1
|
Ryan RM, Paintlia MK, Newton DA, Spyropoulos DD, Kemp M, Jobe AH, Baatz JE. Oxygen and steroids affect the regulatory role of natriuretic peptide receptor-C on surfactant secretion by type II cells. Am J Physiol Lung Cell Mol Physiol 2022; 322:L13-L22. [PMID: 34668435 PMCID: PMC8721905 DOI: 10.1152/ajplung.00300.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Atrial natriuretic peptide (ANP) and its receptors natriuretic peptide receptor (NPR)-A and NPR-C are all highly expressed in alveolar epithelial type II cells (AEC2s) in the late-gestation ovine fetal lung and are dramatically decreased postnatally. However, of all the components, NPR-C stimulation inhibits ANP-mediated surfactant secretion. Since alveolar oxygen increases dramatically after birth, and steroids are administered to mothers antenatally to enhance surfactant lung maturity, we investigated the effects of O2 concentration and steroids on NPR-C-mediated surfactant secretion in AEC2s. NPR-C expression was highest at 5% O2 while being suppressed by 21% O2, in cultured mouse lung epithelial cells (MLE-15s) and/or human primary AEC2s. Surfactant protein-B (SP-B) was significantly elevated in media from both in vitro and ex vivo culture at 13% O2 versus 21% O2 in the presence of ANP or terbutaline (TER). Both ANP and C-ANP (an NPR-C agonist) attenuated TER-induced SP-B secretion; this effect was reversed by dexamethasone (DEX) pretreatment in AEC2s and by transfection with NPR-C siRNA in MLE-15 cells. DEX markedly reduced AEC2 NPR-C expression, and pregnant ewes treated with betamethasone showed reduced ANP in fetal sheep lung fluid. These data suggest that elevated O2 downregulates AEC2 NPR-C and that steroid-mediated NPR-C downregulation in neonatal lungs may provide a novel mechanism for their effect on perinatal surfactant production.
Collapse
Affiliation(s)
- Rita M. Ryan
- 1Case Western Reserve University, UH Rainbow Babies and Children’s Hospital, Cleveland, Ohio,2Darby Children’s Research Institute, Department of Pediatrics,
Medical University of South Carolina, Charleston, South Carolina
| | - Manjeet K. Paintlia
- 2Darby Children’s Research Institute, Department of Pediatrics,
Medical University of South Carolina, Charleston, South Carolina
| | - Danforth A. Newton
- 2Darby Children’s Research Institute, Department of Pediatrics,
Medical University of South Carolina, Charleston, South Carolina
| | - Demetri D. Spyropoulos
- 3Department of Pathology and Laboratory Medicine, Medical
University of South Carolina, Charleston, South Carolina
| | - Matthew Kemp
- 4Department of Obstetrics and Gynaecology, University of
Western Australia, Perth, Western Australia, Australia,5Department of Obstetrics and Gynecology, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Alan H. Jobe
- 6Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John E. Baatz
- 2Darby Children’s Research Institute, Department of Pediatrics,
Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
2
|
Öztop M, Özbek M, Liman N, Beyaz F, Ergün E, Ergün L, Kavraal UK, Ergen E. Expression patterns of natriuretic peptides in pre-hibernating and hibernating anatolian ground squirrel (Spermophilus xanthoprymnus) lung. Acta Histochem 2019; 121:852-865. [PMID: 31445760 DOI: 10.1016/j.acthis.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
Anatolian ground squirrel (Spermophilus xanthoprymnus) is a true hibernator. This animal transiently reduces pulmonary function during hibernation. Continuance of pulmonary function is very important to survive ground squirrels during the hibernation. Natriuretic peptides may be key players in the modulation of pulmonary hemostasis. However, NPs' role in pulmonary function during hibernation remains unclear. We aimed to investigate the localization and distribution of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) in squirrel lungs during pre-hibernation and hibernation periods using immunohistochemistry. Our immunohistochemical data indicate that ANP, BNP, and CNP were produced by the mucosal epithelium of terminal and respiratory bronchioles, smooth muscle cells in the lamina propria of terminal bronchioles and vascular smooth muscle cells, alveolar type II cells, and macrophages. ANP immunoreactivity was weaker than BNP and CNP immunoreactivities in these cells. The results also demonstrate that the number of ANP, BNP and CNP positive alveolar type II cells tended to increase, although statistically non-significant, during the hibernation period, but the expression of NPs in other pulmonary cells is unaffected by hibernation. This study firstly investigates ANP, BNP and CNP distribution in the Anatolian ground squirrel lung. However, further studies are required to dissect their functional roles during the hibernation.
