1
|
Ma C, Li H, Lu S, Li X, Wang S, Wang W. Tryptase and Exogenous Trypsin: Mechanisms and Ophthalmic Applications. J Inflamm Res 2023; 16:927-939. [PMID: 36891173 PMCID: PMC9987324 DOI: 10.2147/jir.s402900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Ocular injuries caused by inflammation, surgery or accidents are subject to a physiological healing process that ultimately restores the structure and function of the damaged tissue. Tryptase and trypsin are essential component of this process and they play a role in promoting and reducing the inflammatory response of tissues, respectively. Following injury, tryptase is endogenously produced by mast cells and can exacerbate the inflammatory response both by stimulating neutrophil secretion, and through its agonist action on proteinase-activated receptor 2 (PAR2). In contrast, exogenously introduced trypsin promotes wound healing by attenuating inflammatory responses, reducing oedema and protecting against infection. Thus, trypsin may help resolve ocular inflammatory symptoms and promote faster recovery from acute tissue injury associated with ophthalmic diseases. This article describes the roles of tryptase and exogenous trypsin in affected tissues after onset of ocular injury, and the clinical applications of trypsin injection.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.,Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, People's Republic of China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, UK
| | - Shuai Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenzhan Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
2
|
Wang X, Zhang D, Fucci QA, Dollery CM, Owen CA. Surface-bound matrix metalloproteinase-8 on macrophages: Contributions to macrophage pericellular proteolysis and migration through tissue barriers. Physiol Rep 2021; 9:e14778. [PMID: 33656791 PMCID: PMC7927794 DOI: 10.14814/phy2.14778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
Objective MMP‐8 binds to surface‐bound tissue inhibitor of metalloproteinase‐1 (TIMP‐1) on PMNs to promote pericellular proteolysis during the development of inflammatory diseases associated with tissue destruction. Little is known about the biology of MMP‐8 in macrophages. We tested the hypotheses that: (1) MMP‐8 and TIMP‐1 are also expressed on the surface of activated macrophages, (2) surface‐bound MMP‐8 on macrophages promotes TIMP‐resistant pericellular proteolysis and macrophage migration through tissue barriers, and (3) MMP‐8 binds to surface‐bound TIMP‐1 on macrophages. Methods Surface MMP‐8 and TIMP‐1 levels were measured on human monocyte‐derived macrophages (MDM) and/or murine macrophages using immunostaining, biotin‐labeling, and substrate cleavage methods. The susceptibility of membrane‐bound Mmp‐8 on activated macrophages from wild‐type (WT) mice to TIMPs was measured. Migration of WT and Mmp‐8−/− macrophages through models of tissue barriers in vitro and the accumulation of peritoneal macrophages in WT versus Mmp‐8−/− mice with sterile peritonitis was compared. Surface levels of Mmp‐8 were compared on activated macrophages from WT and Timp‐1−/− mice. Results Lipopolysaccharides and a cluster of differentiation 40 ligand increased surface MMP‐8 and/or TIMP‐1 staining and surface type I collagenase activity on MDM and/or murine macrophages. Activated Mmp‐8−/− macrophages degraded less type I collagen than activated WT macrophages. The surface type‐I collagenase activity on WT macrophages was resistant to inhibition by Timp‐1. Peritoneal macrophage accumulation was similar in WT and Mmp‐8−/− mice with sterile acute peritonitis. However, Mmp‐8−/− macrophages migrated less efficiently through models of tissue barriers (especially those containing type I collagen) than WT cells. Activated WT and Timp‐1−/− macrophages had similar surface‐bound Mmp‐8 levels. Conclusions MMP‐8 and TIMP‐1 are expressed on the surface of activated human MDM and murine macrophages, but Mmp‐8 is unlikely to bind to surface‐bound Timp‐1 on these cells. Surface‐bound MMP‐8 contributes to TIMP‐resistant monocyte/macrophage pericellular proteolysis and macrophage migration through collagen‐containing tissue barriers.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Quynh-Anh Fucci
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clare M Dollery
- Whittington Hospital, Wittington Health NHS Trust, London, UK
