahead in finding a cure for TSC.
Collapse
Affiliation(s)
- Nalini Natarajan
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| |
Collapse
|
10
|
PTEN inhibitor VO-OHpic suppresses TSC2 - / - MEFs proliferation by excessively inhibiting autophagy via the PTEN/PRAS40 pathway. Exp Ther Med 2020; 19:3565-3570. [PMID: 32346419 PMCID: PMC7185083 DOI: 10.3892/etm.2020.8629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/28/2020] [Indexed: 11/07/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a relatively rare autosomal dominant disease which involves multiple organs, including the brain, kidney, lung, skin and heart. Renal angiomyolipomas (RAML) are the main causes of mortality in patients with TSC. The preferred treatment for RAML is the use of mTOR inhibitors, but the efficacy of these are not satisfactory. Therefore, an alternative treatment is urgently required. Autophagy levels decline in TSC associated cortical tubers, and the inhibition of autophagy in animal or cell models of TSC may suppress tumor development and cell proliferation. PTEN is a protein tyrosine phosphatase and can inhibit the activation of Akt. In the present study, it was indicated that the PTEN inhibitor, hydroxyl(oxo)vanadium 3-hydroxypiridine-2-carboxylic acid (VO-OHpic), suppressed proliferation and growth of TSC2-/- murine embryonic fibroblasts (MEFs) by further inhibiting autophagy of cells. The expression levels of human microtubule-associated protein 1 light chain 3-I (LC3-I) and LC3-II, which are autophagy associated proteins, were demonstrated to decline following VO-OHpic treatment. The expression levels of phosphorylated proline-rich Akt substrate 40 kDa (PRAS40) also decreased in TSC2-/- MEFs treated with VO-OHpic. The PTEN inhibitor may inhibit the proliferation of TSC2-/- MEFs through the PTEN-PRAS40 pathway by excessively inhibiting autophagy, without the dependence of the Ras homolog, mTORC1 binding/mTOR pathway. PTEN may be a potential therapeutic target for the treatment of TSC. Further in vivo studies are required to confirm these results.
Collapse
|
11
|
An update on the central nervous system manifestations of tuberous sclerosis complex. Acta Neuropathol 2020; 139:613-624. [PMID: 30976976 DOI: 10.1007/s00401-019-02003-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
The autosomal dominant disorder tuberous sclerosis complex (TSC) is characterized by an array of manifestations both within and outside of the central nervous system (CNS), including hamartomas and other malformations. TSC is caused by mutations in the TSC1 or TSC2 gene resulting in activation of the mechanistic target of rapamycin (mTOR) signaling pathway. Study of TSC has shed light on the critical role of the mTOR pathway in neurodevelopment. This update reviews the genetic basis of TSC, its cardinal phenotypic CNS features, and recent developments in the field of TSC and other mTOR-altered disorders.
Collapse
|
12
|
Sobczuk P, Brodziak A, Khan MI, Chhabra S, Fiedorowicz M, Wełniak-Kamińska M, Synoradzki K, Bartnik E, Cudnoch-Jędrzejewska A, Czarnecka AM. Choosing The Right Animal Model for Renal Cancer Research. Transl Oncol 2020; 13:100745. [PMID: 32092671 PMCID: PMC7036425 DOI: 10.1016/j.tranon.2020.100745] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The increase in the life expectancy of patients with renal cell carcinoma (RCC) in the last decade is due to changes that have occurred in the area of preclinical studies. Understanding cancer pathophysiology and the emergence of new therapeutic options, including immunotherapy, would not be possible without proper research. Before new approaches to disease treatment are developed and introduced into clinical practice they must be preceded by preclinical tests, in which animal studies play a significant role. This review describes the progress in animal model development in kidney cancer research starting from the oldest syngeneic or chemically-induced models, through genetically modified mice, finally to xenograft, especially patient-derived, avatar and humanized mouse models. As there are a number of subtypes of RCC, our aim is to help to choose the right animal model for a particular kidney cancer subtype. The data on genetic backgrounds, biochemical parameters, histology, different stages of carcinogenesis and metastasis in various animal models of RCC as well as their translational relevance are summarized. Moreover, we shed some light on imaging methods, which can help define tumor microstructure, assist in the analysis of its metabolic changes and track metastasis development.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Anna Brodziak
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Mohammed Imran Khan
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada.
| | - Stuti Chhabra
- Department of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Michał Fiedorowicz
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Marlena Wełniak-Kamińska
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Anna M Czarnecka
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| |
Collapse
|
13
|
mTOR inhibitor reverses autistic-like social deficit behaviours in adult rats with both Tsc2 haploinsufficiency and developmental status epilepticus. Eur Arch Psychiatry Clin Neurosci 2017; 267:455-463. [PMID: 27263037 DOI: 10.1007/s00406-016-0703-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/25/2022]
Abstract
Epilepsy is a major risk factor for autism spectrum disorder (ASD) and complicates clinical manifestations and management of ASD significantly. Tuberous sclerosis complex (TSC), caused by TSC1 or TSC2 mutations, is one of the medical conditions most commonly associated with ASD and has become an important model to examine molecular pathways associated with ASD. Previous research showed reversal of autism-like social deficits in Tsc1 +/- and Tsc2 +/- mouse models by mammalian target of rapamycin (mTOR) inhibitors. However, at least 70 % of individuals with TSC also have epilepsy, known to complicate the severity and treatment responsiveness of the behavioural phenotype. No previous study has examined the impact of seizures on neurocognitive reversal by mTOR inhibitors. Adult Tsc2 +/- (Eker)-rats express social deficits similar to Tsc2 +/- mice, with additive social deficits from developmental status epilepticus (DSE). DSE was induced by intraperitoneal injection with kainic acid at post-natal days P7 and P14 (n = 12). The experimental group that modelled TSC pathology carried the Tsc2 +/- (Eker)-mutation and was challenged with DSE. The wild-type controls had not received DSE (n = 10). Four-month-old animals were analysed for social behaviour (T1), then treated three times during 1 week with 1 mg/kg everolimus and finally retested in the post-treatment behavioural analysis (T2). In the experimental group, both social interaction and social cognition were impaired at T1. After treatment at T2, behaviour in the experimental group was indistinguishable from controls. The mTOR inhibitor, everolimus, reversed social deficit behaviours in the Tsc2 haploinsufficiency plus DSE animal model to control levels.