Collapse
|
3
|
Natriuretic peptide C receptor in the developing sheep lung: role in perinatal transition. Pediatr Res 2017; 82:349-355. [PMID: 28288148 DOI: 10.1038/pr.2017.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/03/2017] [Indexed: 11/08/2022]
Abstract
Background: At birth, the release of surfactant from alveolar type II cells (ATIIs) is stimulated by increased activity of the beta-adrenergic/adenylyl cyclase/cyclic 3'-5' adenosine monophosphate-signaling cascade. Atrial natriuretic peptide (ANP) stimulates surfactant secretion through natriuretic peptide receptor A (NPR-A). ANP inhibits adenylyl cyclase activity through its binding to NPR-C. We wished to further understand the role of the NPR-C in perinatal transition. Methods: We studied ATII expression of NPR-C in fetal and newborn sheep using immunohistochemistry, and surfactant secretion in isolated ATIIs by measuring 3[H] choline release into the media. Results: ANP induced surfactant secretion, and, at higher doses, it inhibits the stimulatory effect of the secretagogue terbutaline. ATII NPR-C expression decreased significantly after birth. Premature delivery also markedly decreased ANP and NPR-C in ATIIs. Co-incubation of terbutaline (10-4 M) with ANP (10-6 M) significantly decreased 3[H] choline release from isolated newborn ATII cells when compared with terbutaline alone; this inhibitory effect was mimicked by the specific NPR-C agonist, C-ANP (10-10 M). Conclusion: ANP may act as an important epithelial-derived inhibitor of surfactant release in the fetal lung, and downregulation of ANP and NPR-C following birth may sensitize ATII cells to the effects of circulating catecholamines, thus facilitating surfactant secretion.
Collapse
|
4
|
Marcinkiewicz MM, Baker ST, Wu J, Hubert TL, Wolfson MR. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals. PLoS One 2016; 11:e0152027. [PMID: 26999050 PMCID: PMC4801353 DOI: 10.1371/journal.pone.0152027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/08/2016] [Indexed: 11/19/2022] Open
Abstract
The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.
Collapse
Affiliation(s)
- Mariola M. Marcinkiewicz
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Sandy T. Baker
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Jichuan Wu
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Terrence L. Hubert
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Marla R. Wolfson
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Department of Physiology, Pediatrics and Medicine, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Ahmed MN, Codipilly C, Hogg N, Auten RL. The protective effect of overexpression of extracellular superoxide dismutase on nitric oxide bioavailability in the lung after exposure to hyperoxia stress. Exp Lung Res 2010; 37:10-7. [PMID: 21077778 DOI: 10.3109/01902148.2010.497893] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of this study was to determine whether overexpression of human extracellular superoxide dismutase (hEC-SOD) can preserve nitric oxide (NO) bioavailability. In vitro studies examined the transient expression of hEC-SOD in mouse epithelial (C10) cells and its effect on extracellular accumulation of NO, intracellular cyclic guanosine monophosphate (cGMP), and nuclear factor kappa B (NF-κB) activation under normal and oxidative stress conditions. In vivo, newborn rabbits were treated with a plasmid containing hEC-SOD cDNA or vehicle plasmid alone, followed by exposure to hyperoxia (Fio₂ = 95% for 7 days). A third group was raised under normoxic conditions. cGMP and NF-κB activation were studied. There was significantly higher NO accumulation in cells expressing hEC-SOD exposed to oxidative stress compared with nontransfected cells. Accumulation of cGMP was significantly higher in cells expressing hEC-SOD. Oxidative stress induced NF-κB activation, which was abrogated by hEC-SOD expression. In vivo, there was significantly higher cGMP accumulation in transfected neonatal rabbit lung tissue at 3 and 7 days of hyperoxic exposure. Immunostaining for NF-κB, showed a marked increase in NF-κB concentration in nontreated neonatal rabbit lung tissue compared to transfected neonatal lung with hEC-SOD and the control air group. These results show that transient EC-SOD overexpression maintains NO bioavailability, which directly leads to maintenance of cGMP activity and reduction of NF-κB activation under oxidative stress.
Collapse
Affiliation(s)
- Mohamed N Ahmed
- Division of Neonatal-Perinatal Medicine, Schneider Children's Hospital and Center for Heart and Lung Research, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, USA.
| | | | | | | |
Collapse
|