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Indalao IL, Sawabuchi T, Takahashi E, Kido H. IL-1β is a key cytokine that induces trypsin upregulation in the influenza virus-cytokine-trypsin cycle. Arch Virol 2016; 162:201-211. [PMID: 27714503 PMCID: PMC5225228 DOI: 10.1007/s00705-016-3093-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Severe influenza is characterized by a cytokine storm, and the influenza virus-cytokine-trypsin cycle is one of the important mechanisms of viral multiplication and multiple organ failure. The aim of this study was to define the key cytokine(s) responsible for trypsin upregulation. Mice were infected with influenza virus strain A/Puerto Rico/8/34 (H1N1) or treated individually or with a combination of interleukin-1β, interleukin-6, and tumor necrosis factor α. The levels of these cytokines and trypsin in the lungs were monitored. The neutralizing effects of anti-IL-1β antibodies on cytokine and trypsin expression in human A549 cells and lung inflammation in the infected mice were examined. Infection induced interleukin-1β, interleukin-6, tumor necrosis factor α, and ectopic trypsin in mouse lungs in a dose- and time-dependent manner. Intraperitoneal administration of interleukin-1β combined with other cytokines tended to upregulate trypsin and cytokine expression in the lungs, but the combination without interleukin-1β did not induce trypsin. In contrast, incubation of A549 cells with interleukin-1β alone induced both cytokines and trypsin, and anti-interleukin-1β antibody treatment abrogated these effects. Administration of the antibody in the infected mice reduced lung inflammation area. These findings suggest that IL-1β plays a key role in trypsin upregulation and has a pathological role in multiple organ failure.
Collapse
Affiliation(s)
- I L Indalao
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, 770-8503, Japan
| | - T Sawabuchi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, 770-8503, Japan
| | - E Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, 770-8503, Japan
| | - H Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, 770-8503, Japan.
| |
Collapse
|
4
|
Kimura D, Saravia J, Rovnaghi CR, Meduri GU, Schwingshackl A, Cormier SA, Anand KJ. Plasma Biomarker Analysis in Pediatric ARDS: Generating Future Framework from a Pilot Randomized Control Trial of Methylprednisolone: A Framework for Identifying Plasma Biomarkers Related to Clinical Outcomes in Pediatric ARDS. Front Pediatr 2016; 4:31. [PMID: 27066464 PMCID: PMC4815896 DOI: 10.3389/fped.2016.00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/21/2016] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Lung injury activates multiple pro-inflammatory pathways, including neutrophils, epithelial, and endothelial injury, and coagulation factors leading to acute respiratory distress syndrome (ARDS). Low-dose methylprednisolone therapy (MPT) improved oxygenation and ventilation in early pediatric ARDS without altering duration of mechanical ventilation or mortality. We evaluated the effects of MPT on biomarkers of endothelial [Ang-2 and soluble intercellular adhesion molecule-1 (sICAM-1)] or epithelial [soluble receptor for activated glycation end products (sRAGE)] injury, neutrophil activation [matrix metalloproteinase-8 (MMP-8)], and coagulation (plasminogen activator inhibitor-1). DESIGN Double-blind, placebo-controlled randomized trial. SETTING Tertiary-care pediatric intensive care unit (ICU). PATIENTS Mechanically ventilated children (0-18 years) with early ARDS. INTERVENTIONS Blood samples were collected on days 0 (before MPT), 7, and 14 during low-dose MPT (n = 17) vs. placebo (n = 18) therapy. The MPT group received a 2-mg/kg loading dose followed by 1 mg/kg/day continuous infusions from days 1 to 7, tapered off over 7 days; placebo group received equivalent amounts of 0.9% saline. We analyzed plasma samples using a multiplex assay for five biomarkers of ARDS. Multiple regression models were constructed to predict associations between changes in biomarkers and the clinical outcomes reported earlier, including P/F ratio on days 8 and 9, plateau pressure on days 1 and 2, PaCO2 on days 2 and 3, racemic epinephrine following extubation, and supplemental oxygen at ICU discharge. RESULTS No differences occurred in biomarker concentrations between the groups on day 0. On day 7, reduction in MMP-8 levels (p = 0.0016) occurred in the MPT group, whereas increases in sICAM-1 levels (p = 0.0005) occurred in the placebo group (no increases in sICAM-1 in the MPT group). sRAGE levels decreased in both MPT and placebo groups (p < 0.0001) from day 0 to day 7. On day 7, sRAGE levels were positively correlated with MPT group PaO2/FiO2 ratios on day 8 (r = 0.93, p = 0.024). O2 requirements at ICU transfer positively correlated with day 7 MMP-8 (r = 0.85, p = 0.016) and Ang-2 levels (r = 0.79, p = 0.036) in the placebo group and inversely correlated with day 7 sICAM-1 levels (r = -0.91, p = 0.005) in the MPT group. CONCLUSION Biomarkers selected from endothelial, epithelial, or intravascular factors can be correlated with clinical endpoints in pediatric ARDS. For example, MPT could reduce neutrophil activation (⇓MMP-8), decrease endothelial injury (⇔sICAM-1), and allow epithelial recovery (⇓sRAGE). Large ARDS clinical trials should develop similar frameworks. TRIAL REGISTRATION https://clinicaltrials.gov, NCT01274260.