Collapse
|
14
|
Wesseling H, Elgersma Y, Bahn S. A brain proteomic investigation of rapamycin effects in the Tsc1+/- mouse model. Mol Autism 2017; 8:41. [PMID: 28775826 PMCID: PMC5540199 DOI: 10.1186/s13229-017-0151-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/14/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a rare monogenic disorder characterized by benign tumors in multiple organs as well as a high prevalence of epilepsy, intellectual disability and autism. TSC is caused by inactivating mutations in the TSC1 or TSC2 genes. Heterozygocity induces hyperactivation of mTOR which can be inhibited by mTOR inhibitors, such as rapamycin, which have proven efficacy in the treatment of TSC-associated symptoms. The aim of the present study was (1) to identify molecular changes associated with social and cognitive deficits in the brain tissue of Tsc1+/- mice and (2) to investigate the molecular effects of rapamycin treatment, which has been shown to ameliorate genotype-related behavioural deficits. METHODS Molecular alterations in the frontal cortex and hippocampus of Tsc1+/- and control mice, with or without rapamycin treatment, were investigated. A quantitative mass spectrometry-based shotgun proteomic approach (LC-MSE) was employed as an unbiased method to detect changes in protein levels. Changes identified in the initial profiling stage were validated using selected reaction monitoring (SRM). Protein Set Enrichment Analysis was employed to identify dysregulated pathways. RESULTS LC-MSE analysis of Tsc1+/- mice and controls (n = 30) identified 51 proteins changed in frontal cortex and 108 in the hippocampus. Bioinformatic analysis combined with targeted proteomic validation revealed several dysregulated molecular pathways. Using targeted assays, proteomic alterations in the hippocampus validated the pathways "myelination", "dendrite," and "oxidative stress", an upregulation of ribosomal proteins and the mTOR kinase. LC-MSE analysis was also employed on Tsc1+/- and wildtype mice (n = 34) treated with rapamycin or vehicle. Rapamycin treatment exerted a stronger proteomic effect in Tsc1+/- mice with significant changes (mainly decreased expression) in 231 and 106 proteins, respectively. The cellular pathways "oxidative stress" and "apoptosis" were found to be affected in Tsc1+/- mice and the cellular compartments "myelin sheet" and "neurofilaments" were affected by rapamycin treatment. Thirty-three proteins which were altered in Tsc1+/- mice were normalized following rapamycin treatment, amongst them oxidative stress related proteins, myelin-specific and ribosomal proteins. CONCLUSIONS Molecular changes in the Tsc1+/- mouse brain were more prominent in the hippocampus compared to the frontal cortex. Pathways linked to myelination and oxidative stress response were prominently affected and, at least in part, normalized following rapamycin treatment. The results could aid in the identification of novel drug targets for the treatment of cognitive, social and psychiatric symptoms in autism spectrum disorders. Similar pathways have also been implicated in other psychiatric and neurodegenerative disorders and could imply similar disease processes. Thus, the potential efficacy of mTOR inhibitors warrants further investigation not only for autism spectrum disorders but also for other neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Hendrik Wesseling
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT UK
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, 3000 CA The Netherlands
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT UK
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, 3000 CA The Netherlands
| |
Collapse
|
15
|
Hino O, Kobayashi T. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Cancer Sci 2017; 108:5-11. [PMID: 27862655 PMCID: PMC5276834 DOI: 10.1111/cas.13116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 12/16/2022] Open
Abstract
On July 10, 2016, Alfred G. Knudson, Jr., MD, PhD, a leader in cancer research, died at the age of 93 years. We deeply mourn his loss. Knudson's two-hit hypothesis, published in 1971, has been fundamental for understanding tumor suppressor genes and familial tumor-predisposing syndromes. To understand the molecular mechanism of two-hit-initiated tumorigenesis, Knudson used an animal model of a dominantly inherited tumor, the Eker rat. From the molecular identification of Tsc2 germline mutations, the Eker rat became a model for tuberous sclerosis complex (TSC), a familial tumor-predisposing syndrome. Animal models, including the fly, have greatly contributed to TSC research. Because the product of the TSC2/Tsc2 gene (tuberin) together with hamartin, the product of another TSC gene (TSC1/Tsc1), suppresses mammalian/mechanistic target of rapamycin complex 1 (mTORC1), rapalogs have been used as therapeutic drugs for TSC. Although significant activity of these drugs has been reported, there are still problems such as recurrence of residual tumors and adverse effects. Recent studies indicate that there are mTORC1-independent signaling pathways downstream of hamartin/tuberin, which may represent new therapeutic targets. The establishment of cellular models, such as pluripotent stem cells with TSC2/Tsc2 gene mutations, will facilitate the understanding of new aspects of TSC pathogenesis and the development of novel treatment options. In this review, we look back at the history of Knudson and animal models of TSC and introduce recent progress in TSC research.
Collapse
Affiliation(s)
- Okio Hino
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Kobayashi
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Jalali S, Monsalves E, Tateno T, Zadeh G. Role of mTOR Inhibitors in Growth Hormone-Producing Pituitary Adenomas Harboring Different FGFR4 Genotypes. Endocrinology 2016; 157:3577-87. [PMID: 27267848 DOI: 10.1210/en.2016-1028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pituitary adenomas (PAs) are common intracranial lesions. Available medical therapies are limited in PAs, and therefore, it is essential to identify treatments that control PA growth when surgery is not an option. Fibroblast growth factor 4 is implicated in PA pathogenesis; therefore, in this study, we used an isogenic mammosomatotroph cell line (GH4C1) harboring different fibroblast growth factor receptor (FGFR)-4 genotypes to establish and characterize intracranial xenograft mouse models that can be used for preclinical drug testing. We show that proliferating GH4C1 tumors have an average latency of 3 weeks to form. Histological analysis revealed that prototypic FGFR4 (G388) tumors express increased prolactin and less GH, whereas tumors possessing the polymorphic variant of FGFR4 (R388) express increased GH relative to prolactin. All tumors show abundant mammalian target of rapamycin (mTOR) signaling as confirmed using phosphorylated (p)-S6 and p-4E-binding protein 1 as downstream regulators of this pathway. We subsequently demonstrate that the mTOR inhibitor RAD001 decreases tumor growth rate and reduces p-S6 but not p-4E-binding protein 1 activation, regardless of FGFR4 status. More importantly, GH activity was significantly reduced after mTOR inhibition in the R388 polymorphic variant tumors. This reduction was also associated with a concomitant reduction in serum IGF-1 levels in the R388 group. In summary, we demonstrate that the GH4C1 FGFR polymorphic xenograft is a useful model for examining PAs. Furthermore, we show that RAD001 can efficiently reduce tumor growth rate by a reduction in mTOR signaling and more importantly results in control of GH expression and IGF-1 secretion, providing further support for using mTOR inhibitors in PA patients, in particular GH-producing adenomas.
Collapse
Affiliation(s)
- Shahrzad Jalali
- McFeeters-Hamilton Center for Neuro-Oncology Research (S.J., E.M., G.Z.), Princess Margaret Cancer Center (S.J., E.M., T.T., G.Z.), and Division of Neurosurgery (G.Z.), Toronto Western Hospital, Toronto, Canada M5T 2S8
| | - Eric Monsalves
- McFeeters-Hamilton Center for Neuro-Oncology Research (S.J., E.M., G.Z.), Princess Margaret Cancer Center (S.J., E.M., T.T., G.Z.), and Division of Neurosurgery (G.Z.), Toronto Western Hospital, Toronto, Canada M5T 2S8
| | - Toru Tateno
- McFeeters-Hamilton Center for Neuro-Oncology Research (S.J., E.M., G.Z.), Princess Margaret Cancer Center (S.J., E.M., T.T., G.Z.), and Division of Neurosurgery (G.Z.), Toronto Western Hospital, Toronto, Canada M5T 2S8
| | - Gelareh Zadeh
- McFeeters-Hamilton Center for Neuro-Oncology Research (S.J., E.M., G.Z.), Princess Margaret Cancer Center (S.J., E.M., T.T., G.Z.), and Division of Neurosurgery (G.Z.), Toronto Western Hospital, Toronto, Canada M5T 2S8
| |
Collapse
|
17
|
mTOR promotes pituitary tumor development through activation of PTTG1. Oncogene 2016; 36:979-988. [PMID: 27524416 DOI: 10.1038/onc.2016.264] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/19/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
As one of the most common intracranial tumors, pituitary tumor is associated with high morbidity. Effective therapy is currently not available for some pituitary tumors due to the largely undefined pathological processes of pituitary tumorigenesis. In this study, hyperactivation of mammalian/mechanistic target of rapamycin (mTOR) signaling was observed in estrogen-induced rat pituitary tumor and mTOR inhibitor rapamycin blocked the tumor development. Pituitary knockout of either mTOR signaling pathway negative regulator Tsc1 or Pten caused mouse pituitary prolactinoma, which was abolished by rapamycin treatment. Mechanistically, the expression of pituitary tumor transforming gene 1 (PTTG1) was upregulated in an mTOR complex 1-dependent manner. Overexpressed PTTG1 was crucial in hyperactive mTOR-mediated tumorigenesis. mTOR-PTTG1 signaling axis may be targeted for the treatment of tumors with mTOR hyperactivation.
Collapse
|
18
|
Prizant H, Taya M, Lerman I, Light A, Sen A, Mitra S, Foster TH, Hammes SR. Estrogen maintains myometrial tumors in a lymphangioleiomyomatosis model. Endocr Relat Cancer 2016; 23:265-80. [PMID: 26880751 PMCID: PMC4992946 DOI: 10.1530/erc-15-0505] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/17/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease in women. Patients with LAM develop metastatic smooth-muscle cell adenomas within the lungs, resulting in reduced pulmonary function. LAM cells contain mutations in tuberous sclerosis genes (TSC1 or TSC2), leading to up-regulation of mTORC1 activity and elevated proliferation. The origin of LAM cells remains unknown; however, inactivation of Tsc2 gene in the mouse uterus resulted in myometrial tumors exhibiting LAM features, and approximately 50% of animals developed metastatic myometrial lung tumors. This suggests that LAM tumors might originate from the uterine myometrium, possibly explaining the overwhelming prevalence of LAM in female. Here, we demonstrate that mouse Tsc2-null myometrial tumors exhibit nearly all the features of LAM, including mTORC1/S6K activation, as well as expression of melanocytic markers and matrix metalloproteinases (MMPs). Estrogen ablation reduces S6K signaling and results in Tsc2-null myometrial tumor regression. Thus, even without TSC2, estradiol is required to maintain tumors and mTORC1/S6K signaling. Additionally, we find that MMP-2 and -9, as well as neutrophil elastase (NE), are overexpressed in Tsc2-null myometrial tumors in an estrogen-dependent fashion. In vivo fluorescent imaging using MMP- or NE-sensitive optical biomarkers confirms that protease activity is specific to myometrial tumors. Similar to LAM cells, uterine Tsc2-null myometrial cells also overexpress melanocytic markers in an estrogen-dependent fashion. Finally, we identify glycoprotein NMB (GPNMB) as a melanocytic marker up-regulated in Tsc2-null mouse uteri and human LAM samples. Our data highlight the potential importance of estradiol in LAM cells, suggesting that anti-estrogen therapy may be a treatment modality. Furthermore, proteases and GPNMB might be useful LAM biomarkers.