Collapse
Affiliation(s)
- Dai Kimura
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Jordy Saravia
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA
| | | | - Gianfranco Umberto Meduri
- Department of Internal Medicine, Memphis Veterans Affairs Medical Center, Memphis, TN, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andreas Schwingshackl
- Department of Pediatrics, University of California Los Angeles , Los Angeles, CA , USA
| | - Stephania A Cormier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kanwaljeet J Anand
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
5
|
Dénervaud V, Gremlich S, Trummer-Menzi E, Schittny JC, Roth-Kleiner M. Gene expression profile in newborn rat lungs after two days of recovery of mechanical ventilation. Pediatr Res 2015; 78:641-9. [PMID: 26353077 DOI: 10.1038/pr.2015.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/18/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Preterm infants having immature lungs often require respiratory support, potentially leading to bronchopulmonary dysplasia (BPD). Conventional BPD rodent models based on mechanical ventilation (MV) present outcome measured at the end of the ventilation period. A reversible intubation and ventilation model in newborn rats recently allowed discovering that different sets of genes modified their expression related to time after MV. In a newborn rat model, the expression profile 48 h after MV was analyzed with gene arrays to detect potentially interesting candidates with an impact on BPD development. METHODS Rat pups were injected P4-5 with 2 mg/kg lipopolysaccharide (LPS). One day later, MV with 21 or 60% oxygen was applied during 6 h. Animals were sacrified 48 h after end of ventilation. Affymetrix gene arrays assessed the total gene expression profile in lung tissue. RESULTS In fully treated animals (LPS + MV + 60% O(2)) vs. controls, 271 genes changed expression significantly. All modified genes could be classified in six pathways: tissue remodeling/wound repair, immune system and inflammatory response, hematopoiesis, vasodilatation, and oxidative stress. Major alterations were found in the MMP and complement system. CONCLUSION MMPs and complement factors play a central role in several of the pathways identified and may represent interesting targets for BPD treatment/prevention.Bronchopulmonary dysplasia (BPD) is a chronic lung disease occurring in ~30% of preterm infants born less than 30 wk of gestation (1). Its main risk factors include lung immaturity due to preterm delivery, mechanical ventilation (MV), oxygen toxicity, chorioamnionitis, and sepsis. The main feature is an arrest of alveolar and capillary formation (2). Models trying to decipher genes involved in the pathophysiology of BPD are mainly based on MV and oxygen application to young mammals with immature lungs of different species (3). In newborn rodent models, analyses of lung structure and gene and protein expression are performed for practical reasons directly at the end of MV (4,5,6). However, later appearing changes of gene expression might also have an impact on lung development and the evolution towards BPD and cannot be discovered by such models. Recently, we developed a newborn rat model of MV using an atraumatic (orotracheal) intubation technique that allows the weaning of the newborn animal off anesthesia and MV, the extubation to spontaneous breathing, and therefore allows the evaluation of effects of MV after a ventilation-free period of recovery (7). Indeed, applying this concept of atraumatic intubation by direct laryngoscopy, we recently were able to show significant differences between gene expression changes appearing directly after MV compared to those measured after a ventilation-free interval of 48 h. Immediately after MV, inflammation-related genes showed a transitory modified expression, while another set of more structurally related genes changed their expression only after a delay of 2 d (7). Lung structure, analyzed by conventional 2D histology and also by 3D reconstruction using synchrotron x-ray tomographic microscopy revealed, 48 h after end of MV, a reduced complexity of lung architecture compared to the nonventilated rat lungs, similar to the typical findings in BPD. To extend these observations about late gene expression modifications, we performed with a similar model a full gene expression profile of lung tissue 48 h after the end of MV with either room air or 60% oxygen. Essentially, we measured changes in the expression of genes related to the MMPs and complement system which played a role in many of the six identified mostly affected pathways.