Collapse
Affiliation(s)
- Hen Prizant
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Manisha Taya
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Irina Lerman
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Allison Light
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Aritro Sen
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Soumya Mitra
- Department of Imaging SciencesUniversity of Rochester Medical Center, Rochester, New York, USA
| | - Thomas H Foster
- Department of Imaging SciencesUniversity of Rochester Medical Center, Rochester, New York, USA
| | - Stephen R Hammes
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
19
|
Taneike M, Nishida K, Omiya S, Zarrinpashneh E, Misaka T, Kitazume-Taneike R, Austin R, Takaoka M, Yamaguchi O, Gambello MJ, Shah AM, Otsu K. mTOR Hyperactivation by Ablation of Tuberous Sclerosis Complex 2 in the Mouse Heart Induces Cardiac Dysfunction with the Increased Number of Small Mitochondria Mediated through the Down-Regulation of Autophagy. PLoS One 2016; 11:e0152628. [PMID: 27023784 PMCID: PMC4811538 DOI: 10.1371/journal.pone.0152628] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/10/2016] [Indexed: 11/19/2022] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell growth, proliferation and metabolism. mTORC1 regulates protein synthesis positively and autophagy negatively. Autophagy is a major system to manage bulk degradation and recycling of cytoplasmic components and organelles. Tuberous sclerosis complex (TSC) 1 and 2 form a heterodimeric complex and inactivate Ras homolog enriched in brain, resulting in inhibition of mTORC1. Here, we investigated the effects of hyperactivation of mTORC1 on cardiac function and structure using cardiac-specific TSC2-deficient (TSC2-/-) mice. TSC2-/- mice were born normally at the expected Mendelian ratio. However, the median life span of TSC2-/- mice was approximately 10 months and significantly shorter than that of control mice. TSC2-/- mice showed cardiac dysfunction and cardiomyocyte hypertrophy without considerable fibrosis, cell infiltration or apoptotic cardiomyocyte death. Ultrastructural analysis of TSC2-/- hearts revealed misalignment, aggregation and a decrease in the size and an increase in the number of mitochondria, but the mitochondrial function was maintained. Autophagic flux was inhibited, while the phosphorylation level of S6 or eukaryotic initiation factor 4E -binding protein 1, downstream of mTORC1, was increased. The upregulation of autophagic flux by trehalose treatment attenuated the cardiac phenotypes such as cardiac dysfunction and structural abnormalities of mitochondria in TSC2-/- hearts. The results suggest that autophagy via the TSC2-mTORC1 signaling pathway plays an important role in maintenance of cardiac function and mitochondrial quantity and size in the heart and could be a therapeutic target to maintain mitochondrial homeostasis in failing hearts.
Collapse
Affiliation(s)
- Manabu Taneike
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Kazuhiko Nishida
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Shigemiki Omiya
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Elham Zarrinpashneh
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Tomofumi Misaka
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Rika Kitazume-Taneike
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Ruth Austin
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Minoru Takaoka
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Michael J. Gambello
- Division of Medical Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ajay M. Shah
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Kinya Otsu
- Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Llamas-Velasco M, Requena L, Mentzel T. Cutaneous perivascular epithelioid cell tumors: A review on an infrequent neoplasm. World J Methodol 2016; 6:87-92. [PMID: 27019799 PMCID: PMC4804255 DOI: 10.5662/wjm.v6.i1.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023] Open
Abstract
“Perivascular epithelioid cutaneous” cell tumors (PEComa) are a family of mesenchymal tumors with shared microscopic and immunohistochemical properties: They exhibit both smooth muscle cell and melanocytic differentiation. Non-neoplastic counterpart of PEComa’s cells are unknown, as well as the relationship between extracutaneous PEComa and primary cutaneous ones. We will review the clinical setting, histopathologic features, chromosomal abnormalities, differential diagnosis and treatment options for cutaneous PEComa.
Collapse
|
21
|
Acosta Materán RV, Martín Arribas MI, Velasco Guardado A, González Velasco C, Mora Soler AM, Revilla Morato C, Rodríguez Pérez A. Perivascular epithelioid cell tumor of the ileum. A case report. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2016; 108:741-742. [PMID: 26900883 DOI: 10.17235/reed.2016.3970/2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Perivascular epithelioid cell tumors (PEComa) are tumors of perivascular epithelioid cells with immunohistochemical features of smooth muscle and melanocytic tumors. The PEComa of the gastrointestinal tract is rare. The treatment is surgical, although there are data that suggest a good response to rapamycin.
Collapse
|
22
|
Sadowski K, Kotulska K, Jóźwiak S. Management of side effects of mTOR inhibitors in tuberous sclerosis patients. Pharmacol Rep 2016; 68:536-42. [PMID: 26891243 DOI: 10.1016/j.pharep.2016.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/20/2023]
Abstract
mTOR inhibitors represent a relatively new therapeutic option in the management of patients affected by tuberous sclerosis complex (TSC). Randomized clinical trials support the use of everolimus in the treatment of subependymal giant cell astrocytomas (SEGA) and renal angiomyolipomas (AML) related to TSC. Accumulating data suggest also systemic disease-modifying potential of mTOR inhibitors. Given that increasing number of patients with TSC receive mTOR inhibitors, the issue of adverse events associated with this therapy becomes practically important. In the present study we provide the overview of clinical manifestations and therapeutic options for the most common adverse events related to mTOR inhibitors in TSC patients.
Collapse
Affiliation(s)
- Krzysztof Sadowski
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warszawa, Poland.
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warszawa, Poland.
| | - Sergiusz Jóźwiak
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warszawa, Poland; Department of Pediatric Neurology, Warsaw Medical University, Warszawa, Poland.
| |
Collapse
|
23
|
Abstract
Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease affecting predominantly young women. Clinical symptoms of this progressive disease include dyspnoea, cough, recurrent pneumothorax, hemoptysis and chylothorax. LAM is generally aggressive in nature and ultimately results in respiratory failure. Important hallmark features of this metastatic disease include the formation of lesions of abnormal smooth muscle cells, cystic destruction of the lung tissue and lymphangiogenesis affecting the lungs, abdomen and lymphatics. Research over the last 10-15 years has significantly enhanced our understanding of the molecular and cellular processes associated with LAM. These processes include mutational inactivation of the tuberous sclerosis complex genes, TSC1 and TSC2, activation of the mammalian target of rapamycin (mTOR) pathway, enhanced cell proliferation and migration, lymphangiogenesis, metastatic spread through the blood and lymphatic circulations, sex steroid sensitivity and dysregulated autophagy. Despite this increased knowledge there is currently no cure for LAM and treatment options remain limited. Whilst the mTOR inhibitor rapamycin has shown some benefit in patients with LAM, with stabilisation of lung function and improved quality of life, cessation of treatment results in recurrence of the disease progression. This highlights the urgent need to identify novel targets and new treatment regimens. The focus of this review is to summarise our current understanding of the cellular and molecular processes associated with LAM and highlight emerging treatments.
Collapse
Affiliation(s)
- Lyn M Moir
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Moavero R, Romagnoli G, Graziola F, Curatolo P. Mammalian Target of Rapamycin Inhibitors and Life-Threatening Conditions in Tuberous Sclerosis Complex. Semin Pediatr Neurol 2015; 22:282-94. [PMID: 26706015 DOI: 10.1016/j.spen.2015.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuberous sclerosis complex (TSC) is a multisystem disease associated with an overall reduction in life expectancy due to the possible occurrence of different life-threatening conditions. Subjects affected by TSC are, in fact, at risk of hydrocephalus secondary to the growth of subependymal giant cell astrocytomas, or of sudden unexpected death in epilepsy. Other nonneurological life-threatening conditions include abdominal bleeding owing to renal angiomyolipomas rupture, renal insufficiency due to progressive parenchymal destruction by multiple cysts, pulmonary complications due to lymphangioleiomyomatosis, and cardiac failure or arrhythmias secondary to rhabdomyomas. In the last decades, there has been a great progress in understanding the pathophysiology of TSC-related manifestations, which are mainly linked to the hyperactivation of the so-called mammalian target of rapamycin (mTOR) pathway, as a consequence of the mutation in 1 of the 2 genes TSC1 or TSC2. This led to the development of new treatment strategies for this disease. In fact, it is now available as a biologically targeted therapy with everolimus, a selective mTOR inhibitor, which has been licensed in Europe and USA for the treatment of subependymal giant cell astrocytomas and angiomyolipomas in subjects with TSC. This drug also proved to benefit other TSC-related manifestations, including pulmonary lymphangioleiomyomatosis, cardiac rhabdomyomas, and presumably epileptic seizures. mTOR inhibitors are thus proving to be a systemic therapy able to simultaneously address different and potentially life-threatening complications, giving the hope of improving life expectation in individuals with TSC.
Collapse
Affiliation(s)
- Romina Moavero
- Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, Rome, Italy; Child Neurology Unit, Neuroscience and Neurorehabilitation Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Gloria Romagnoli
- Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, Rome, Italy
| | - Federica Graziola
- Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, Rome, Italy
| |
Collapse
|
25
|
Patel B, Patel J, Cho JH, Manne S, Bonala S, Henske E, Roegiers F, Markiewski M, Karbowniczek M. Exosomes mediate the acquisition of the disease phenotypes by cells with normal genome in tuberous sclerosis complex. Oncogene 2015; 35:3027-36. [DOI: 10.1038/onc.2015.358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/31/2015] [Accepted: 08/24/2015] [Indexed: 01/14/2023]
|
26
|
Sadowski K, Kotulska K, Schwartz RA, Jóźwiak S. Systemic effects of treatment with mTOR inhibitors in tuberous sclerosis complex: a comprehensive review. J Eur Acad Dermatol Venereol 2015; 30:586-94. [DOI: 10.1111/jdv.13356] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Affiliation(s)
- K. Sadowski
- Department of Neurology and Epileptology; The Children's Memorial Health Institute; Warsaw Poland
| | - K. Kotulska
- Department of Neurology and Epileptology; The Children's Memorial Health Institute; Warsaw Poland
| | - R. A. Schwartz
- Dermatology, Pediatrics; Medicine, and Preventive Medicine and Community Health; Rutgers New Jersey Medical School; Rutgers University; Newark NJ USA
- Rutgers University School of Public Affairs and Administration; Newark NJ USA
| | - S. Jóźwiak
- Department of Neurology and Epileptology; The Children's Memorial Health Institute; Warsaw Poland
- Department of Child Neurology; Warsaw Medical University; Warsaw Poland
| |
Collapse
|
27
|
Leech JD, Lammers SHT, Goldman S, Auricchio N, Bronson RT, Kwiatkowski DJ, Sahin M. A vascular model of Tsc1 deficiency accelerates renal tumor formation with accompanying hemangiosarcomas. Mol Cancer Res 2014; 13:548-55. [PMID: 25548102 DOI: 10.1158/1541-7786.mcr-14-0178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED Tuberous sclerosis complex (TSC) is an autosomal disease caused by inactivating mutations in either of the tumor suppressor genes TSC1 or TSC2. TSC-associated tumor growth is present in multiple tissues and organs including brain, kidney, liver, heart, lungs, and skin. In the kidney, TSC angiomyolipomas have aberrant vascular structures with abnormal endothelial cells, suggesting a role for endothelial mTORC1 function. In the current report, a genetically engineered mouse model (GEMM) with a conditional knockout allele of Tsc1 with a Darpp32-Cre allele displayed accelerated formation of both kidney cystadenomas and paw hemangiosarcomas. All mutant mice developed hemangiosarcomas on multiple paws by 6 weeks of age. By 16 weeks of age, the average mutant hind paw was 4.0 mm in diameter, nearly double the size of control mice. Furthermore, the hemangiosarcomas and kidney cystadenomas were responsive to intraperitoneal rapamycin treatment. Immunoblotting and immunostaining for phospho-S6 (pS6) and phospho-CAD showed that the effect of rapamycin on tumor size was through inhibition of the mTOR signaling pathway. Finally, elevated VEGF mRNA levels were also observed in hemangiosarcoma specimens. Because paw hemangiosarcomas are easily detectable and scorable for size and growth, this novel mouse model enables accelerated in vivo drug testing for therapies of TSC-related tumors. IMPLICATIONS These findings provide a strong rationale for simultaneous use of this conditional knockout mouse as an in vivo genetic model while seeking new cancer therapies for TSC-related tumors.
Collapse
Affiliation(s)
- Jarrett D Leech
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts
| | - Stephen H T Lammers
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts
| | - Sam Goldman
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts
| | - Neil Auricchio
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | | | - Mustafa Sahin
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts.
| |
Collapse
|
28
|
Abstract
Lymphangioleiomyomatosis (LAM), a multisystem disease affecting almost exclusively women, is characterized by cystic lung destruction and presents with dyspnea, recurrent pneumothoraxes, chylous effusions, lymphangioleiomyomas, and angiomyolipomas. It is caused by the proliferation of a cancer-like LAM cell that possesses a mutation in either the tuberous sclerosis complex (TSC)1 or TSC2 genes. This article reviews current therapies and new potential treatments that are currently undergoing investigation. The major development in the treatment of LAM is the discovery of two mammalian target of rapamycin (mTOR) inhibitors, sirolimus and everolimus, as effective drugs. However, inhibition of mTOR increases autophagy, which may lead to enhanced LAM cell survival. Use of autophagy inhibitors, for example, hydroxychloroquine, in combination with sirolimus is now the subject of an ongoing drug trial (SAIL trial). Another consequence of mTOR inhibition by sirolimus is an increase in Rho activity, resulting in reduced programmed cell death. From these data, the concept evolved that a combination of sirolimus with disruption of Rho activity with statins (e.g. simvastatin) may increase TSC-null cell death and reduce LAM cell survival. A combined trial of sirolimus with simvastatin is under investigation (SOS trial). Since LAM occurs primarily in women and TSC-null cell survival and tumor growth is promoted by estrogens, the inhibition of aromatase to block estrogen synthesis is currently undergoing study (TRAIL trial). Other targets, for example, estrogen receptors, mitogen-activated protein kinase inhibitors, vascular endothelial growth factor-D signaling pathway, and Src kinase, are also being studied in experimental model systems. As in the case of cancer, combination therapy may become the treatment of choice for LAM.
Collapse
|
29
|
Monsalves E, Juraschka K, Tateno T, Agnihotri S, Asa SL, Ezzat S, Zadeh G. The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas. Endocr Relat Cancer 2014; 21:R331-44. [PMID: 25052915 DOI: 10.1530/erc-14-0188] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pituitary adenomas are common intracranial neoplasms. Patients with these tumors exhibit a wide range of clinically challenging problems, stemming either from results of sellar mass effect in pituitary macroadenoma or the diverse effects of aberrant hormone production by adenoma cells. While some patients are cured/controlled by surgical resection and/or medical therapy, a proportion of patients exhibit tumors that are refractory to current modalities. New therapeutic approaches are needed for these patients. Activation of the AKT/phophotidylinositide-3-kinase pathway, including mTOR activation, is common in human neoplasia, and a number of therapeutic approaches are being employed to neutralize activation of this pathway in human cancer. This review examines the role of this pathway in pituitary tumors with respect to tumor biology and its potential role as a therapeutic target.