Collapse
Affiliation(s)
- Valérie Dénervaud
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sandrine Gremlich
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Eliane Trummer-Menzi
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Matthias Roth-Kleiner
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Toumpanakis D, Noussia O, Sigala I, Litsiou E, Loverdos K, Zacharatos P, Karavana V, Michailidou T, Magkou C, Zhou Z, Theocharis S, Vassilakopoulos T. Inspiratory resistive breathing induces MMP-9 and MMP-12 expression in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 308:L683-92. [PMID: 25595645 DOI: 10.1152/ajplung.00133.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 01/06/2015] [Indexed: 01/27/2023] Open
Abstract
Inspiratory resistive breathing (IRB) is characterized by large negative intrathoracic pressures and was shown to induce pulmonary inflammation in previously healthy rats. Matrix metalloproteinases (MMP)-9 and -12 are induced by inflammation and mechanical stress in the lung. We hypothesized that IRB induces MMP-9 and -12 in the lung. Anesthetized, tracheostomized rats breathed spontaneously through a two-way valve, connected to an inspiratory resistance, with the tidal inspiratory tracheal pressure set at 50% of the maximum. Quietly breathing animals served as controls. After 3 and 6 h of IRB, respiratory mechanics were measured, bronchoalveolar lavage (BAL) was performed, lung injury score was estimated, and lung MMP-9 was estimated by zymography and ELISA. MMP-9 and MMP-12 immunohistochemistry was performed. Isolated normal alveolar macrophages were incubated with BAL from rats that underwent IRB. After 18 h, MMP-9 and -12 levels were measured in supernatants, and immunocytochemistry was performed. Macrophages were treated with IL-1β, IL-6, or TNF-α, and MMP-9 in supernatants was measured. After 6 h of IRB, leukocytes in BAL increased, and IL-1β and IL-6 levels were elevated. Elasticity and injury score were increased after 3 and 6 h of IRB. Lung MMP-9 levels increased after 6 h of IRB. MMP-9 and MMP-12 were detected in alveolar macrophages and epithelial (bronchial/alveolar) cells after 3 and 6 h of IRB. MMP-9 and MMP-12 were found in supernatants after treatment with 6 h of IRB BAL. Cytosolic immunostaining was detected after treatment with 3 and 6 h of IRB BAL. All cytokines induced MMP-9 in culture supernatants. In conclusion, IRB induces MMP-9 and -12 in the lung of previously healthy rats.