Collapse
Affiliation(s)
- Eric Monsalves
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, CanadaInstitute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Kyle Juraschka
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Toru Tateno
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Sameer Agnihotri
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Sylvia L Asa
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Shereen Ezzat
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, CanadaInstitute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, CanadaInstitute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Institute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, CanadaInstitute of Medical ScienceDepartment of Medical BiophysicsUniversity of Toronto, Toronto, Ontario, CanadaDivision of NeurosurgeryToronto Western Hospital, 399 Bathurst Street, 4W-439, Toronto, Ontario, Canada M5T 2S8Ontario Cancer InstitutePrincess Margaret Hospital, Toronto, Ontario, CanadaEndocrine Oncology Site GroupPrincess Margaret Hospital, Toronto, Ontario, CanadaDepartment of Laboratory Medicine and PathobiologyUniversity of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Maruta H. Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity. Phytother Res 2013; 28:656-72. [PMID: 23943274 DOI: 10.1002/ptr.5054] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
Over 35 years research on PAKs, RAC/CDC42(p21)-activated kinases, comes of age, and in particular PAK1 has been well known to be responsible for a variety of diseases such as cancer (mainly solid tumors), Alzheimer's disease, acquired immune deficiency syndrome and other viral/bacterial infections, inflammatory diseases (asthma and arthritis), diabetes (type 2), neurofibromatosis, tuberous sclerosis, epilepsy, depression, schizophrenia, learning disability, autism, etc. Although several distinct synthetic PAK1-blockers have been recently developed, no FDA-approved PAK1 blockers are available on the market as yet. Thus, patients suffering from these PAK1-dependent diseases have to rely on solely a variety of herbal therapeutics such as propolis and curcumin that block PAK1 without affecting normal cell growth. Furthermore, several recent studies revealed that some of these herbal therapeutics significantly extend the lifespan of nematodes (C. elegans) and fruit flies (Drosophila), and PAK1-deficient worm lives longer than the wild type. Here, I outline mainly pathological phenotypes of hyper-activated PAK1 and a list of herbal therapeutics that block PAK1, but cause no side (harmful) effect on healthy people or animals.
Collapse
|
31
|
Prizant H, Sen A, Light A, Cho SN, DeMayo FJ, Lydon JP, Hammes SR. Uterine-specific loss of Tsc2 leads to myometrial tumors in both the uterus and lungs. Mol Endocrinol 2013; 27:1403-14. [PMID: 23820898 DOI: 10.1210/me.2013-1059] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease characterized by proliferation of abnormal smooth-muscle cells in the lungs, leading to functional loss and sometimes lung transplantation. Although the origin of LAM cells is unknown, several features of LAM provide clues. First, LAM cells contain inactivating mutations in genes encoding Tsc1 or Tsc2, proteins that limit mTORC1 activity. Second, LAM tumors recur after lung transplantation, suggesting a metastatic pathogenesis. Third, LAM is found almost exclusively in women. Finally, LAM shares features with uterine leiomyomas, benign tumors of myometrial cells. From these observations, we proposed that LAM cells might originate from uterine leiomyomas containing Tsc mutations. To test our hypothesis, and to develop mouse models for leiomyoma and LAM, we targeted Tsc2 deletion primarily in uterine cells. In fact, nearly 100% of uteri from uterine-specific Tsc2 knockout mice developed myometrial proliferation and uterine leiomyomas by 12 and 24 weeks, respectively. Myometrial proliferation and mTORC1/S6 activity were abrogated by the mTORC1 inhibitor rapamycin or by elimination of sex steroid production through ovariectomy or aromatase inhibition. In ovariectomized Tsc2 null mice, mTORC1/S6 activity and myometrial growth were restored by estrogen but not progesterone. Thus, even without Tsc2, estrogen appears to be required for myometrial mTORC1/S6 signaling and proliferation. Finally, we found Tsc2 null myometrial tumors in lungs of older Tsc2 uterine-specific knockout females, suggesting that lung LAM-like myometrial lesions may indeed originate from the uterus. This mouse model may improve our understanding of LAM and leiomyomas and might lead to novel therapeutic strategies for both diseases.
Collapse
Affiliation(s)
- Hen Prizant
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Curatolo P, Moavero R. mTOR Inhibitors in Tuberous Sclerosis Complex. Curr Neuropharmacol 2012; 10:404-15. [PMID: 23730262 PMCID: PMC3520048 DOI: 10.2174/157015912804143595] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/13/2012] [Accepted: 07/24/2012] [Indexed: 01/16/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic multiple organ system disorder that is characterized by the development of tumor-like lesions (hamartomas) and neurodevelopmental disorders. Mutations in the TSC1 and TSC2 tumor suppressor genes occur in the majority of patients with TSC, resulting in hyperactivation of the mammalian target of rapamycin (mTOR) signaling pathway and subsequent abnormalities in numerous cell processes. As a result, mTOR inhibitors such as sirolimus and everolimus have the potential to provide targeted therapy for patients with TSC. Everolimus is the first mTOR inhibitor approved as a treatment option in the USA and in Europe for patients with subependymal giant-cell astrocytomas (SEGAs) associated with TSC. The clinical evidence to date supports the use of mTOR inhibitors in a variety of TSC-associated disease manifestations, including SEGAs, renal angiomyolipoma, skin manifestations, and epilepsy. Furthermore, ongoing clinical trials evaluating mTOR inhibitors in TSC are underway, and the results of these studies are expected to provide further evidence that will firmly establish their role in this setting. This article will discuss the role of the mTOR pathway in TSC and review the pharmacokinetics, pharmacodynamics, clinical efficacy, and tolerability of mTOR inhibitors, along with their current place in clinical practice.
Collapse
Affiliation(s)
- Paolo Curatolo
- Pediatric Neurology Unit, Neuroscience Department, Tor Vergata University Hospital, Rome, Italy
| | | |
Collapse
|
33
|
Henske EP, McCormack FX. Lymphangioleiomyomatosis - a wolf in sheep's clothing. J Clin Invest 2012; 122:3807-16. [PMID: 23114603 DOI: 10.1172/jci58709] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare progressive lung disease of women. LAM is caused by mutations in the tuberous sclerosis genes, resulting in activation of the mTOR complex 1 signaling network. Over the past 11 years, there has been remarkable progress in the understanding of LAM and rapid translation of this knowledge to an effective therapy. LAM pathogenic mechanisms mirror those of many forms of human cancer, including mutation, metabolic reprogramming, inappropriate growth and survival, metastasis via blood and lymphatic circulation, infiltration/invasion, sex steroid sensitivity, and local and remote tissue destruction. However, the smooth muscle cell that metastasizes, infiltrates, and destroys the lung in LAM arises from an unknown source and has an innocent histological appearance, with little evidence of proliferation. Thus, LAM is as an elegant, monogenic model of neoplasia, defying categorization as either benign or malignant.
Collapse
Affiliation(s)
- Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
34
|
Advances in the management of subependymal giant cell astrocytoma. Childs Nerv Syst 2012; 28:963-8. [PMID: 22562196 DOI: 10.1007/s00381-012-1785-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/19/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND Subependymal giant cell astrocytoma (SEGA) is the most common central nervous system tumor in patients with tuberous sclerosis complex (TSC). Although these lesions are generally benign and non-infiltrative, they commonly arise in the region of the foramen of Monro, where they can cause obstructive hydrocephalus and sudden death. METHODS Surgical resection has been, and presently remains, the standard treatment for SEGAs demonstrating serial growth on neuroimaging in the setting of symptomatic hydrocephalus or progressive ventriculomegaly. DISCUSSION Surgery can be curative; however, not all SEGAs are amenable to safe and complete resection. Gamma Knife stereotactic radiosurgery provides another treatment option but has highly variable response rates with limited data demonstrating its efficacy. Newer medical therapy targeting mammalian target of rapamycin (mTOR), the key protein kinase that is constitutively activated in TSC, has demonstrated promising results in recent clinical trials. In both case reports and clinical trials, treatment with mTOR inhibitors results in a significant reduction in SEGA volume and improvement or resolution of ventriculomegaly. This has led to the approval of everolimus for the treatment of SEGA in tuberous sclerosis patients who are not candidates for surgery. This review summarizes the surgical and medical management of SEGA in patients with TSC.
Collapse
|
35
|
Weiss HR, Liu X, Grewal P, Chi OZ. Reduced effect of stimulation of AMPA receptors on cerebral O₂ consumption in a rat model of autism. Neuropharmacology 2012; 63:837-41. [PMID: 22722031 DOI: 10.1016/j.neuropharm.2012.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 01/09/2023]
Abstract
Previous work demonstrated that basal alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activity did not contribute to the elevated regional cerebral O₂ consumption in the brains of Eker rat (an autism-tuberous sclerosis model). We tested the hypothesis that increased stimulation of AMPA receptors also would not augment cerebral O₂ consumption in the Eker rat. Three cortical sites were prepared for administration of saline, 10⁻⁴ and 10⁻³ M AMPA in young (4 weeks) male control Long Evans and Eker rats (70-100 g). Cerebral blood flow (¹⁴C-iodoantipyrine) and O₂ consumption (cryomicrospectrophotometry) were determined in isoflurane anesthetized rats. Receptor levels were studied through Western analysis of the GLuR1 subunit of the AMPA receptor. We found significantly increased cortical O₂ consumption (+33%) after 10⁻⁴ M AMPA in control rats. The higher dose of AMPA did not further increase consumption. In the Eker rats, neither dose led to a significant increase in cortical O₂ consumption. Regional blood flow followed a similar pattern to oxygen consumption but cortical O₂ extraction did not differ. Cortical AMPA receptor protein levels were significantly reduced (-21%) in the Eker compared to control rats. Both O₂ consumption and blood flow were significantly elevated in the pons of the Eker rats compared to control. These data demonstrate a reduced importance of AMPA receptors in the control of cortical metabolism, related to reduced AMPA receptor protein, in the Eker rat. This suggests that increasing AMPA receptor activity may not be an effective treatment for children with autism spectrum disorders as they also have reduced AMPA receptor number.
Collapse
Affiliation(s)
- Harvey R Weiss
- Department of Physiology & Biophysics, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Lymphangioleiomyomatosis (LAM), a multisystem disease predominantly affecting premenopausal women, is associated with cystic lung destruction and lymphatic and kidney tumors. LAM results from the proliferation of a neoplastic cell that has mutations in the tuberous sclerosis complex 1 or 2 genes, leading to activation of a critical regulatory protein, mammalian target of rapamycin. In this report, we discuss the molecular mechanisms regulating LAM cell growth and report the results of therapeutic trials employing new targeted agents. At present, inhibitors of mammalian target of rapamycin such as sirolimus appear to be the most promising therapeutic agents, although drug toxicity and development of resistance are potential problems. As the pathogenesis of LAM is being further recognized, other therapeutic agents such as matrix metalloproteinase inhibitors, statins, interferon, VEGF inhibitors, chloroquine analogs and cyclin-dependent kinase inhibitors, along with sirolimus or a combination of several of these agents, may offer the best hope for effective therapy.
Collapse
Affiliation(s)
- Angelo M Taveira-DaSilva
- Cardiovascular and Pulmonary Branch, Bldg. 10, Rm. 6D05, MSC 1590, NHLBI, NIH, Bethesda, MD 20892-1590, USA
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, Bldg. 10, Rm. 6D05, MSC 1590, NHLBI, NIH, Bethesda, MD 20892-1590, USA
| |
Collapse
|
37
|
Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 2012; 53:1119-30. [PMID: 22578218 DOI: 10.1111/j.1528-1167.2012.03506.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway regulates cell growth, differentiation, proliferation, and metabolism. Loss-of-function mutations in upstream regulators of mTOR have been highly associated with dysplasias, epilepsy, and neurodevelopmental disorders. These include tuberous sclerosis, which is due to mutations in TSC1 or TSC2 genes; mutations in phosphatase and tensin homolog (PTEN) as in Cowden syndrome, polyhydramnios, megalencephaly, symptomatic epilepsy syndrome (PMSE) due to mutations in the STE20-related kinase adaptor alpha (STRADalpha); and neurofibromatosis type 1 attributed to neurofibromin 1 mutations. Inhibition of the mTOR pathway with rapamycin may prevent epilepsy and improve the underlying pathology in mouse models with disrupted mTOR signaling, due to PTEN or TSC mutations. However the timing and duration of its administration appear critical in defining the seizure and pathology-related outcomes. Rapamycin application in human cortical slices from patients with cortical dysplasias reduces the 4-aminopyridine-induced oscillations. In the multiple-hit model of infantile spasms, pulse high-dose rapamycin administration can reduce the cortical overactivation of the mTOR pathway, suppresses spasms, and has disease-modifying effects by partially improving cognitive deficits. In post-status epilepticus models of temporal lobe epilepsy, rapamycin may ameliorate the development of epilepsy-related pathology and reduce the expression of spontaneous seizures, but its effects depend on the timing and duration of administration, and possibly the model used. The observed recurrence of seizures and epilepsy-related pathology after rapamycin discontinuation suggests the need for continuous administration to maintain the benefit. However, the use of pulse administration protocols may be useful in certain age-specific epilepsy syndromes, like infantile spasms, whereas repetitive-pulse rapamycin protocols may suffice to sustain a long-term benefit in genetic disorders of the mTOR pathway. In summary, mTOR dysregulation has been implicated in several genetic and acquired forms of epileptogenesis. The use of mTOR inhibitors can reverse some of these epileptogenic processes, although their effects depend upon the timing and dose of administration as well as the model used.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | |
Collapse
|
38
|
Taveira-DaSilva AM, Moss J. Progress in the treatment of lymphangioleiomyomatosis: from bench to bedside. REVISTA PORTUGUESA DE PNEUMOLOGIA 2012; 18:142-4. [PMID: 22480994 DOI: 10.1016/j.rppneu.2012.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/08/2011] [Indexed: 10/28/2022] Open
Affiliation(s)
- A M Taveira-DaSilva
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
39
|
Auricchio N, Malinowska I, Shaw R, Manning BD, Kwiatkowski DJ. Therapeutic trial of metformin and bortezomib in a mouse model of tuberous sclerosis complex (TSC). PLoS One 2012; 7:e31900. [PMID: 22363765 PMCID: PMC3283697 DOI: 10.1371/journal.pone.0031900] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/15/2012] [Indexed: 11/26/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a human genetic disorder in which loss of either TSC1 or TSC2 leads to development of hamartoma lesions, which can progress and be life-threatening or fatal. The TSC1/TSC2 protein complex regulates the state of activation of mTORC1. Tsc2+/− mice develop renal cystadenoma lesions which grow progressively. Both bortezomib and metformin have been proposed as potential therapeutics in TSC. We examined the potential benefit of 1 month treatment with bortezomib, and 4 month treatment with metformin in Tsc2+/− mice. Results were compared to vehicle treatment and treatment with the mTORC1 inhibitor rapamycin for 1 month. We used a quantitative tumor volume measurement on stained paraffin sections to assess the effect of these drugs. The median tumor volume per kidney was decreased by 99% in mice treated with rapamycin (p = 0.0004). In contrast, the median tumor volume per kidney was not significantly reduced for either the bortezomib cohort or the metformin cohort. Biochemical studies confirmed that bortezomib and metformin had their expected pharmacodynamic effects. We conclude that neither bortezomib nor metformin has significant benefit in this native Tsc2+/− mouse model, which suggests limited benefit of these compounds in the treatment of TSC hamartomas and related lesions.
Collapse
Affiliation(s)
- Neil Auricchio
- Translational Medicine Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Izabela Malinowska
- Translational Medicine Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Reuben Shaw
- The Salk Institute, San Diego, California, United States of America
| | - Brendan D. Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David J. Kwiatkowski
- Translational Medicine Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Jiang X, Kenerson HL, Yeung RS. Glucose deprivation in tuberous sclerosis complex-related tumors. Cell Biosci 2011; 1:34. [PMID: 22018000 PMCID: PMC3219560 DOI: 10.1186/2045-3701-1-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/21/2011] [Indexed: 02/08/2023] Open
Abstract
Background Cancer cells possess unique metabolic phenotypes that are determined by their underlying oncogenic pathways. Activation of the PI3K/Akt/mTOR signaling cascade promotes glycolysis and leads to glucose-dependence in tumors. In particular, cells with constitutive mTORC1 activity secondary to the loss of TSC1/TSC2 function are prone to undergo apoptosis upon glucose withdrawal in vitro, but this concept has not been tested in vivo. This study examines the effects of restricting glucose metabolism by pharmacologic and dietary means in a tuberous sclerosis complex (TSC) tumor xenograft model. Results Tumor-bearing mice were randomly assigned to receive unrestricted carbohydrate-free ("Carb-free") or Western-style diet in the absence or presence of 2-deoxyglucose (2-DG) in one of four treatment groups. After 14 weeks, tumor sizes were significantly different among the four treatment groups with those receiving 2-DG having the smallest tumors. Unexpectedly, the "Carb-free" diet was associated with the largest tumors but they remained responsive to 2-DG. PET imaging showed significant treatment-related changes in tumor 18fluorodeoxyglucose-uptake but the standard uptake values did not correlate with tumor size. Alternative energy substrates such as ketone bodies and monounsaturated oleic acid supported the growth of the Tsc2-/- cells in vitro, whereas saturated palmitic acid was toxic. Correspondingly, tumors in the high-fat, "Carb-free" group showed greater necrosis and liquefaction that contributed to their larger sizes. In contrast, 2-DG treatment significantly reduced tumor cell proliferation, increased metabolic stress (i.e., ketonemia) and AMPK activity, whereas rapamycin primarily reduced cell size. Conclusions Our data support the concept of glycolytic inhibition as a therapeutic approach in TSC whereas dietary withdrawal of carbohydrates was not effective.