Collapse
Affiliation(s)
- Dimitrios Toumpanakis
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos Hospital, University of Athens, Medical School, Athens, Greece
| | - Olga Noussia
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos Hospital, University of Athens, Medical School, Athens, Greece
| | - Ioanna Sigala
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos Hospital, University of Athens, Medical School, Athens, Greece
| | - Eleni Litsiou
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos Hospital, University of Athens, Medical School, Athens, Greece
| | - Konstantinos Loverdos
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos Hospital, University of Athens, Medical School, Athens, Greece
| | - Panagiotis Zacharatos
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos Hospital, University of Athens, Medical School, Athens, Greece
| | - Vassiliki Karavana
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos Hospital, University of Athens, Medical School, Athens, Greece
| | - Tatiana Michailidou
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos Hospital, University of Athens, Medical School, Athens, Greece
| | - Christina Magkou
- Department of Pathology, General Hospital "Evangelismos", Athens, Greece
| | - Zongmin Zhou
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos Hospital, University of Athens, Medical School, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, University of Athens, Medical School, Athens, Greece
| | - Theodoros Vassilakopoulos
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, Evangelismos Hospital, University of Athens, Medical School, Athens, Greece;
| |
Collapse
|
7
|
Velten M, Britt RD, Heyob KM, Tipple TE, Rogers LK. Maternal dietary docosahexaenoic acid supplementation attenuates fetal growth restriction and enhances pulmonary function in a newborn mouse model of perinatal inflammation. J Nutr 2014; 144:258-66. [PMID: 24453131 PMCID: PMC3927543 DOI: 10.3945/jn.113.179259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The preterm infant is often exposed to maternal and neonatal inflammatory stimuli and is born with immature lungs, resulting in a need for oxygen therapy. Nutritional intervention with docosahexaenoic acid (DHA; 6.3 g/kg of diet) has been shown to attenuate inflammation in various human diseases. Previous studies demonstrated that maternal DHA supplementation during late gestation and lactation attenuated hyperoxic lung injury in newborn mouse pups. In the present studies, we tested the hypothesis that DHA supplementation to the dam would reduce hyperoxic lung injury and growth deficits in a more severe model of systemic maternal inflammation, including lipopolysaccharide (LPS) and neonatal hyperoxia exposure. On embryonic day 16, dams were placed on DHA (6.3 g DHA/kg diet) or control diets and injected with saline or LPS. Diets were maintained through weaning. At birth, pups were placed in room air or hyperoxia for 14 d. Improvements in birth weight (P < 0.01), alveolarization (P ≤ 0.01), and pulmonary function (P ≤ 0.03) at 2 and 8 wk of age were observed in pups exposed to perinatal inflammation and born to DHA-supplemented dams compared with control diet-exposed pups. These improvements were associated with decreases in tissue macrophage numbers (P < 0.01), monocyte chemoattractant protein-1 expression (P ≤ 0.05), and decreases in soluble receptor for advanced glycation end products concentrations (P < 0.01) at 2 and 8 wk. Furthermore, DHA supplementation attenuated pulmonary fibrosis, which was associated with the reduction of matrix metalloproteinases 2, 3, and 8 (P ≤ 0.03) and collagen mRNA (P ≤ 0.05), and decreased collagen (P < 0.01) and vimentin (P ≤ 0.03) protein concentrations. In a model of severe inflammation, maternal DHA supplementation lessened inflammation and improved lung growth in the offspring. Maternal supplementation with DHA may be a therapeutic strategy to reduce neonatal inflammation.
Collapse
Affiliation(s)
- Markus Velten
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Rodney D. Britt
- Department of Pediatrics, The Ohio State University, Columbus, OH; and
| | - Kathryn M. Heyob
- Department of Pediatrics, The Ohio State University, Columbus, OH; and
| | - Trent E. Tipple
- Department of Pediatrics, The Ohio State University, Columbus, OH; and,Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich Wilhelms University, University Medical Center, Bonn, Germany
| | - Lynette K. Rogers
- Department of Pediatrics, The Ohio State University, Columbus, OH; and,Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich Wilhelms University, University Medical Center, Bonn, Germany,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Han B, Zhao X, Huang X, Xie L. Vaporized Perfluorocarbon Confers Protection against Acute Lung Injury by Inhibiting MMP-9 Expression without Protective Effects in other Organs. J Int Med Res 2012; 40:115-25. [PMID: 22429351 DOI: 10.1177/147323001204000112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE: Vaporized perfluorocarbon (PFC) is a treatment for lung injury; this study investigated its mode of action and potential protective effects on other organs, which are unclear. METHODS: Acute lung injury was induced by lung lavage with artificial seawater in 32 female New Zealand White rabbits. Animals received either conventional mechanical ventilation (CMV), positive end-expiratory pressure under CMV (PEEP), vaporized PFC ventilation, or positive end-expiratory pressure with vaporized PFC ventilation (PEEP + PFC). Histopathology of the lung, small intestine, liver and kidney were investigated. Matrix metalloproteinase (MMP)-9 mRNA levels in the lung were analysed. RESULTS: Pathological injury of the lung was significantly alleviated in the PEEP, PFC and PEEP + PFC groups compared with the CMV group. Tissue damage in the liver, kidney and small intestine was similar between all groups. MMP-9 mRNA levels in the PEEP, PFC and PEEP + PFC groups were significantly lower than those in the CMV group. CONCLUSIONS: Vaporized PFC ventilation can significantly alleviate lung injury but has no significant protective effect on other organs. Alleviation of lung injury may be associated with MMP-9 inhibition.