Collapse
Affiliation(s)
- Xiuyun Jiang
- Department of Surgery, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
41
|
Turner SG, Peters KB, Vredenburgh JJ, Desjardins A, Friedman HS, Reardon DA. Everolimus tablets for patients with subependymal giant cell astrocytoma. Expert Opin Pharmacother 2011; 12:2265-9. [PMID: 21806479 DOI: 10.1517/14656566.2011.601742] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Better understanding of aberrantly active molecular pathways in tumors offers potential to develop more specific and less toxic therapies. Abnormal mammalian target of rapamycin (mTOR) complex signaling and defects in TSC1 and TSC2 have been associated with the development of subependymal giant cell astrocytomas (SEGAs) in tuberous sclerosis complex (TSC) patients. Recently, mTOR inhibitors such as everolimus have shown encouraging benefit for patients with SEGAs. AREAS COVERED The authors discuss a molecular genetic pathway linked with TSC, specifically the role of two proteins whose functional absence is responsible for most SEGA tumors that arise in TSC patients. The authors also examine the rationale for targeted agents against this pathway therapeutically and describe the clinical evidence underlying the FDA approval of everolimus for patients with inoperable SEGAs. EXPERT OPINION Everolimus (Afinitor) selectively targets a molecular defect of SEGAs in TSC patients. Although surgery is effective, most SEGAs recur. An agent that inhibits an underlying molecular abnormality represents a particularly attractive therapeutic option for patients with inoperable or recurrent tumors. Studies are also underway to assess everolimus in treating other sequelae of TSC, and other gliomas. Finally, additional research aimed at better understanding aberrant cell signaling pathways may lead to the development of more effective therapeutics.
Collapse
Affiliation(s)
- Scott G Turner
- Duke University Medical Center, The Preston Robert Tisch Brain Tumor Center, Department of Surgery, Box 3624, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
42
|
Carvalhosa R, Deambrosis I, Carrera P, Pasquino C, Rigo F, Ferrari M, Lasaponara F, Ranghino A, Biancone L, Segoloni G, Bussolati B, Camussi G. Cystogenic potential of CD133+ progenitor cells of human polycystic kidneys. J Pathol 2011; 225:129-41. [PMID: 21706482 DOI: 10.1002/path.2920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/22/2011] [Accepted: 04/09/2011] [Indexed: 01/24/2023]
Abstract
In autosomal dominant polycystic kidney disease, cysts arise focally and disrupt normal renal tissue leading to renal failure. In the present study, we show that cyst-lining cells express the stem cell marker CD133. CD133+ progenitor cells isolated from polycystic kidney, carrying mutations of PKD genes, showed a dedifferentiated phenotype similar to CD133+ progenitor cells from normal kidney. However, these cells were more proliferative and presented a defective epithelial differentiation phenotype with respect to normal renal CD133+ cells as they were not able to express all tubular epithelial cell markers when cultured in epithelial differentiation medium. Polycystic CD133+ cells, in contrast to normal renal CD133+ cells, formed cysts in vitro in a three-dimensional culture system and in vivo when injected subcutaneously within Matrigel in SCID mice. Rapamycin treatment reduced in vitro proliferation of polycystic CD133+ cells and decreased cystogenesis both in vitro and in vivo. The in vitro epithelial differentiation was only partially improved by rapamycin. These results indicate that polycystic CD133+ cells retain a dedifferentiated phenotype and the ability to generate cysts.
Collapse
Affiliation(s)
- Raquel Carvalhosa
- Department of Internal Medicine, Research Center for Experimental Medicine (CeRMS) and Center for Molecular Biotechnology, San Giovanni Battista Hospital, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Taveira-DaSilva AM, Hathaway O, Stylianou M, Moss J. Changes in lung function and chylous effusions in patients with lymphangioleiomyomatosis treated with sirolimus. Ann Intern Med 2011; 154:797-805, W-292-3. [PMID: 21690594 PMCID: PMC3176735 DOI: 10.7326/0003-4819-154-12-201106210-00007] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a disorder that affects women and is characterized by cystic lung destruction, chylous effusions, lymphangioleiomyomas, and angiomyolipomas. It is caused by proliferation of abnormal smooth muscle-like cells. Sirolimus is a mammalian target of rapamycin inhibitor that has been reported to decrease the size of neoplastic growths in animal models of tuberous sclerosis complex and to reduce the size of angiomyolipomas and stabilize lung function in humans. OBJECTIVE To assess whether sirolimus therapy is associated with improvement in lung function and a decrease in the size of chylous effusions and lymphangioleiomyomas in patients with LAM. DESIGN Observational study. SETTING The National Institutes of Health Clinical Center. PATIENTS 19 patients with rapidly progressing LAM or chylous effusions. INTERVENTION Treatment with sirolimus. MEASUREMENTS Lung function and the size of chylous effusions and lymphangioleiomyomas before and during sirolimus therapy. RESULTS Over a mean of 2.5 years before beginning sirolimus therapy, the mean (±SE) FEV1 decreased by 2.8%±0.8% predicted and diffusing capacity of the lung for carbon monoxide (Dlco) decreased by 4.8%±0.9% predicted per year. In contrast, over a mean of 2.6 years of sirolimus therapy, the mean (±SE) FEV1 increased by 1.8%±0.5% predicted and Dlco increased by 0.8%±0.5% predicted per year (P<0.001). After beginning sirolimus therapy, 12 patients with chylous effusions and 11 patients with lymphangioleiomyomas experienced almost complete resolution of these conditions. In 2 of the 12 patients, sirolimus therapy enabled discontinuation of pleural fluid drainage. LIMITATIONS This was an observational study. The resolution of effusions may have affected improvements in lung function. CONCLUSION Sirolimus therapy is associated with improvement or stabilization of lung function and reduction in the size of chylous effusions and lymphangioleiomyomas in patients with LAM. PRIMARY FUNDING SOURCE Intramural Research Program, National Heart, Lung, and Blood Institute, National Institutes of Health.
Collapse
Affiliation(s)
- Angelo M Taveira-DaSilva
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1590, USA.
| | | | | | | |
Collapse
|
44
|
Davies DM, de Vries PJ, Johnson SR, McCartney DL, Cox JA, Serra AL, Watson PC, Howe CJ, Doyle T, Pointon K, Cross JJ, Tattersfield AE, Kingswood JC, Sampson JR. Sirolimus Therapy for Angiomyolipoma in Tuberous Sclerosis and Sporadic Lymphangioleiomyomatosis: A Phase 2 Trial. Clin Cancer Res 2011; 17:4071-81. [DOI: 10.1158/1078-0432.ccr-11-0445] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Abstract
Mutational inactivation of the tumor suppressor tuberous sclerosis complex 2 (TSC2) constitutively activates mTORC1, increases cell proliferation, and induces the pathological manifestations observed in tuberous sclerosis (TS) and in pulmonary lymphangioleiomyomatosis (LAM). While the role of mTORC1 in TSC2-dependent growth has been extensively characterized, little is known about the role of mTORC2. Our data demonstrate that mTORC2 modulates TSC2-null cell proliferation and survival through RhoA GTPase and Bcl2 proteins. TSC2-null cell proliferation was inhibited not only by reexpression of TSC2 or small interfering RNA (siRNA)-induced downregulation of Rheb, mTOR, or raptor, but also by siRNA for rictor. Increased RhoA GTPase activity and P-Ser473 Akt were inhibited by siRNA for rictor. Importantly, constitutively active V14RhoA reversed growth inhibition induced by siRNA for rictor, siRNA TSC1, reexpression of TSC2, or simvastatin. While siRNA for RhoA had a modest effect on growth inhibition, downregulation of RhoA markedly increased TSC2-null cell apoptosis. Inhibition of RhoA activity downregulated antiapoptotic Bcl2 and upregulated proapoptotic Bim, Bok, and Puma. In vitro and in vivo, simvastatin alone or in combination with rapamycin inhibited cell growth and induced TSC2-null cell apoptosis, abrogated TSC2-null tumor growth, improved animal survival, and prevented tumor recurrence by inhibiting cell growth and promoting apoptosis. Our data demonstrate that mTORC2-dependent activation of RhoA is required for TSC2-null cell growth and survival and suggest that targeting both mTORC2 and mTORC1 by a combination of proapoptotic simvastatin and cytostatic rapamycin shows promise for combinational therapeutic intervention in diseases with TSC2 dysfunction.