Collapse
Affiliation(s)
- B Han
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing, China
| | - X Zhao
- Department of Respiratory Diseases, General Hospital of Chinese People's Armed Police, Beijing, China
| | - X Huang
- Department of Respiratory Diseases, General Hospital of Chinese People's Armed Police, Beijing, China
| | - L Xie
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Kong MYF, Li Y, Oster R, Gaggar A, Clancy JP. Early elevation of matrix metalloproteinase-8 and -9 in pediatric ARDS is associated with an increased risk of prolonged mechanical ventilation. PLoS One 2011; 6:e22596. [PMID: 21857935 PMCID: PMC3152289 DOI: 10.1371/journal.pone.0022596] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/25/2011] [Indexed: 01/11/2023] Open
Abstract
Background Matrix metalloproteinases (MMP) -8 and -9 may play key roles in the modulation of neutrophilic lung inflammation seen in pediatric Acute Respiratory Distress Syndrome (ARDS). We aimed to perform a comprehensive analysis of MMP-8 and MMP-9 activity in tracheal aspirates of pediatric ARDS patients compared with non-ARDS controls, testing whether increased MMP-8 and -9 activities were associated with clinical outcomes. Methods Tracheal aspirates were collected from 33 pediatric ARDS patients and 21 non-ARDS controls at 48 hours of intubation, and serially for those who remained intubated greater than five days. MMPs, tissue inhibitor of metalloproteinases (TIMPs), human neutrophil elastase (HNE) and myeloperoxidase (MPO) activity were measured by ELISA, and correlated with clinical indicators of disease severity such as PRISM (Pediatric Risk of Mortality) scores, oxygen index (OI), multi-organ system failure (MOSF) and clinical outcome measures including length of intubation, ventilator-free days (VFDs) and mortality in the Pediatric Intensive Care Unit (PICU). Results Active MMP-9 was elevated early in pediatric ARDS subjects compared to non-ARDS controls. Higher MMP-8 and active MMP-9 levels at 48 hours correlated with a longer course of mechanical ventilation (r = 0.41, p = 0.018 and r = 0.75, p<0.001; respectively) and fewer number of VFDs (r = −0.43, p = 0.013 and r = −0.76, p<0.001; respectively), independent of age, gender and severity of illness. Patients with the highest number of ventilator days had the highest levels of active MMP-9. MMP-9 and to a lesser extent MMP-8 activities in tracheal aspirates from ARDS subjects were sensitive to blockade by small molecule inhibitors. Conclusions Higher MMP-8 and active MMP-9 levels at 48 hours of disease onset are associated with a longer duration of mechanical ventilation and fewer ventilator-free days among pediatric patients with ARDS. Together, these results identify early biomarkers predictive of disease course and potential therapeutic targets for this life threatening disease.
Collapse
Affiliation(s)
- Michele Y F Kong
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| | | | | | | | | |
Collapse
|
10
|
Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinase8 has a central role in inflammatory disorders and cancer progression. Cytokine Growth Factor Rev 2011; 22:73-81. [PMID: 21388856 DOI: 10.1016/j.cytogfr.2011.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The predominant role of matrix metalloproteinase 8 in extracellular matrix turnover, modulation of inflammatory responses and other physiological processes is well documented. Several recent studies highlight the involvement of MMP8 in a wide range of pathologies. This review will shed light on the putative role of MMP8 as a drug target or disease marker in some inflammatory disorders and in cancer progression.
Collapse
|