Collapse
|
46
|
Reith RM, Way S, McKenna J, Haines K, Gambello MJ. Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration. Neurobiol Dis 2011; 43:113-22. [PMID: 21419848 DOI: 10.1016/j.nbd.2011.02.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/27/2011] [Indexed: 01/27/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a neurogenetic disorder that often causes brain abnormalities leading to epilepsy, developmental delay, and autism. TSC is caused by inactivating mutations in either of the genes encoding the proteins hamartin (TSC1) and tuberin (TSC2). These proteins form a heterodimer that inhibits the mammalian target of rapamycin complex 1 (mTORC1) pathway, controlling translation and cell growth. Loss of either protein results in dysregulated mTORC1 activation, an important aspect of TSC pathogenesis. About thirty percent of TSC patients have cerebellar pathology that is poorly understood. To investigate the effects of TSC on the cerebellum, we created a mouse model in which the Tsc2 gene was selectively deleted from Purkinje cells starting at postnatal day 6 (P6). The loss of Tsc2 caused a progressive increase in Purkinje cell size and subsequent death from apoptosis. Purkinje cell loss was predominantly cell type specific and associated with motor deficits. Immunohistochemical analysis showed that both endoplasmic reticulum (ER) and oxidative stress were increased in Tsc2-null Purkinje cells. The cell death and ER stress phenotypes were rescued by treatment with the mTORC1 inhibitor rapamycin. To assess whether the murine Purkinje cell loss has a correlate to the human TSC, we analyzed postmortem cerebellum samples from TSC patients and detected Purkinje cell loss in half of the samples. Our results establish a critical role for the TSC complex in Purkinje cell survival by regulating ER and oxidative stress and reveal a novel aspect of TSC neuropathology.
Collapse
Affiliation(s)
- R Michelle Reith
- University of Texas Health Science Center at Houston, Department of Pediatrics, Division of Medical Genetics, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
47
|
Targeting the dysregulated mammalian target of rapamycin pathway in organ transplantation: killing 2 birds with 1 stone. Transplant Rev (Orlando) 2011; 25:145-53. [PMID: 21419611 DOI: 10.1016/j.trre.2010.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/26/2010] [Indexed: 01/09/2023]
Abstract
Dysregulation and hyperactivation of the mammalian target of rapamycin (mTOR) pathway define the molecular basis of the hamartoma syndromes, including Cowden syndrome, tuberous sclerosis complex (TSC)/lymphangioleiomyomatosis, and Peutz-Jeghers syndrome. Loss of the tumor suppressors phosphatase and tensin homolog (PTEN), TSC1, TSC2, and LKB1 results in uncontrolled growth of usually benign tumors in various organs that, however, frequently lead to organ failure. Therefore, organ transplantation is a common therapeutic option in distinct patients with hamartoma syndromes, especially those with TSC/lymphangioleiomyomatosis. mTOR inhibitors are currently used in allogeneic transplantation as immunosuppressants and for the treatment of a growing number of cancers with dysregulated mTOR/phosphoinositide 3-kinase pathway. This dual targeting provides the unique opportunity for mTOR inhibitors to affect hamartoma syndromes at the molecular level along with potent immunosuppression in transplanted individuals. Here, we review the molecular mechanisms of hamartoma syndromes and discuss the recent clinical progress in transplant patients with hamartomas. Combining the identification of novel molecular targets of the phosphoinositide 3-kinase/mTOR pathway with insights into the clinical effectiveness of current therapeutic strategies sets the stage for a broader translational potential essential for further progress both in the treatment of cancer and for transplantation.
Collapse
|
48
|
Neuman NA, Henske EP. Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis. EMBO Mol Med 2011; 3:189-200. [PMID: 21412983 PMCID: PMC3377068 DOI: 10.1002/emmm.201100131] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 01/10/2023] Open
Abstract
The protein products of the tuberous sclerosis complex (TSC) genes, TSC1 and TSC2, form a complex, which inhibits the small G-protein, Ras homolog enriched in brain (Rheb). The vast majority of research regarding these proteins has focused on mammalian Target of Rapamycin (mTOR), a target of Rheb. Here, we propose that there are clinically relevant functions and targets of TSC1, TSC2 and Rheb, which are independent of mTOR. We present evidence that such non-canonical functions of the TSC-Rheb signalling network exist, propose a standard of evidence for these non-canonical functions, and discuss their potential clinical and therapeutic implications for patients with TSC and lymphangioleiomyomatosis (LAM).
Collapse
Affiliation(s)
- Nicole A Neuman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
49
|
Bernardi R, Papa A, Egia A, Coltella N, Teruya-Feldstein J, Signoretti S, Pandolfi PP. Pml represses tumour progression through inhibition of mTOR. EMBO Mol Med 2011; 3:249-57. [PMID: 21387562 PMCID: PMC3123467 DOI: 10.1002/emmm.201100130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 02/08/2011] [Accepted: 02/10/2011] [Indexed: 11/08/2022] Open
Abstract
The promyelocytic leukaemia gene PML is a pleiotropic tumour suppressor. We have recently demonstrated that PML opposes mTOR-HIF1α-VEGF signalling in hypoxia. To determine the relevance of PML-mTOR antagonism in tumourigenesis, we have intercrossed Pml null mice with Tsc2 heterozygous mice, which develop kidney cysts and carcinomas exhibiting mTOR upregulation. We find that combined inactivation of Pml and Tsc2 results in aberrant TORC1 activity both in pre-tumoural kidneys as well as in kidney lesions. Such increase correlates with a marked acceleration in tumour progression, impacting on both the biology and histology of kidney carcinomas. Also, Pml inactivation decreases the rate of loss of heterozygosity (LOH) for the wt Tsc2 allele. Interestingly, however, aberrant TORC1 activity does not accelerate renal cystogenesis in Tsc2/Pml mutants. Our data demonstrate that activation of mTOR is critical for tumour progression, but not for tumour initiation in the kidney.
Collapse
Affiliation(s)
- Rosa Bernardi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Division of Genetics, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhang D, Kobayashi T, Kojima T, Kanenishi K, Hagiwara Y, Abe M, Okura H, Hamano Y, Sun G, Maeda M, Jishage KI, Noda T, Hino O. Deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 knockout mice. Cancer Sci 2011; 102:720-7. [PMID: 21205090 DOI: 10.1111/j.1349-7006.2011.01846.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genetic crossing experiments were performed between tuberous sclerosis-2 (Tsc2) KO and expressed in renal carcinoma (Erc) KO mice to analyze the function of the Erc/mesothelin gene in renal carcinogenesis. We found the number and size of renal tumors were significantly less in Tsc2+/-;Erc-/- mice than in Tsc2+/-;Erc+/+ and Tsc2+/-;Erc+/- mice. Tumors from Tsc2+/-;Erc-/- mice exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen (Ki67) and TUNEL analysis, respectively. Adhesion to collagen-coated plates in vitro was enhanced in Erc-restored cells and decreased in Erc-suppressed cells with siRNA. Tumor formation by Tsc2-deficient cells in nude mice was remarkably suppressed by stable knockdown of Erc with shRNA. Western blot analysis showed that the phosphorylation of focal adhesion kinase, Akt and signal transducer and activator of transcription protein 3 were weaker in Erc-deficient/suppressed cells compared with Erc-expressed cells. These results indicate that deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 KO mice and inhibits the phosphorylation of several kinases of cell adhesion mechanism. This suggests that Erc/mesothelin may have an important role in the promotion and/or maintenance of carcinogenesis by influencing cell-substrate adhesion via the integrin-related signal pathway.
Collapse
Affiliation(s)
- Danqing Zhang
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|